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Abstract A production system consisting of a set of failure-prone equipment is studied , whose
state jump rate depends on its aging . A new hierarchical optimal production rate control frame-
work 1nvolving setup and aging of the system is discussed. By introducing new state variable and
new time horizon of the objective function, the original problem is decomposed and the necessary

and sufficient dynamic programming optimality conditions in the lower level are proposed according
to the optimal production duration. Simulation results show the {easibility of the proposed ap-
proach in practice.
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1 Introduction

Many efforts focused on the optimal production of production systems with stochastic
jump Markov disturbances,in which however it is popular to assume that the frequency of
system failure only depends on the time, 1. e. , breakdowns occur independently of whether
machines are being used or not, In practice, the occurrence of equipment breakdown de-
pends on many factors, particularly its age. So. it is more practical to take the machine
age factor into consideration. [ 1] and [ 2 ] discussed the aging of the machine which affects
machine failure. [ 3] discussed preventive maintenance of flexible manufacturing systems
considering the machine age function. In the paper, the aging of the system and setup are
taken into consideration and the optimal production of production systems is discussed. A
new linite horizon of integral i1s put forward instead of the deterministic {finite horizon dis-
cussed in the former work, which is very meaningful in practice. Moreover, the optimal
duration of producing one type of products is introduced into our framework as a new state
variable. Based on the above, the original problem 1s decomposed, and a new framework
of hierarchical flow control model involving setup and aging of the system is constructed.
The necessary and sufficient dynamic programming optimality conditions in the lower level
are proposed according to the optimal production duration.

2 Description of the problem

The production system consisting of a set of unreliable equipment can produce n dif-
ferent types of products P;, i=1, -+ , n with only one at any given time. A setup (with
setup duration and setup cost) is required if production is to be switched from one type of
products to another. It is assumed that for z, j=1, =« , n and 1%, 0; =20 and K; =0,
which denote the setup duration and cost of switching from production of P; to P,, respec-
tively, and 6, , K,; are constant, Moreover, for any 7, j, k=1, - , n, 17 and j 7k,
max{6,, K, }>0, 0, +60, —0,=0 and K, + K, e ?” —K,; >0. It i=j, then §;, =K, =0.
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Here 0<p<1 denotes the discount rate,
2.1 The dynamic model of the system

For 1220, let 2,(1)ER' =(—oco,0), u,{(1)ER =[{0,), and 2, (t) €ERYT =[0,00)
denote the surplus, production rate, and the rate of demand, respectively, for product P,
at time ¢, t=1,+, n. X, U, and Z are used to denote vectors | x, (£), x,(¢), =+, x, () "
ER [ u; (t)s un (1) s **s u, () |TER ™ ,and [29(8) 5 2, () *++, 2, () [TER™", respective-
ly. Z is considered as constant here. h(z) 1s used to represent the age of the equipment at
time ¢, h(t) € R™. The inventory/shortage levels and equipment age of the system are de-
scribed by the following dynamic differential equations;

X(t) = Fla,U(), Z()) = U () — Z(2)
h(t) = fu () (X(0),h(0)) = (Xp,ho)

Where F( * ., " ):[Fl ’ F29 et Fﬂ]Tg U”:[u?',"', ui]T and HH(Z):Zu?(t), Hf(t) iS the
i—1

(1)

instantaneous production rate of P; at time ¢ with the equipment state £(z) =a(defined lat-
er). The function f in Equation (1) represents the effect of the production rate «*(z) on
the equipment age. The equipment states can be classitied as (1) operational, denoted by
state 1; (i1) under repair, denoted by state 0. Under the operational state, any type of
products can be produced; under the breakdown state, nothing is produced. Let £(z) de-
note the state of the equipment, and it is a {inite-state Markov process. Let E={0,1} be
the state space of the process £(2), ¢(¢) € E.

Let q.s(h{(2)) be the jump rate of the process {(¢#) from state a to state 8 at time .
These jump rates are defined by

PleGt+de) = B £(8) = al = qz(h(2))dt + o(de) (2)
PleG+do) =a | ) = a] = 1+ q.. (h())dt + o(de) (3)
where lim o(dz) /dt=0, ¢, ( * ):"—Eqaﬁ( * ). It is assumed that the jump rate q,,(h(2))

dz—0

is bounded and satisfies the following f:;:);ditions: | qus (R () —qs (B () | <<CR(E) —h' ()],
VA, ' (1) ERT, for some constant C and |q,, | =c, >0, q.5 (h(2))=0.

When the equipment has a breakdown, it goes through a repair process. Repaired e-
quipment 1s considered renewed, 1. e., f(u*(z)) =0, which means the age of the equip-
ment 1s reset to 0. Since f=0 when the equipment is under repair, for convenience, the
age h(t) 1s reset to 0 at the beginning instead of the end of the repair process. Thus, ac-
cording to our notation, if there is a jump from state ¢ to state 3, then the age function
h(t) jumps to A’ (t) =Bh(t). According to the above, the following holds

0, Hz(t+ A =1 and ¢(z — AD # 1;
h(t+ At) = ih(z), Other.
2.2 The cost function and constraints

The optimality problem of finding a production control policy 1s to minimize the fol-

lowing cost function:

At > 0 1s small enough. (4)

X0

J G X s B UG b = | e #G(X @) ,00de+E( |

¥

e “"G(X (), U())dt + Z e Ky, )
(2)

where s denotes the remaining setup time, 0<Cs<(#;. The decision variables are the rates
of production U( * ) over time and a sequence of setups denoted by 5= {(zo» 021 )+ (11 52122)
-« }, where a setup (r, ij) is defined by the starting time r and a pair i; denoting that the
equipment was set up to produce P; and is being switched to produce P,. Let G(X (2),

U(t)) denote the running cost function of surplus and production. Usually G(X(z), U(2))

= Zc+x+ +ci x; . 1t is supposed that a positive surplus incurs a holding cost of ¢;” per
i=1
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unit commodity per unit time, while a negative a cost of ¢; , with ¢;” >0, ¢;” >0. z; =

max(x:,0), x, *=max(—x;,0).

For t==0, the production constraints are given as follows.:
0L w; (D) < CWrys 1= 1,2, yn
* | . (6)
u; (t) =0, j£1
where r; denotes the maximum production rate of P,. For each ¢ € E, the control set is I'; (a)
= {U=C(uys ***y u,) =20, ui<lar;» u; =0, jFi}, i=1, 2, ,n,

Let N'(a), a closed subset of R™", denote the control constraints, Vo€ E. Any meas-
urable function U(2) defined on I'(a), for each « € E, 1s called an admissible control. The
set @={U(2)::t=0} is admissible policy. The admissible control function U(z) is supposed
to be piecewise continuous in ¢ and continuously differentiable with bounded partial deriva-
tives in X. Let (X(#),a,77) denote the system state at time ¢, and the space of the system
state be R" XM X {ij|i, j=1, 2, *+, n, i%j}. The problem is to find an admissible deci-
sion (HF,U( » ))€N—=(Z,0) that minimizes J (i, X, s, Z, U( ¢ )) which is subject to Equa-
tion (1).

When the aging of the system is not taken into consideration, 1. e. , the jump rate
¢.2( * ) is independent of A(¢), and is a stochastic constant, as in [ 4], it can be shown
that the optimal control policy can be obtained by solving the H]B(Hamilton-Jacobi-Bell-
man) equation.

2.3 Simplified model for the system

[t is very difficult to get analytic solutions of the H]JB, and Sethi and Zhang reached
significant conclusions in the direction via viscosity solution by assuming the rate of change
in machine states approaches infinity. For vital setup cost and duration, once the equip-
ment is set up to produce any type of product, the process will last for a while until its op-
timal inventory is reached. For any fixed T>>0, the number of setups in [0, T] is f{inite.
Moreover, it is meaningful to consider the finite horizon in practice. According to the na-
ture of the production system, a new finite horizon is denoted instead of infinite horizon to
find the optimal production of the system, and a satisfying solution can be conveniently a-
chieved. Without losing generality, let s=0, and P, denote the initial product being pro-
duced. Over the finite horizon [ 0, T (a) | the objective function can be written as the fol-
lowing

J (. X10,8,U(+) h) = E(j

T(a)

&
ePG(X(),UW)de+ > e?K,, )=
{=0

4§,
Tl (a) —h?l

G (X (1),0)dt + e 1O K, )+ -

0

Ty (a) | |
E(f e“PrG(X(Z),U(t))dt—FJ
T, (@)
20+ T (e iﬂﬁi) T, () =1l &
E(J‘“ o e‘PIG(X(t),U(t))dt—FJ: T e PG(X(),0)dt +er(2AT 2 T@) Ky
PN ADIFAC 2.0+ 2, Ty

(7)
where T,=K,=§¢,=0, and T(a) denotes the terminating time when the whole production
process ends, and T, (¢) denotes the terminating time when the ith type production
process is over, and §; denotes the setup time when the 7+ 1 production process begins tor
i=1, 2, *»=, k. Obviously, T(a) is a stochastic variable, and the definition of T(a) 1s dit-
ferent from the upper horizon of integral ¢, in some lectures. And the conclusions in {5 ]
cannot be used directly in this condition. It is obvious that T (g)—>o0 as k—>oo, and the
problem is the original problem. According to the above, what is discussed in the follow-
ing 1s how to get satisfactory production planning based on hierarchical flow control policy
over finite horizon (1. e. , £ 1s a fixed constant).
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3 Main results

In this section, the new framework of a hierarchical tlow rate control model is dis-
cussed., The hierarchy is composed of two levels: the upper level-——the static planning
level—where the static optimal production of the system is decided without considering
its unreliability and setup is treated as a typical controllable event, In the lower level—
the dynamic operational level, where real-time processing 1s made to meet the production
expectation with consideration of random breakdown, and repairs are subject to the age of
the system,
3.1 The static planning level

Without considering the dynamic properties of the system Equation (7) can be simpli-

fied as the following.
T

k
J G X,0,8,U()) =| e "GIXW U di+ Dle =K, =
{=0

0

T, I+,
j e”P*G(X(z),U(t))dz—FJ e PG (X(),0)dt 4+ e K, +

0 T,

T, +0,+T, E b, +_§D F

SHGXW U+ i o €PGX W, UMW)z +

v T+, zaﬁ".z T

,._i &ﬁ—_i T, k-1 k

T e PG(X (1) ,0)dt e 2T ETI K, (8)
EDIEDIY

Since T; responds to the inventory X(T;) (T;(a) is replaced by T; without considering
stochastic dynamic properties of the system), T; as a new state variable 1s introduced. Let
N,=[Ty, Tys -y T;,], i=1, 2, »«, kb, T,€ER". Then N; denotes the production time se-
ries before the 7+ 1th setup.

Let the optimal decision of Equation(8) be V,_,[ j, X(i), N;] when the initial state is
(1, X(2), N;). Then a Bellman equation can be gotten by dynamic programming

Viilis X)) ,N: | = m{i_r)l{](j Y XD WND) VLI XGE+1) Nt 1} (9)
Theorem 1. Let (E* 9U* ( 'J )):({(T{}*! iofl)a (Tl*a?:-]iz) ’ "'} ’ [IﬂE ( . )) 60 denote an
optimal control. Then there exists a constant >0 such that /%, grf—i—ﬁ,;m L -+ 1

14+ X (g ) K
[=0, 1, 2, -,

Proof. The result can be directly deduced from Lemma 4. 2 by using V;| «, * | in-
stead of J,(*, ) in [4].

From Theorem 1, it can be seen that in any optimal policy, there is always some non-
zero time for producing the intended product after the completion of each setup, i.e. , T;(a) >A
>0,

The solution of Equation (9) is the optimal production ol the system over the finite
horizon [ 0, T | when unreliability is not considered. And the inventory x;(T;) of the initial
product being produced is its optimal inventory over {0, T | when J(+ , ) reaches the
minimum, and the other variable T, is its optimal production duration according to the ini-
tial condition X(0). Both x;(T;) and T, will be conveyed to the lower level as expected val-

ues.
3.2 The dynamic operational level

Since the optimal setup times, production rate and the optimal inventory have been
gotten by the static planning level, and the optimal production duration of the initial prod-
uct being produced is also determined, this paragraph is focused on how to make the real-
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time system catch up with the expected value when considering the unreliability and the
aging of the system. For using receding algorithm, only given type ol product is dis-

cussed.
Let ¢ and u; denote the surplus and the production rate of production P; at the level,
respectively. And at this level x? satisfies the following equation:
; dx?
! 2 1

i (1) = Eu?(s)ds_J u; (s)ds or = Y — u, (10)
J 0 O dt

In the level we focus on the sub-problem that is to seek «? (¢,a) to minimize
JS(s,axéyu: (o) yash(s)) = E(J.Ifg(rf(t))dt | 27 (s) = x,,L(s) = o:) s.t. (1), (6)

(11)
where s is the initial time of this production of P; and £, is the terminal time of this produc-
tion process. Define a strictly convex function g such that g(0) =0; g(x) =0 Vx; and
lim |, —e g(x) =0o0; the initial condition is x*(s)and ¢(s). Let (s, x, ay h( *)) for x €&
R', a€ FE, s=0, denote the value function of Equation (11), 1. e. ,

Vs, Xy as h(s)) = u({?éﬁjs(sg xy uls)as, h(s)) (12)
Based on [ 3], the following hold:
1) Given {(s) =a, the probability that there are no jumps of {(s) in the interval [ s, ¢] is

EXP(quaa(h(a))da) (13)

i1) Given {(s) =a, the probability density that the first jump of {(s) after time s 1s
from o to 8 and occurs at time ¢ 1s given by

rﬂ

2 (D)) exp (| gua (h(2))do) (10)

Ly

Theorem 2. The function ¥ (s, x, a, h( * )) satisfies the integral equation

Efqm(h(t))dz)%—

{

WG, 2o an h() = | g (x()de exp

v

D717 s (R (o)) exp(

w/

Eqaa<h(t))dt)11f(o-,X(a) ,B5h(6))ds  (15)

Proof. Let r denote the time of the first jump ot £( ¢ ) atter the initial time s. The
formula for iterated conditional expectations implies

]S(Saxau(')ﬂaah(')) — E(J.Ifg(x(t))dt | I(S) — I_g-aC(S) ——— {Iah(S) — hs):

W/

E( (rg(x(t))dt | z2(s) = x,,5(s) = ayh(s) = h*‘)+

e

(|"gx@ar| 2 = 250 = g = b)) (16)
1) When
Sg Tg tf!W(SEJC(S)a u(')aa,h(S)) = Y(r, (), u(')a ‘8& h(r)) (17)
11) When
r =1ry V(syx(s)ule), a,h(s)) = szg(::c(z))dt | x(s) = x,,¢(*) = a,h(s) = h,
(18)

Form Equation (16)and using Equations (17), (18), (13) and (14), Equation (15)
follows.

Notice that ¥(s, x(s), u( * Das h(s)) 1s pilecewise continuously differentiable 1n ¢.
Differentiate the value function with respect to s by using Equation (15) .

dq’(“xéf*h('” = W, (5,2sa:,h(+)) + W, (s, 2,a,h(+)) 2(s5,0) + ¥, (s,25a,h(+)) h(+)
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¢ 1

——g(z()) exp(| 'qu (A dt)— | g (e, ds exp(J.tfqaﬂ (R ())dt )q.a (h()) —
RO 2 ION N IO (19)
B a

H

3370 (@) exp( | g0 () dt s (h()) V0, X () 4 0) ) s =
BEa ™ ? 5

— g(x(s)) exp(

]

tchm (h(lf))dt)“‘ 2 [qag(h(S))lF(s y 2 (5) ”89]’1(5))] (20)

8
Let s=t¢, and the following theorem can be gotten from Equation (20).
Theorem 3. The value function ¥ (s, x, a, A( ¢ )) satisfies the partial differential
equations of the system;

1?;(5'9-135&1}1(')) + ‘EP'I(Sa-Iaa'ah('))Ff(') +Wh(5!I3aah('))f(') 1
> qup (R W (s, 2,850 (+)) + gla(s)) exp(rfqm (h(£))dt)= 0 (21)
‘8 3

o

|'|

The boundary condition is W(s, x,a, h( ¢ ))= tfg(:c(tf))dt ..
0

L

Based on the above, Theorem 4 gives necessary and sufficient dynamic programming
optimality conditions for the production control problem.
Theorem 4. A necessary and sufficient condition for a control «,(¢) €@ to be optimum

is that for each « € E its performance function W(i,x; ya,h( ¢ )) = z inf JSU,xi,ui (),
w, (< )CH

ash( ¢ )) satisfies the {following Hamilton-Jacobi- Bellman equation
min {‘q’;(o 3.3312- sy (e)) + TIZ (Oa.lff 9{19}7—(')) (Hi} - PrOJ (ull !2) +

u?(')E@
" t

W, (0,2f oy h (D) () + D005 (R (D) W0, 22, 8,0 (+)) + g(2()) exp( | g (R(D)dr) = 0
3 J O

(22)
where Proj(u;, 2) is the projection of «; into the space of «?, and proj(u',2)=F, («*)=
u', 1. e. , the expected value is gotten by the upper level.

Proof. The proof is a straightforward modification of the proof in [ 6 ].

Remark. Theorem 4 extends the results in | 3 ] in which the age function is linear, and
the theorem gives the necessary and sufficient condition when the optimal control policy
exists according to general conditions. | 2| gives the hedging point control policy when the
relations between the rate of breakdown and the flow rate are nonlinear, but the optimality
of the policy 1s not shown.
3.3 Optimization on receding horizon

The algorithm is iterated to the upper level automatically when the time T, is reached,
which guarantees the receding algorithm is carried out online in real-time. The u? (¢,a) and
x;(T;) are set values to the operating equipment, When the given process of one type of
products is over, the real-time inventory X (T,;) is recorded as an initial condition instead
of the old data for the next scheduling. Since inventory control is considered, 1t the opti-
mal inventory is not gotten, then the process will last until the inventory emerges.

4 Simulation of examples

The performance of the hierarchical policy is shown with examples including following
specifications: n=2, and p==0.9, 2, =2,=0.4, a € E={0,1}. The other parameter is
shown in Table 1 (g, 1s the rate of jump from the operational state to breakdown state and
go: the reverse when the rates are independent of the aging of the system). It is assumed
that f is linear, For various initial conditions X (0), the optimal production controls are
listed 1n Table 2. Only optimal production durations of the initial product being produced
are listed. Simulation shows that the optimal production control policy is of region switc-
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hing structure and of hedging point policy.

Table 1 Parameters of the system
th2 21 Kiz K q1g do1
0. 65 0. 75 1. 25 1.15 0.1 0,2

Table 2 Results of simulation

Ex. 2:(0) 2200 Ci Cr Cs Cy Ti: min J(e, =) TS min JO( s , «)
1 —2.5 —2.0 0.5 3.0 0. 8 3.0 1. 40 14. 2745 1. 65 14, 1297
2 —1.5 0.0 0.5 3.0 1. 0 3.0 3. 20 4. 5565 2.95 4. 4251
3 ~2.5 1.5 0.5 3.0 1.0 3.0 5. 40 7. 5554 5. 20 7. 3909
4 0.0 0.0 1.0 - 3.0 1. 0 3.0 0. 90 1. 7482 0. 85 1. 7738
5 2,0 2.5 1.0 3.0 1. 0 3.0 0.0 5.1151 0. 0 5. 1182

The trend of the objective tunction J( ¢ , * ) changing with T, is illustrated in Fig. 1
(a) as T, 1s optimal, i=2, 3, ***, £. And T, is the optimal production duration when J( « ,
* ) 1s 1ts minimum in Fig, 1(a). Five curves in Fig. 1(a) agree with those five examples in
Table 2. The simulation results show that different initial conditions respond to different
optimal production durations of the products. In Examples 1, 2, and 4 (the sold lines in
Fig. 1(a)), since product P, is not sufticient, sometimes even deficient, the policy short-
ens the optimal production duration of P, which is different from Example 3 (the dotted
line). In Example 3, P, 1s sufficient, which prolongs the optimal production duration ot
P, , but each product is sufficient in Example 5 (the dashed line), which makes the system
produce nothing. The results also agree with the hedging point policy and the results in | 2 ].

For a finite time, the hierarchical policy not only keeps the system run at the least
cost but makes the production perfectly meet the demand. Moreover the policy makes the
production satisfy the customers in sum and balances all types of the products, keeping the
inventory in a low level.

19, minJ°( » , » ) are the results without considering the factor of the system aging
in Table 2. Compared with the results above, it is shown that the optimal production du-
ration when considering the aging of the system i1s longer than that when not considering
the aging of the system. The equipment is unreliable, and it can produce nothing under
breakdown. Consequently, when it is up, its production rate must be accelerated. Howev-
er, there 1s a constrain to the production capacity of the system, which prolongs the pro-
duction duration to ensure the optimal inventory. This agrees with the fact. To Example
2, the trend of J( + , * ) changing with T, considering the aging of the system (the solid
line) or not (the dotted line) is illustrated in Fig. 1(b).

15

Value of J(+,+)

Value of J(=, )

a2 0 O e e NN ®
oo TR b & I N o o B 2 D e N o I o

O 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
T I,
(a) (b)

Fig.1 Tendency of value J(+,+) to T,
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5 Conclusions

In the paper, the proposed policy decreases the complexities of the original problem,
1. e. , reduces the stochastic optimal production control problem of multi-dimension vector
to the determinist optimal production control problem, and approximates to the stochastic
problem by sliding in one dimension, which makes the receding algorithm feasible, more
accurate and real-time. The decomposition and definition are feasible and meaningful in
practice. The age function of the equipment makes the objective close to the reality. How-
ever, the optimized solution 1s not globally optimal, but an approximate solution. And the
receding control policy can decrease the drawback. Our future work is how to get the opti-

mal policy when products are perishable or may become obsolete and when systems have
storage-space competition.
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