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Abstract This paper defines a fuzzy singularly perturbed system by extending the ordinary Taka-
gi-Sugeno fuzzy model. Stability conditions for the fuzzy singularly perturbed systems for all small
enough values of a singular perturbation parameter are derived and represented in terms of a set of
matrix inequalities, By the proposed two-stage procedure, the stable parallel distributed compen-
sation (PDC) feedback gains and a common Lyapunov function can be found. The outcome of the
stabilization problem is recast into linear matrix inequalities(LMIs) and bilinear matrix inequalities
(BMIs) in each stage respectively. The resulting BMlIs can be etfectively solved by the proposed
iterative linear matrix inequality approach. Furthermore, numerical examples and simulation re-
sults are given to verify the effectiveness of the algorithms proposed above.
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perturbation

1 Introduction

Fuzzy models based tuzzy control system design methods, especially the parallel dis-
tributed compensation(PDC)' approach, have appeared in the fuzzy control fields for sev-
eral decades. These methods are conceptually simple and straightforward. Linear feedback
control techniques can be utilized as in the case of the feedback stabilization.

Compared to the rapid development of fuzzy control and neural control for nonlinear
systems, there are relatively few in the literature focusing on the intelligent control for
nonlinear singularly perturbed systems'® . [ 3] proposed a multilayer neural network ap-
proach for stabilization via integral manifold theory. [ 4 | proposed a T-S fuzzy singularly
perturbed controller, but no any analytic results were given, and the stability was not in-
vestigated. The intelligent control problem for nonlinear singularly perturbed remains an
open problem. On the other hand, utilizing linear matrix inequalities*®! to analyze and syn-
thesize singularly perturbed systems has become a very interesting field™®"".

In this paper, a new type of T-S fuzzy model is defined, of which consequent parts are
represented by dynamic linear singularly perturbed models. This new fuzzy model, termed
as fuzzy singularly perturbed systems, can be used to approximate nonlinear singularly
perturbed systems on a compact set. Stability of this system is analyzed and the stabiliza-
tion approach is proposed based on a set of matrix inequalities, Since the resulting matrix
inequalities are not jointly affirm to the unknown variables, an iterative algorithm is uti-
lized, where during any step, only some linear matrix inequalities need to solve. Finally,
the convergence of the iterative algorithm can be guaranteed.
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2 Description of fuzzy singularly perturbed systems

The ordinary T-S fuzzy model has been investigated by a lot of researchers®’. Here,
we consider the tollowing tuzzy singularly perturbed model to represent a nonlinear singu-
larly perturbed system, which includes both local analytic linear singularly perturbed mod-
els and fuzzy membership functions. The ith rule of the fuzzy singularly perturbed model

is of the following form.

Plant Rule 7.
IF v, () 1s F; and - and y,(z) 18 F,,
THEN
x = Aix +ALz+ Biu
ez = Anx+ Az + Bou
where F, (;=1,2,+,g) are tuzzy sets, x(¢1) € R",z(t) €ER" ,u(t) € R*, A}, ,Al; A} , A}y s
.+ B} are matrices with approriate dimensions. vy, (¢t),**,y,(¢) are some measurable sys-
tem variables.

t = 1y 2y, 1 (1)

Given a pair [ x(2),z2(t);u(z) |, by using a standard fuzzy inference method that
is, using a singleton fuzzifier, product fuzzy inference and weighted average defuzzifi-
er the final state of the tuzzy system is inferred as tollows:.

E-|% = Zﬂl[y(t)]{Ai "+ B (2)
| & i—=1 A
where w; (y(1)) = rwf(y(t)) yw,; (y(t)) = HF,}‘(yj(t))ﬂ
>V ww (p(2)) a
i1
E "L T a4 [Al 12 B — "Bé‘
8 e * L, AIZI Azz_ B

For the convenience of notation, let p;, =, (y(£)), GT_[x vz !

I,—A,, —AL B
Assumption 1. For all s with Re|s] = 0, rank E B . S l=ntm .
L _AZI — Ajs Bj _

Assumption 2. (Aj,,B;)is stabilizable.
Theorem 1. The fuzzy system (2) is asymptotically stable 1f there exists a common
matrix P, such that

E.P, = P!E, >0 (3)
(AD'"P,+(P,)"A* <0 (1 =1,2, * ,r)
Proof. Select the Lyapunov function as V(@) =0 E.P.0. Then the derivative of V(@)
with respect to t 1s

—V(G) = Zm 0" « [(ADTP, + (POTA'] - @

From(3) we can get —%V(G)<O, so system (2) is asymptotically stable,

3 The design of fuzzy controller
3.1 Fuzzy controller

The parallel distributed compensation (PDC) controller is as follows.
Controller Rule 7.

IF v, (2) 1s F;; and -+ and y,(¢) 1s F,

THEN

u = Kix(t) + K;z(t) (4)

Then the resulting closed-loop system is
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x(2) { Al + BiKi AL +BiKj rx() }

E, - — 1 _ o (5)
L2 (1) Z Z"““*’ Ay -+ ByKy AL+ BiK3 1Lz()

Theorem 2. If there exists common matrices Py, Py 5 Py s and K3, Kb with compatible
dimensions such that

Plle >O, Pzz*—*P >O

H;J+H}1<Oa Zé] (6)
where
(A5, +BiK{)'P,, + P, (Al; + BiK{) + (A + B:Ki) Py, + P (Al +
7. — (A + BiKY{) ' Py + P3 (A + B3 K{) BiKi) + P,, (AL, + B, K%)
I 3 (A + ByK%) ' Py + Py (A + By K4
then Je”* >0, Ve€ (0,e* |, the closed-loop systems (5) is asymptotically stable.
- T - - T -
Proof. Let P, = oo e ppen EP, =1 €087 ince Py >0,Pp>0, Jer >
_le Py _ LePs  ePs
0, Ve€ (0,e | E.P.=P!E_>0, Select the Lyapunov function as; V=0"E.P.8. Then the

derivative of it with respect to ¢ is

dtV(ﬂ) — 9"E.P.0+0"PTE.8 = [T ' ]P. _.:_—|— [x" zT]PT ; -
, x|
LLM#} [JCT z' e IL; - . {Eﬂi o JIS + 2 TR (IT;; ‘1‘111)}' 6

i=1 3= \ — t,3=1, i<y

where
_(Ail +B1 Kj )Tpll_l_Pll (AII _|_BI K} )—I_ (AEI _l_ BEK{)TPZZ_'_PII(A?[Z _'_ Bi Ké )_1_ B
(A, + By K{)'P;, + P;, (A + B;K{) Pj; (A, +B;Ki) +¢e (A}, +BiKi{)"' Py

H?j —
3 (A.EZZ _I_BIZKZ)TPEZ_l_PZE(AzZZ +B.12 j)+
B E(Az_l_B Kz)TP _|_8P21(A22 _‘_Bz “E)_“
It 1s obvious that IT; =1I; .:O?e) 823 : =II;, T~ OC(Ce). Since II; <0, we have de; >0,

Ve€ (0,¢; |, such that IT;<C0. Let ¢ =min{min(e;),es ;. Then for e€ (0,¢” 1,V<0, so

the close-loop system remains asymptotically st’:;;ble.
3.2 The two-stage design procedure
Note that (6) implies that
(Aj, + B3 K3) ' Py + Py (Aby + By K3) + (Al + BiK5) ' Py + Py (Al + BLK3E) <0
(7)
The main idea of the two-stage approach is to obtainP,; , K; from (7) firstly, then

P,,, P, and Kj can be obtained from (6) where P,, , Ki are known. During the first stage,

i. e., to obtain P,, and K%, the traditional techniques such as in | 1] can be utilized to

transform (7) into standard LMI. The second stage can be formulated as follows.
Though P,, and K3 have been determined, (6) is a set of BMI with unknown variables

P,;, P, and K}, and an iterative algorithm will be proposed to solve it.
_2:}5 Aij -

*

et
- e 1§

For notation convenience, let IT; +II; =

where
3; =(AL +BiK{)"Pyy + P (Al + BIKY) + (A + B:K{) ' Py + Py (A + B K{) +
(A"il RB B{Ki)TPn T P11 (A{I N B{Ki) T (Aﬁl BN BéKi )TPZI BN PZTI <A‘51 BN B“ﬁ Kll)
A; =(AL +BiK{) ' Py, + P (Al +BiK3) + Py, (A, + By K3) +
(A?i’l T B{’Ki )szz T P11 (A’iz B B{KE) T Pgl (Aéz T BEKE)
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= = (AL, + ByK3) ' P,y + Py (Ab, + By Ky ) + (Al + BLKy ) ' Py, + Py (Al + BIKG)

It can be shown that A; is linear to the unknown variables, and &, is a known term.

The following theorem will form the basis of the iterative algorithm.

Theorem 3. There exist matrices Py; » P,; and Kiwith compatible dimensions satisfying
the matrix inequalities(6) if and only if there exist matrices Py;5» Ps» Kig and Py, Py s
K} with compatible dimensions satisfying:

Pll_"'P > 0, PllD“P110>O

; PuBi+ (K" PuBi+(Ki)' PuB;+(KD' PuBi+ (Kt A,
— 1

—1 <0 (8)

J—
M,
i1}
— -—

where
ﬂ;} =(A§1)TP11 _’_Pu 11 0+ (Azl)TP"—*l +P A21 + (AII)TPII + Py, “;{1 + (A}i:‘l)TPZI +
ZTlAgl T PllBl (BI)TPIIO PllﬂBl(Bl)qPH PHB; (Bl)lpll(} P]l{]B{(B{)TPH o
Z(KII)TKEG T Z(KiU)T(KZIl> PZlBE (BE)TPEIG ZIUBE (BE)TP21 PZlBé (Bé)TPZH}_
szz(Bz)TPm—Z(K-’)T 1o —2(Kig) T (K{)+P11o Bi (Bi) ' Pyo+Puo Bi (Bi) ' Py,
210 2 (BZ)TPZIO + -F)ZIOBjl (B} )T-leﬂ _I_ Z(K O)T(KED) + Z(K{O)T(K{D)
X, Ay

~—
* iy

Proof (Sutficiency). From Schur Complements, (8) is equivalent to <0

where
X; =0; + (PuBi + (KD (P Bl + (KDHT + (P Bl + (KD (P Bl +(Ki)H! +
(P3 B + (K" (P By + (KD '+ (Puy B+ (KDDH (P By + (K ) =
i+ (Py — Puo)Bi(B) (P — Pro) + (P — Prg) Bi(B{) ' (Pyy — Pyyp) +
(P2 — P31o) B35 (B3) ' (Py — Paig) + (Pyy — Pio) ' B3 (Bi) T (Pyy — Poyo)
2(K11 _“Kia)T(Ki T 1m) “I—Z(K'i o {G)T(K{ - {0)

S0 2 + (Py; — P11o) Bi (BE)T(PM — P130) + (P — Py ) Bj (B‘{)T(Pu — Piio) T
(P21 o leo)TBE(BE)T(Pﬂ o leo) =+ (le ""‘sz)TBé (B“E)T(Pz*_t o sz) +
2(Ki — Ki))"(Ki — Kiy) + 2(K] — Ki) " (K} — Kip) +4; (E;) 7 (4;)" <O

_21}' A; T

Then, 3, +A;(5;) ' (4a,;)'<<0, since 5Z; <0, that is,II; +1II; = I < 0(Necessity)
From [Ty + 11, = 2* i“‘}_<o, we have I >0, u; >0, u; >0 such that i ?::}’}Jr

(1 Tz T ps) + I<0, 1. e, 2,,}+A (5,) (A T+ (g g )+ 1<0
Select I'and I'; such that I'i (I * =max { B; (B; YT+ Bi (BT Vand [, (I,) T =

max{B; (B:)" +B:(B})" }
L(.:'.t Pll-‘J:Pll__ AJ #1 ' [Pl (Pl)T]_lzz !P21D:P21_ vV #2 ’ [(FE>TF2:\“1 (PZ)T ?and KIIU:

1
K \/?/;31

Then, (P — Pyyg) [FI(FI)T] (P — Pio) =
(LD TV LD (P TILN (D) T Ve =y, o 1
1

Similarly,(Pgl-"sz)T . [Fz (Fz)T] . (sz[_sz):)uz . Ia(K?I_*KIIU)T(K?l_KEIG)__ 2#31

Therefore,
Eij + (Pu —*le)Bi(Bﬁ)T(P” T Pm}) ‘|‘ (Pu o P110)B{ (B{)T(Pll ‘"‘Pllo) +
(le - PEIO)TBE‘ (BEJT(PH o leo) + (P21 T sz)TB‘E (B%)T(le T Pzw)
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(Ki — Kip) ' (Kiy —Kijy) + (K{ —Ki{y) ' (Ki —Kiy) +4,;,(&,) " (A;) " <
2;;,"|"(P11 T le) * [Fl (F]_)T:l' (Pn T P110)+(P21 T sz)T * [Fz <P2)T]' (P21‘_’P210)+
(Kll o iU)T(Ki o Kio) T (K{ T {U)T(Ki o {0) “I"Aij (Eij )_1 (A;’j)T —
2;} +#1I+#21+ﬂ31+1ﬁ1}- (E;} )_1 (Azj)T < 0
that 1s, X, +A, (5;) ' (A;)" <0
"X, Ay
x i
proof. [
Then the iterative algorithm can be described as.
Step 1. Initialization.
Select Q>0, and solve the generalized Riccati equation(see [ 9] for the detailed algo-

rithm)

<0 from Schur Complements. That completes the

Since &; <0, we can get

L.

A'P,+PiA—PyBB'"P,+Q=0, E'P,=P,E

1 <, 1 < g
h A = A'and B = — » B'| 10
whnere » 2 dan " ; [ ]
Then P, and P,, can be obtained. Kj, can be arbitrarily selected, e. g., we can determine
+ | - P O - | | T'In -
it as follows. select Ki =—(B)TP, where P,=| " , and let Kj,=Kj o e,
_PZIG PEZO - —Oan i

Step 2. Solve the following generalized eigenvalue problem (GEVP) in Py, Py, Ki

using the auxiliary variables Py, Ps1os K determined in the previous step.
min o

s,t. P,, = PL >0 (9)
0, —aP, PuBi+ (K" PuBi+ (KD PuB:+ (KT PuBi+ (KD Ay
— 1
— I
7 <0
— I
5 Hy

1< jy 1=1424yry, §=1,2,,7r (10)
Assume the optimal value is &'.

Step 3. If o<<0,then P,;, P, , K} are {feasible solutions and stop. Otherwise, next step.

Step 4. Solve the following optimal problem (OP) in P;,, P, , K} using o’ determined
in Step 2 and the auxiliary variables Py Psios Kio.

min trace(P;;)
s. t. (9), (10), where « is replaced by «

Step 5. if || P,y — Py || >68, where & is a pre-determined tolerance, || * | is Frobe-
nius norm, then set P,;,,=P;» Pyyo=P,, Ki,=Kj, t=t+1, and go to Step 2, else, the
problem may not be solved by this approach, Stop.

Remark 1. The term o P,; 1s 1nvolved in (10) to obtain the less conservative results.
The LMI optimization in Step? is a generalized eigenvalue problem (GEVP) and the algo-
rithm can guarantee that the solution sequence {q'} is a decreasing sequence-'J.

Remark 2. The controller obtained by the above algorithm also solves the stabilization

‘ . "X~ X .
problem {or the corresponding fuzzy descriptor systems 'g :Z#i[y(t)] (A + B'u
LV 4 =) ~

proposed in | 14 |.

4 Simulation Examples
The considered plant is of two fuzzy rules with
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. —0.95 —0.68" ., —0.92 0.11-
11,478 o 41 7 L o0 0o J’

- 0.2 0.4- - (.68 0.428 - 0] 0"
2 = 0.14 0.5 A = —2.103 —0.215]° B = Rk By = 1!
,  —1.24 0.12- ,  [2.43 —0.77
o Lo.511 0 |’ Y L0.5 1’
, _[—2.5 1.737 , _ [—0.71  1.20- e [07 g _ O]
o —2.4 1.5 ] “ L—1.111 0.325]° S I I A S I

In the first stage, (7) can be solved by the LMI optimization tools to obtain

34,2040 &.2939" 1 . A _
P, = ' 8.92939 2.7635 |’ K;=[—12.6723 3.6230 ], Ki=|— 64, 0851 16. 3892 |

In the second stage, the algorithm finishes after 7 iterations, and the obtained feasible
solution 1is;

« =—0.0029, K! = [—0.3544 —~—1.77897, K? = [5.2971 —5.4936]
P -1, 6296 0. 2118° P —— 0, 4094 2. 2348"
Y Lo.2118 0.54971° % [—1.1516 0.8994 ]
Fig. 1 shows the monotonic decrease of ¢'. a*<T0 implies that the resulting local fuzzy
controller Ki and K} stabilizes the given fuzzy singularly perturbed plant for small enough e.
In Fig. 2, the control response of the closed-loop system where e=0. 1 1s monitored

for an initial state [1, 0, 1, 0]. (The corresponding membership functions are defined as
231 =expl —(x; tx, —D?* ], 2%, =1—expl —(z; +x, — 1D ]).

3.0 1.5 .
3. 0F 1.0 ‘
0.5
2.5
2.0 2
) % — 0.5
& 1. 5 - é _1. 0
1. 0 L E —1.5
0.5 | vy —2.0
) —2.5
' = * ° T —3.0
— 0.9 —3.5 - .
1 2z 3 4 5 6 7 0 1 2 3 4 5 6 7 8 g 10
Iterations ¢
Fig.1 {a'} versus iteration Fig. 2 The dynamics response

5 Conclusions

This paper defines a fuzzy singularly perturbed system by extending the ordinary T-S
fuzzy model and the fuzzy descriptor systems. The stability condition 1s derived. The sta-
bilization synthesis is reduced to a set of bilinear matrix inequalities, which can be effec-
tively solved by the proposed iterative linear matrix inequalities approach. Finally, numer-
ical examples are given to show the effectiveness of this approach. Moreover, both the
standard and the nonstandard singularly perturbed systems can be dealt with using this ap-
proach. Future work is to research the dynamic output feedback controller and the multi-
objective controller.
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