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Abstract A multi-model-based predictive control (MMPC) strategy dealing with nonlinear mod-
el-based predictive control (NMPC) for MIMO systems i1s developed in this paper, Firstly a multi-
model identification method is given. Using fuzzy satisfactory clustering algorithm presented in
this paper, the complex nonlinear system can be quickiy divided into multiple fuzzy parts. A glob-
al model can be obtained by some transformation of the obtained multiple linear models. An
MMPC algorithm is therefore designed for the global MIMO systems with system performance a-
nalysis. Taking a pH neutralization control system as simulation example, the simulation results
verify the effectiveness of MMPC on complex nonlinear systems,
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1 Introduction

Recently Model Predictive Control (MPC) has become an attractive research field in
automatic control for its advantages over conventional techniques and successful applica-
tions in industry., MPC algorithms were originally developed for linear processes, but the
basic idea can be transferred to nonlinear systems '), Unfortunately, two major issues
limit its possible application to nonlinear systems. The first is their assumption of a model
that has to be quite accurate; however, the modeling of industrial systems often presents
problems of nonlinearity, strong coupling, uncertainty, and even wide operating range, a
satisfied model is always ditficult to obtain. The second 1s that a nonlinear non-convex op-
timization problem must be solved for each sampling period with algorithms which are usu-
ally too slow for real-time control due to a large amount of computation. The facts have
forced the control community to study simplifications of this general approach in order to
remove these drawbacks. Usually, the nonlinear model is linearized iteratively in each con-
trol interval to solve the above problems. This paper will present a new solution based on
multi-model approach.

Multi-model approaches are very proper to control industrial processes, especially
chemical processes for their inherently nonlinearity and large set point changes or load dis-
turbances, Based on divide-and-conquer strategy, multi-model approaches develop local
linear models or controllers corresponding to typical operating regimes, then tit the global
system through certain integration of local models or controllers. Actually, applying
multi-model control to nonlinear or time-varying systems has a long history. However,
multi-model approach for MIMO systems seldom appears in literatures.

In this paper, a Multi-Model Predictive Control (MMPC) is presented to deal with
NMPC problem of MIMO systems. Firstly, a multi-model modeling method using T-S
structure model is introduced. Using fuzzy satisfactory clustering algorithm given in this
paper, a complex nonlinear system can be quickly divided into local systems, and the glob-
al system can be described by integration of the local linear models. Secondly, merging the
obtained multiple linear models with MIMO Generalized Predictive Control (GPC), a no-
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vel MMPC algorithm 1s designed for the global system. As a major benefit of the multi-
model strategy, linear predictive controllers can be used. Then, the paper tries to use
MMPC to regulate a typical complex nonlinear process:; an MIMO pH neutralization sys-
tem.

2 Multi-model identification based fuzzy satistactory clustering

It 1s well known that clustering algorithms aim to divide a data set into several sub-
sets. Therefore, they can be naturally used for system division in multi-model approach.
It 1s thought that cluster number ¢ 1n the clustering algorithm corresponds to the number
of local models in the multi-model approach. Therefore, to divide a global system in a sat-
i1sfactory way equals to look tor a proper cluster number. However, for many kinds of
clustering methods, including GK algorithm"’, clustering number ¢ is always needed in
advance, which hampers clustering algorithms to be used. This paper aims to solve com-
plex system control problem. It is known that, for control problems, the modeling preci-
sion 1s the contrary of model numbers. To give attention to them, here we present a satis-
factory clustering algorithm based on GK. Simply speaking, let the clustering method
start with c=2 (¢c&[2,c* ]), where ¢” is the satisfactory cluster number. Then determine
whether a new cluster center should be increased or not. If the clustering result is not sat-
1sfied yet, from the given data set, find out a sample most different from the existing clus-
ter centers v; ~Vv, as new center v.,;. Start with v; ~v,.,, as initial cluster centers, and com-
pute the new NOT-random partition matrix U. Then repeat GK algorithm to divide the set
into ¢+ 1 parts, Do the above steps again until the result is satisfactory.

Consider a MISO system, whose data set Z is composed of system input-output data.
Define a data pair as z;, = @,;,y, |' €R*"', j=1,++, N, where @, is called as regression
vector or generalized input vector, y; is system output. Suppose Z is divided into ¢ clus-
ters. That is, the system can be composed of ¢ local models. The global model is construc-
ted by fuzzy interpolation of these local models. Multi-model identification based on satis-
factory clustering (Algorithm I ) can be described as follows:.

Step 1. Set initial cluster number ¢=2.

Step 2. Using GK algorithm, by initial partition matrix U, , divide Z into ¢ parts {Z;,
Z;y+**+yZ.} and obtain fuzzy partition matrix U=y, ; l.x~.

Step 3. For each subset, identify its consequent parameters using stable-state Kalman
filter method™!. The local model is then described as

R, if (@,,v;,)€E Z; then y = py+ pie;(1)+ -+ psp,(d) i=1,-,c (1)

Step 4. Compute the system output ¥ corresponding to input z;

y = Z#ijy:’ /Z#ij (2)
i=1 i—1

To predict the output 3 of a new input @, return GK algorithm and use the following equa-

tion to calculate g, corresponding to ith rulet®,

i) = — 1 (3)

E (DA‘:" (t;;,vf)/DAf ((};’Vf))ﬂ(m—l)

j=1
where v{ denotes the projection of the ith cluster center v; onto the generalized input space;

D,z (¢,v;) measures the distance of the new input vector from the projection ot the cluster
center vi; m_>1 1s a parameter that controls fuzziness of clusters. Then the predicted out-
put vy can be calculated by (2).

Step 5. Use S= RMSEFE to evaluate modeling results. If S<{Syy 1s satisfied, where
St 1s given threshold, modeling is over. Otherwise, go to Step 6.
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Step 6. From data set, find out a sample 2, different from each cluster center. The
dissimilarity can be calculated by
n=arg min Y, (pw — ftu ) (4)

1=y e
Step 7. Using new cluster centers v, , '“1,?. , V.41, cOmMpute a new one, the initial parti-
tion matrix U, , which is not the random partition matrix.
Step 8. Let c=c+1, U=U,, and go to StepZ.
With the satisfactory clustering algorithm, a complex nonlinear modeling problem is
decomposed into a set of simple linear models valid within certain operating regimes de-
fined by fuzzy boundaries. Fuzzy inference is then used to interpolate the outputs of the lo-

cal models in a smooth fashion to get a global model. This also makes it possible to trans-

form an NMPC problem to an LMPC one.

3 Multiple model predictive control
In this section, we will introduce a multivariable GPC algorithm, then merge it with
multiple linear models to design MMPC. We will also extend it to the constrained case,
and its stability robustness will be analyzed in next section,
3.1 Multivariable GPC algorithm
Assume that a multivariable CARIMA model can be written as
A(z " )Ay (t)= B(z YA (t— 1)+ &(t) (5)
where A=—1— 2~ is difference operator or backward shift operator. y(z),u(¢t) and
E(t) are, respectively, M-output, R-input and R, noise vectors, A(z""'),B(z™ ") are pol-
ynomial matrices of ¢ '. Without constraints, | 6 ] presented the control law for (5) as
AMu(t)=R(2)y, (t)— R, (7 )y(@)— R, (z HAu(z—1) (6)
where R(z),R, (2 ') ,R, (27" ) are regression matrices defined in {6 |, y,=[yi(z+1), -,
vi(t+N) ] is the MN dimensional reference vector. If we consider the cost function of
multivariable GPC as

1 1

v T

N
minJ =min | Dy + D=y ¢+ DT PO Iye+iHd—y. G+ 1+
je=1

N, (7a)
Dlaut+j—DTQGHAU(t+j—1) )
j=1
and constraints

f"umin:::w\fhu'(t_é_jm_.-l)éuma:mc!' ] ___1?“'Nu

y, ymin g J’(f“|‘])§ ymax! J — FH'N (Tb)

Mmin:"-<...u(z-__jh_l)*_u(t_l_j_z)gﬂumax? jzl?'"'Nu

kAymingy(t-__j)*y(t_{-j_l)gﬂymax? j:]-?.-.N

where P, (Q are the weighting matrices that penalize the output error and control incre-
ment, respectively, then the above problem becomes a constrained multivariable GPC one.

As in [ 6], predicted outputs ¥(¢+%) can be formulated by
y = s+ HAU (®)
where y=[y(t+1),,y(t+N) ], AU=[Au(t+1), M (t+2),,Au(t+N,—1)]", s

and H are vector and matrix defined in [ 6 |. After removing the constant terms, the com-
plete optimization problem can be written in the following quadratic form:

F—Z-(AU)T(HTPH 1+ Q) (AU)— ETPH (AU) (9)

min/ = min
AU AUT

.
o

subject to

CAU < 1 (9a)
where E=y, —s, C,l are constant matrix and vector using (7a) and (8). With con-
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straints, the former problem can be easily solved by Quadratic Programming algorithm

(QP) available in MATLAB Toolbox.
3.2 Multiple Model transformation

Consider an R-input M-output system. Divide it into M MISO systems. The global
system can be described by M local models as in (1). Obviously, the obtained multiple lin-
ear models (1) can not be used as CARIMA structure model directly. However, by simple
transformation, (1) can be reformulated into the required structure. Take the ith sub-
model/rule of one MISO system as example,

R, if @ € v then Ay’ = piA@ (1)+ =+ + piAe (d) (10)
where 7=1,2,°y¢. An advantage of such an incremental form is that the identification of
the offset term p}{ 1s no longer necessary, which makes it easy to format (1) to CARIMA
structure. At every instant, compute membership degree of each sub-model by (3), and
integrate MISO systems to describe the global system as

if @' then Ay, = (D, pin )A@" (1DF o 4 ( D pbpia, )A@* (dy) (11)
=1 i=1

where @*(£=1,+--,M) represent generalized input vectors corresponding to M MISO sys-
tem, 1y, are M system outputs, c¢, represents the number of sub-model/rules for M MISO
systems, d, are the dimension of each generalized input vector, g represents the member-

ship degree of the ith sub-model belonging to the jth MISO system(; =1, ,M), Z‘u; =
i=1

1, and pj,,dj represents the d;th parameter of the ith sub-model consequent belonging to the
jth MISO system. Obviously, atter the system model transformation, 1t is easy to convert
(11) to (5) as
A(z ')Ay ()= B(z YA (t—1) (12)
3.3 MMPC algorithm
After integrating multiple sub-models multiple sub-systems into a global system, we
get a CARIMA structure LPV model, whose A(27'),B(z™ ") are dynamically obtained by
fuzzy clustering method. For the above type system model, we can therefore use multiva-
riable GPC algorithm presented in Section 3. 1 to design the system multiple model predic-
tive controller. That is, at each instant, combine the given multiple local models of each
MISO through membership degrees, and calculate control increments using multivariable

GPC algorithm based on the obtained CARIMA global model. The MMPC (Algorithm

I ), shown in Fig. 1, can be organized as the following steps.

#

Gh:}bal - -]

—1 Process —
PSgt ¥ Input Process
oint
MIMO Output
S Tape ||| Plant >

Fig.1 Structure of MMPC

Step 1. Develop data set, and off-line design sub-models of each MISO system using
Algorithm [ .

Step 2. Measure actual output y, and compute membership degree of each sub-model
belonging to each MISQO system using @' ~¢" and equation (3).

Step 3. Design MIMO system global model using (11).

Step 4. Compute control increment Au using multivariable generalized predictive con-
trol algorithm.
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Step 5. Calculate system control output u=u-+Au, and go to Step Z.

4 Performance analysis
4.1 Closed-loop steady-state analysis

From (6), the closed-loop feedback structure of multivariable GPC can be described
as Fig. 2. | 6] proved that the closed-loop system has zero steady-error for a given reter-
ence trajectory. And in static mode, the system is completely decoupled. These conclu-
sions also hold for MMPC system. This section will consider its robustness stability with
unmodeled uncertainty.

From Fig. 2, the transfer function {from vy, (¢) to y(¢) can be written as

R(z)(Uz+R, (2 ))T'"AT"B(z YA () FH,

1) = (t)= (¢
Y = T +R. () 4 Bz DA (R ) P 1ru> W
| | D) __
y, (&) R(z) ’__’QKH(;)P P Ault—1) ’lm‘l ult—1) i Gp(zfl)y(‘t)
Ru(zl)l———— 1
R_T(zpl) -«
Fig. 2 Block diagram of the closed-loop system
B(z )R, (2} .
where H,; = (z J)K,(z ) F= R(z) -. H; is called the loop transfer func-

A(Iz+R, (z7)H))A(z™Y)’ R,(z™")
tion. Note that FH; denotes the open-loop transfer function.
Lemma'’!. If the loop transfer function of the nominal system (i. e, , the closed-loop

system based on the model) and the true system are given by H, (Gw) and H; (jw), re-
spectively, then stability of the closed-loop system is guaranteed if the nominal system and
the process are stable and il the following condition is satisfied.

| H. Go)— Hy Go) | < |1+ HL o) | Yw=0 (13)

For MMPC system, let the frequency type of X (27') be X (e ™' ). For simplicity,

X(e ') as X, e ™' as w, where @ is angular frequency and T is the sampling period.
Hence,

BR R

H. T Ao ' +ROA HA(I@’l +R.) (14)
H, = BX, - =H _fﬂ’ (15)
A(Jo™ +ROA A (Io™" 1+ K.

where H and H are the transfer functions of the process and model, respectively.

To robustness analysis, two types of modeling errors are often considered.: additive
and multiplicative modeling errors, By definition, the following relation between process
and model transfer function exists;

H=H+e = H(l+e,) (16)
where ¢, and ¢,, are transfer functions that represent the additive and multiplicative model-
ing errors, respectively. Rewriting (13) using (14) and (15) yields:

N " ~—1
H—H|<< |1+ H_|» Alle_+R.) Vw=0 (17)
By using (16) and (17), then

K,
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. A(lo™' +R.,)A + BR,
€. | < |e. | << R Vw=>=0 (1&)
| AR,
Similarly, we have
_ Ao +RHA
e | << |&n | < 1 B Vw_=0 (19)

e. | and |e, | srespectively. Hence, if the
nominal system is stable and the process is stable, then the closed-loop system is stable ii
the additive /multiplicative modeling errors satisty (18) /(19). Obviously, the right-hand
sides of the above two relations are determined by the model and the design parameters of
the MMPC controller. Hence, in order to guarantee stability of the closed-loop system,
the MMPC controller design parameters must be chosen to satisfy the above conditions.

where |e,| and |e, | are the upper bounds on

Since the relation between R,, R, and the MMPC design parameters 1s quite complicated,
it is hardly possible to explicitly present their relation to satisfy (18) or (19). However if
we properly select design parameters, they can be satisfied. Theretore we have the follow-
ing conclusion.

Theorem. If the nominal system and the process are stable and if modeling errors sat-
isfy (18) or (19), then stability of the closed-loop MMPC system 1s guaranteed.

§ Simulation example
5.1 System description

Consider a pH process with three reaction streams: HNO,;, NaOH, NaHCO; and two
output variables: liquid level A and pH"**!. Let F,,F,,F,, correspond to three streams flow
rates, respectively. The process can be regarded as a two-input(F,, F,)two output (h,
pH)system, and the buffer stream NaHCO3 is considered to be a disturbance. Define the
following input-output relations.

&h(t): g’h(Fa(Z“_l)an(t'*l)anf(t"—]-)ayh(t—"z)ayh(t_"l)) (20)

Vu () =Wy (F, G— Dy F,(t— 1), Fpy G— 1) sy (0 —2) sy (2 — 1)) (21)
5.2 Multiple model description

Identity the above pH process using Algorithm I. Give the simulation conditions as
F,(t)=16+4sin(2xt/15), F, (t)=16-+4cos(2nt/25), F,; (t)=0.55+0. 055sin(2xz/10)
The satisfactory clustering ¢=6. The model gives a good fit for pH and A, RMSEs of pH
and h channels are 0.2161 and 0.0439, respectively, which are superior to those of
SSOCPN method®'. The model parameters and figure of modeling results are omitted due
to the lack of space, see [ 8] for details.

5.3 MMPC for MIMO system

Corresponding to two MISO sub-systems, design proper GPC controller using Algo-

rithm JI. The tuning parameters for MMPC controller were as follows:
N=5,N,=2, P=diag(0.1,0.1), Q = diag(0.01,0.01).

Fig. 3 shows the good performance of unconstrained MMPC in response to set point
changes in pH (9—>5—>6—>7) and A (1§—>15—17-—>16) with different invariant disturbance
F,,=0.055ml/s and F,, =0, 55ml/s. The tests further demonstrate that the MMPC has
zero steady-error for constant disturbance input, which was proved in Section 4.

With the performance of MMPC controller shown to be good for the unconstrained
case, we wish to examine its effect with constraints. Given the expected operating condi-

tion of the process:
Output: pH=7.0, h=14cm
Constraints: — 1< Au, <1, 0<Cu;=<15. 8 for 1=1,2
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Fig. 3 MMPC control results of MIMO pH system (solid;F,,=0. 055ml/s; dotted : F,;=0. 55ml/s)

the results are shown as Fig. 4, where it is observed that the MMPC still have good per-
formance within the constraints. It also shows that the constraints are satisfied in the giv-
en constraint domain,
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Fig.4 Constrained MMPC control results

This paper gives a technique to use multi-model structure for modeling nonlinear sys-
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tems with an ettective way to determine satisfactory number of models. It also presents
unconstrained and constrained MMPC of nonlinear MIMO processes using these models,
and analyzes the robust stability conditions. MMPC is a novel strategy to solve NMPC
problems using multiple models for a class of industrial processes with wide operating re-
gimes, It is worth attention that the structure of multiple model control does not limit to
generalized predictive control only, and with proper modification, other linear control al-
gorithms can also be adapted to multiple model control framework., The {easibility of the
proposed approach 1s demonstrated by simulation case study of an MIMO neutralization
system Involving pH and level control.
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