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A Fast Wavelet Analysis Algorithm Based on Rotation Angle Series"
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Abstract A new-style fast wavelet transform, named “rotation angle series fast wavelet trans-
form——RAS-FWT?”, is put forward in this paper. The restriction on the rotation angle series 1s
also brought forward. Instead of the traditional method based on convolution, RAS-FWT adopts
iteration structure that is more easily realized on microprocessors. Digital delay 1s implemented by
“cyclic pointers”. So the code will be with higher efficiency and speed. Mallat algorithm estab-
lished the one-to-one mapping between orthogonal wavelets and N-length discrete coefficient se-
ries, while RAS-FWT discovers the similar one-to-one mapping between orthogonal wavelets and
N/2-length discrete angle series. So it has half operations less than FWT. In addition, new tech-
niques based on the “rotation angle series” will inaugurate a brand-new approach for the wavelet
construction theory, and will become a new branch of the academic subject.
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1 Introduction

In all kinds of engineering and scientific researches, wavelet analysis, an information
processing technique with many outstanding performances in time-frequency analysis and
multiscale feature extraction, has been widely introduced all over the world., Ultrasound
signal and image processing as a significant technique in the fields of material detecting,
fault diagnosis and biomedicine engineering also chooses wavelet analysis as a crucial
means for the pretreatment and feature extraction. Realtime and self-adaptive performance
has become the principal requirement for the relative algorithms.

In 1989, Mallet algorithm''* (FWT) came out, which indicated the great span of
wavelet analysis from theory to engineering, Mallet algorithm is based on the one-to-one
mapping between CQMFB (conjugate quadrature mirror filter bank) and orthogonal wave-
lets. ho(n) and A, (n) are the “analysis filters” of CQMFB (low-pass and high-pass, re-
spectively) , with conjugate quadrature mirror relation and the same length. That is, Mal-
let algorithm sets up one-to-one mapping between orthogonal wavelets and N-length dis-
crete coefficient series, and Mallet algorithm is the fast transform based on N-length dis-
crete coefficient series.

In this paper, an N/2-length discrete angle series {a, »a,s***,a,,}» named “rotation an-
gle series”, is constructed. They have simple linear restriction. Accordingly, there are
M—1 free-degrees for them. The similar one-to-one mapping exists between the N/2-
length discrete angle series and orthogonal wavelets. So the corresponding algorithm,
named “rotation angle series fast wavelet transform RAS-FWT?”, is invented.

RAS-FWT is implemented by the iterative product of N/2 unit-stage transform matri-
xes, instead of the traditional convolutions. So the calculation is decreased and higher tlex-
ibility of choosing implementation schemes is achieved. An implementation scheme based
on “cyclic pointers” is put forward in this paper. In addition, because of the simple linear
restriction on the rotation angle series, RAS-FW'T processes self-adaptive capability to
choose and replace wavelet bases. All these characteristics are not possessed by Mallet algorithm.
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2 The in-depth analysis and equivalent translation to the multiphase matrix of the orthogo-
nal wavelet filter banks
2.1 The structure analysis of orthogonal wavelet filter banks
CQMFB, corresponding to orthogonal wavelets, satisfies the restrictions as fol-

lows!?.

Hl (z) — Z—(ZM_I) H[] (_ 2'—1 ) (1)
hl (ﬂ) — ("’"‘ 1.)N—IMH;10(N_ 1 — ?’I) (2)
(1) 1s equivalent to (2) in the time domain. N(=2M) is the length of the filters.

="

Z hy (n) = 0 (4)
According to (2), (3) and (4) are equivalent to
M-—1 M-—1 ,\/E
2 ha@n) = 3 h@nt1) =% (5)

The analysis filter bank is expressed by polyphase structure as

Hg(Z) — Eg{}(zz) z_lEm(zZ) (6)
H1(2) — .Em (2«"2) E—IEU (252)
The matrix form of (6) is
"Ho(2)7 N
H.(») ™ E(z )_z_l ) (7)
o ~E(2) Eu(2)-
where F(z) = E.(2) E,(2). (&)

E(2) 1s called the polyphase matrix of the analysis filter bank. Thus, (5) is equivalent to

T
2 Z
EF(z=1) = (9)
V2 2
2 2 _

The polyphase structure of the analysis filter bank is shown 1in Fig. 1.

C,(z)

' E(z?)

D, (=)

(a) (b)

Fig.1 The polyphase structure of the analysis filter bank

2.2 The paraunitary structure of the polyphase matrix depicted by rotation angle series, and
its equivalent translation

Above all, we review Section 2. 1: (1) and (9) become the “necessary and sufficient
condition” tor the orthogonal wavelet analysis filter bank.

For the lattice structure shown in Fig. 2, assume that ;0. Then

Qi(z) =z * VP (—2z ") (10)

1s achieved by induction.

Thus it can be seen that every stage of this structure satisfies (1). So, as long as (9)
1s satisfied, this structure can be used to construct the orthogonal wavelet analysis ftilter

bank.
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Fig.2 The lattice structure of the analysis filter bank

Pl(z)

AR

! cosa, &, (z)

L!‘ mam = mp F LEm = e - O - — _— = v — -— - - alm — L L e A

cosa,

—sina, ‘
sina, "

Z—z

cosa, Q,(z)

~

P,(z)

cosa,, &, (z)

r— - T EEE . - S s gy ot O EEE F B E ey -— oy meE . - s e i M - -

L, | L L N e oy e e -y " WSS R S

Contrasting Fig. 1 with Fig. 2, we find two significant equivalence relations shown in Fig. 3.

In Flg 3!

where

“rotation angle”.

2
E(z) = |]*<
i= M

cosa,

L~ Slna,

sing; ~

cosa,

-

..

2 X (z)(even) . E

gl I > X, () X
o o :

55 |y L=
9 | X (z)(odd) : — .

E-g - )--Z_}—>z X, (2}

Fig.3 The equivalent translation

X(z) = X, () + 2 X, (2)

Fig. 3(b) is expressed in matrix form as

cosa,

L~ Sil’lai

sing, | v

cOSsaq,

is the “rotation matrix’

1

»

0 -

—1

<

COSa,
> X

y

_— sing,

E(z)

sim::1 7

cOSa, _

(11)

(12)

as we know in algebra. Thus a. is called

Apparently, E(z) is a paraunitary matrix, namely E(2)E(z) =1, where E (2) =
E' (7).
That is to say, the polyphase matrix of the orthogonal wavelet analysis filter bank has
the paraunitary structure in (12) and in Fig. 3(b).
2.3 The restriction on the rotation angle series

From (9) and (12), «;(i=1,+-,M) should satisfy

namely ’

E(z:D:H

j:

EF(z=1) =

b—ar—rr

M

[ cOsa,

| SN,

M

COS(ZQ’I)
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(13)

(14)
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S0,

Do, = 5+ 2k (15)

3 RAS-FWT algorithm

To reduce the amount of calculation in the algorithm implementation, the cosine ele-
ment of each stage is taken out. Note that

a, = 18a, (16)
M M 1
B = Hcosai < 1l; fB= H (17)
i—1 =1 +/(1+a?)
From the equivalence relations shown in Fig. 3, a novel analyzing and synthesizing
cascaded wavelet transform scheme is invented as shown in Fig, 4.

2 &
= L
¢ =
X(2)—>» 2
55
o3
L
mQ
e e e e e e o e e e m mmmmimimmim
|
' >,
t sk
' oa s 2 g
|
i A oo
| v
D, (z) —  ©
I

Fig.4 The analyzing and synthesizing cascaded wavelet transform scheme

The forward transform unit-stage matrix (analyzing)

[ COSa. SiNg. - -
" [0 (18)

_— slhg,  COSaq, 0 <=

The backward transform unit-stage matrix (synthesizing)

T(a,) =

- - - —_— i n
1 0 COSa, sina,

T(a) = T a) = T(a,) = X | (19)
0 =1 Lsing, cosa; .
Perfect reconstruction
[T(al) X eee X T(aM:)] X {TCay) X X T(a,) ] =1 (20)
The algorithm description for the signal with periodic extension at the edges
0 17 0 1 7
L:Elt Rl — 1 .(? . ’ Rz — 0 .:‘ 1 :R'if‘
u ]. 0_4 1% 1 |_.]. O~ nXn

R, and R, are both cyclic matrixes. The signal is periodically extended at the edges, and
the forward and backward transform unit-stage matrixes are expressed as orthogonal ma-
trixes in real number domain.

- cosal singl I O -
Hay) = _— sing. ] COSCII-I_X 0 R;_ (1)
. o B 0 e _COSaiI — Sinaif_
Ha) = 0 Rz_x _sina, ] cosa.l | (22
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T) = T () = T (a,) (23)

Here, (21) and (22) are expressed as the product of sub-matrixes with particular
meaning. You will find that no operation i1s performed on the signal by the two sub-matri-
xes which include R; and R,. The cyclic matrixes, R; and R, , just cyclically shift the odd
serial signal (namely, so-called digital delay). So no time will be expended on algorithm
by “cyclic pointers”. The rest is simple algebraic operations. Table 1 and 2 show the a-

mount of calculation of RAS-FWT.

Table 1 The algorithm description for the signal with periodic extension at the edges
Wavelet analysis algorithm Wavelet synthesis algorithm

X, = X (original signal), i=1; relocate X; by odd or even i=M

Stepl. X-g — T(ﬂ'i)X;'—l Stepl. X;-‘—l =T! (ﬂ'i)X;{
Step2. i=i+1, if i>M stop; else goto Stepl Step2. 1=:1—1, if i<1 stop; else goto Stepl
Analysis completed Relocate Xy by odd or even; synthesis completed

Table 2 The amount of calculation contrast between RASFWT and FWT

Algorithm name FWT RAS-FWT
Multiplication 4Mn 2n X M
Addition 4(M—1n 2n X M
Total EMn—4n =2NL—2L 4Mn = NL
Total /signal length 2N—2 N

Note: M(the length of rotation angle series); N(the length of filters, N=2M); L(the length of signals, L=2n)

It is obvious that only when N=2M=2, corresponding to Haar wavelet, will the two
algorithms have the same amount of calculation. For higher wavelet order, RAS-FW'T will
have only half amount of FWT's calculation.

4 Further discussion on RAS-FWT
Adjust the composite relation in (12)

2 (r cose. sing. 7 r 1] [ cos sina, "
E(z) = H~< _ai o X 1 91 > X .al o
—m | L slna, cose; ] LO =2z 1| L—sineg cosa |
~ CcO Sing,, ~ Lo p -~ [ cosa. Sina. ]
o RECE | BT M (24)
L— sina,, COsay i | 0 =2 ] L—swa, cosa,._ J
p() = (AP 0) A (2) e h? (2i—2)}
Let {Q(I) = (A2 (1),h?(3) -, A" (21 — 1)} (295
The boundary conditions are
1 j—
{P( ) {C'OS{'IM} (26)
q(1) = {sing,,|
;p(M) — {h 0 (0D yh o (2) e yh (ZM — 2)} = oo (1) (27)
uQ(M) — {h 0 (1) 9}1 0 (3) Y/ 0 (ZM‘_ 1)} — €1 (n)
where ey, (n) 15 the even serial of h,(n), and ey; (n)is the odd serial of k, (22).
The recurrence formula from the rotation angle series to filter coefficients.
From (24)., we have the recurrence formula
{p(f%— 1) = {c-osaM__i(p(.i) ) — sinaM_i(O,q(f))} D e M —1 (28)
q(i+ 1) = {sing,, . (p(),0) + cosa,,_,(0,q())}

with (26) being the initial condition.
The recurrence formula from filter coellicients to the rotation angle series:.
From (28), the reverse recurrence formula i1s

{(p(i) ,0) = {cosa,, .p(i+ 1)+ sing,,_q(Z+ 1)}

‘:‘;M—-—l,-..,]. 29
(0,g()) = {—sina,_p G+ 1) +cosay_gG+1} (29)
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The upper formula is divided by the lower one in (28). Taking out first element of the
series, we get
a,,_. = tga,,_. = h"V (/AP0 i=M—1,-,1 (30)
a, = tga, = h™ (1) /R (0) = hy(1)/hy(0) (31)
Thus,from (31),(29),(30), we can get the total rotation angle series successively.

Examples tor the rotation angle series

Table 3 specializes the rotation angle series for Daubechies orthogonal wavelets'**!,

Table 3 The rotation angle series of Daubechies orthogonal wavelets

Wavelet Vanishing moments Filter coetficients Rotation angle series Sum of rotation angles

Haar 1 0.7071068, 0. 7071068 /4 /4
0. 4829629, 0. 8365163 /3
D A
o : 0.2241439, —0, 1294095 — /12 e/
0. 3326706, 0. 8068915 1. 1797431
Db3 3 0. 4598775, —0.1350110 —0. 4998413 0. 7853981
—0, 0854413, 0. 0352262 0. 1054963
0. 2303778, 0. 7148466 1. 2590303
0. 6308808, —0.0279838 —0. 6813709
Db4 4 . 7853982
b —0. 1870348, 0.0308414 0. 2537065 0.78
0.0328830, —0.0105974 —0. 0459677
0.1601024, 0. 6038293 1. 3116150
0. 7243085, 0.1384281 —0. 8163694
Db5 5 —0, 2422949, —0.0322449 0. 4017260 0. 7853982
0.0775715, —0, 0062415 —0. 1324053
—0. 0125808, 0. 0033357 0. 0208319
0.1115407, 0. 4946239 1. 3490001
0. 7511339, 0. 3152504 — 0. 9181872
—0.2262647, —0.1297669 0. 5327508
D .
b6 0 0. 0975016, 0.0275229 —0. 2383934 0. 7853981
—0. 0315820, 0. 0005538 0. 0698859
0.0047773, —0.0010773 —0. 0096581

Note: Limited by the space, the rotation angle series for higher order wavelets are not listed.

From Table 3, the rotation angle series of Daubechies orthogonal wavelets have the
apparent structure characteristic of “fast oscillatory attenuation”. This brings significant
elicitation to wavelet construction theory. That 1s, as long as we have construct a set ol
rotation angle series with specific rule which satisfies (15), we can achieve a new orthogo-
nal wavelet with special performance. In addition, RAS-FWT completely casts away fussy
filter designs, using the rotation angle series with much less parameters as the replacer.
These characteristics establish a firm theoretical basis for self-adaptive selection of wavelet
bases.

The in-depth study 1s being taken on the relations between the rotation angle series
and the frequency selectivity, vanishing moments, and regularity of orthogonal wavelets.
Applied research findings are expected to construct special performance wavelets.

5 Conclusion

DRAS-FWT has only half amount of FWT calculation in higher order wavelet analy-
sis. That i1s two times faster in speed.

2)RAS-FWT adopts iteration structure that is more easily realized on microproces-
sors. The relocation by odd or even and digital delay are implemented by pointer opera-
tions, instead of real data shift. So its code has higher efficiency and speed, and its data
structure 1S more compact,

3) The simple linear restriction and the apparent structure characteristic of rotation
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angle series offer the capability for self-adaptively searching the best wavelet bases, and
will simplify wavelet construction greatly.

Based on the above characteristics, RAS-FW'T possesses higher technique advantage
and theoretical value. It will bring great effect in fields of numerous realtime applications,
such as speech and image processing, biomedicine ultrasound imaging and industry fault
diagnosis.,
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