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Abstract This paper considers the scheduling problem under linear deterioration. It is assumed
that the deterioration function 1s a linear function. Optimal algorithms are presented respectively
for single machine scheduling problems of minimizing the makespan, weighted sum of completion
times, maximum lateness and maximum cost. For two-machine flow shop scheduling problem to
minimize the makespan, it is proved that the optimal schedule can be obtained by Johnson's rule.
If the processing times of operations are equal for each job, flow shop scheduling problems can be
transformed into single machine scheduling problems,

Key words Scheduling, single machine, flow shop, linear deterioration

1 Introduction

In classical scheduling problems it is assumed that the processing times of jobs are
constant and independent of the starting time. However, there are many situations where
the processing time of the job depends on its starting time''!. In this model, the processing
time of a job can be described by a deterioration function., Browne and Yechiali'* studied
the single machine stochastic scheduling problem. Mosheiovt* considered the single ma-
chine scheduling under simple linear deterioration. There are some solutions for the sched-
uling problems with arbitrary linear deterioration in [ 4,5]. Bachman and Janiak'®! proved
that the single machine problem to minimize the maximum lateness with an arbitrary linear
processing time is NP-complete. Yang and Chern'”! considered the two-machine flow shop
problem.

This paper considers the scheduling problems under linear deterioration in which the
actual processing time of a job is the product of its basic processing time and the deteriora-
tion function. It is the generalization case of the model in | 3 1.

2 Single machine problems

The single machine problem can be described as follows.

There are n jobs J1,J2» ***yJ,. Associated with job J; is a weight w, and a due date
d;. The processing time of job J, is p; (a-+b¢) if its starting time is ¢, where a and b are
positive constants. The basic processing time of job J; is p;, and deterioration function is
d(x)=a+bx. j=1,2,+,n. The problem 1s denoted as

1| p;Ca+t+bt) | fCOC)

where f(C) = f(C,,C;,°-+,C,) 1s a non-decreasing function of completion time.

For a given schedule x,if the completion time of job J; is C;, the lateness of job J,is
L.=C,—d;»j=1,2,-*,n. The makespan of schedule n is C,,, = max{C,;},the weighted

1 jsn

1
sum of completion times is ijcj ZijCj , the maximum lateness is L. = max{L,},

=1 1< j<in

the maximum cost is iy, = max{k,(C;)}, h;(C;) is a non-decreasing tunction ot C;.
1 r<in
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2.1 The problem 1| p,(at+bt) | C,.
Theorem 1. For the problem 1| p; (a+62) | Chuw» the makespan is sequence independ-
ent. If the starting time of the first job is ¢, the makespan is

Coux (2 | J1s o3 J) =+ (a+bt) D0 C (prsprses s pa)
k=1

where C:(py, P2y p,)is sum of C, items, each item is the product of £ numbers of p;,

pz . ves pn*
Proof (by induction). Without loss of generality we consider schedule z=[J,+J2s**» ], 1.

() = Z+P1(a+bi)

C, =C,+ p,at+6Cy) = ¢t+ (a+bt)(2p1—1—bp P,) = t~i—(a—|—bt)zbk‘lck(p1,pz)
Suppose Theorem 1 holds for job J; ,1 €. s

C, = t+(a+bz)Eb**lcf(pl,pz,---,m
k=1
Consider job J ;4

C;+1 “"C _\_P;+1(a+bc ) = t‘i“(a—}_bf)zbk_lck(jhspza . 9P;>‘|‘PJ+1(CI+EJZ)+

(a + b6t) EPjJrlbkcf‘(Pl s Povr !pj) = t+ (a _“‘bt)[c} (pl s Paacee :&P_,‘) —+
E—1

!

pin t Zbkwlcf(}f’l sPeyttsp;) t Epjﬂbk_lcfml(}fh ypospi) ] =
h=2 =2
1
t—l"' (a—l—bt)[C} (pl !pz ' *°° !pj) +Pj+1 _[_ Zbk“1C?(p1 s Po 3'"3pj) +
=2

ijﬂl*lbk*lcf_l (Pl ’pZ'" ’pj) + pj-HbjC}i (pl st Tl 1Pj)] —
k=12

31

t—f-(a—l—bt)Zbk 1C+1(p19P2! :'rpj-H)

Hence, Theorem 1 holds forJ.+,. This completes the proof of Theorem 1. ]
Corollary 1. C,.. (2| J1sJ2+*sJ) =Coax (Craxc (| 1 925 T [ Jar 19000 o J ) (10k<n)
Corollary 2. It PIQP”& then Cmax(t‘Jl v Jas st aJ’)ngu(flji % PRSI I 9.]”)-

2.2 The problem 1| p, (a+5bt) IijCj
Theorem 2. For the problem 1| p, (at+b¢) \ijcj , an optimal schedule can be ob-

tained by arranging jobs in an order of non-decreasing p;/w; (1+6b6p;).

Proof (by contradiction). Suppose under an optimal schedule x, there are two adjacent
jobs J, and J,, J; followed by J,, such that p,;/w;(1+bp;) > p,/w, (1 +bp).

Let the starting time of job J; is ¢, and the weighted sum of completion times of J,
and J, 1s

w,C; (1) +wiCi () = wjlt+p;at+ b))+ wlt+ (p;, + pe +bp,pr)(a+ b))

Perform an adjacent pair-wise interchange on jobs J; and J;, and call the new schedule
7. Under 7, the weighted sum of completion times of J; and J; is

w,C, (7)) +w,Co () = wylt+ ppela+bt) |+ wlt+ (p,+ p +0p;p:)(a+bt) ]
I p,/w,(A+bp;) >p/w, (1+bp,) ,it is easily verified that

chj () + wpC, (7) < chj () + wka ()

Since the weighted sum of completion times of other jobs 1s not atfected by the inter-
change, then the weighted sum of completion times under 7 is strictly less than that under
w. This contradicts the optimality of x.
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2.3 The problem 1| p;(at56t) Ay

For the due date related model, we consider the general problem 1| g, (a+562) | Apax-" .

From Theorem 1,for a set of jobs, the makespan is sequence independent. Let A de-
note the set of jobs to be scheduled, B denote the set of jobs already scheduled. C,,., (A) is
the makespan of jobs in A.

Algorithm 1.

Step 1. Let A=1{J1,Jz25,J,}yB=¢

Step 2. Calculate t=C,,,(A). Find ;* such that

hi (1) =min{h; (1) | J, € A}

Arrange job J;* in the last position.

Step 3. Set A=A—{J;- },B=B-+{J;~ }.lIl A=¢,stop; otherwise go to Step 2.

Theorem 3. Algorithm 1 generates an optimal schedule for the problem 1| p; (a+56t) | Ap..

Proof. lLet r be an optimal schedule, 7 be the schedule of Algorithm 1. We will show
that schedule n can be transformed into schedule 7 and the maximum cost does not in-
crease, Without loss of generality we assume that the last job of x is J,~- and that of 7 is
J;-. Letx=_S,,J;» »S,,J;* |, where h;= (£)=h;~ (t),S, and S, are the sets of the other
n—2 jobs.

From z, by placing job J;* in the last position we can get a new schedule z=[S,,S,,
J;>+ 4 J, ]. Since only the completion time of job J;* becomes larger and h;*~ () =h,~ (1),
the maximum cost of 7 can not be larger than that of 7. Now 7 and 7 have the same job in
the last position. By a the similar method we can transform = into 7 and the maximum cost
is not increased.

The problem 1| p; (a+bt) | L.« is a special case of the problem 1| p, (a+5b1) | hpax s
h;, (C;)=C,;—d,. At this condition, the schedule of Algorithm 1 satisfies the EDD (Earli-
est Due Date First) rule.

Theorem 4. For the problem 1| p;(a+56¢) | L,xs an optimal schedule can be obtained
by the EDD rule.

3 Flow shop problems

The Flowshop problems can be described as follows.

There are n jobs J,,J;, ***,J,to be processed successively on m machines M, , M,,
=+, M, in that order. Moreover, we assume that the same job order is chosen on each ma-
chine. Associated with job J; is a weight w, and a due date d,. The operation of job J, on
M; is denoted by T,,. The processing time of operation T, is p;(a+bt)(i=1,2,ym,;=
1,2,+-,n) 1l its starting time 1s t. The problem is denoted as

Fm | p;Ca+0b6t) | f(C)
3.1 The problem F2|p;(a+bt)|C,ux

Johnson rule (SPT(M,)—LPT{(M.,) rule)-?*

Partition the jobs into two sets with set A containing all jobs with p,;<Up;; and set B
all the jobs with p,,>>p,;. The jobs with p,; = p,; may be in either set. The jobs in A go
first in the order of non-decreasing p;;,the jobs in B follow in the order of non-increasing p;;.

Theorem 5. For the problem F2| p.(a+bt) | Ch.» an optimal schedule can be obtained
by Johnson's rule.

Proof. Suppose an optimal = does not satisfy Johnson's rule, there must be two adja-
cent jobs J, and J,, J; followed by J:,which satisty one of the following three conditions:

1) job J; belongs to set B and J, to set A;

2) jobs J, and J, belong to set A and p;, > pu;

3) jobs J;and J, belong to set B and p.,<p...

In what follows we will show that under any of these three conditions the makespan is
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reduced after a pair-wise interchange of jobs J; and J,.

Let job J, be followed by job J; and let J, follow job J,. Perform an adjacent pair-wise
interchange on jobs J; and J,,and call the new schedule 7. We denote the completion time
of job J; on machine M; under #(x) by C; (C,). It is obvious that C; =C,;(i=1,2). Inter-
changing jobs J, and J, clearly does not atfect the starting time of job J, on machine M,
and it i Cpax =(Cy | Ty, » T1,). Now consider the starting time of jobJ,on machine M,. Un-
der 7, the starting time of jobJ,on machineM,;is max{C,..(Cy; | T1;5 Tz s T1,) s Css } s under
751t 18 MaX{ Coax (Ci; | T1; s Tias T1s) s Cs; ).

Under =«

Cy :mﬂX{Cmax(Czj 121 ) 3y Crax (Ci l Ty)) =

mﬂX{Cmax <czz sz ’ TZk) !Crnax(clj sz ’ TZk) !Cmax(clk \ Tzk) } —
max{ Co.x (Cs; Tz,:' o T3:) o Cony (Cy; le o Ig; Ts) s Coux (Cy l le y Tons Tor) ).
Under 7
C‘z_;' :max{cmax(é2k ’ TZj)!Cmax(Clj I sz)} —
max{cmax(CEE Tzk ’ sz) !Cmax((_jlk Tzk ’ TZj) !Cmax(élj ‘ sz> } —
max{ Cupux (Co; | T s 1), Coex (Cu | Thps T s Ty;) s Crnax (Cyy l Iy 5T, Tz; )},
From Theoreml,C. ., (Cy, | Tors T2;) = Coax (Coi | Ty; 5 T3:). Under condition (1), pi; = py;
P1rS< por. According to Theorem 1 and Corollary 2,
Coax (Cry | T1a 9 To» Ty)) << Coax (Cuy | Ty s Tia s Tr)
Crax (C1y | T s TU ’ sz) << Cax (G le ’ TZj y 121 )
So0,C,;<<C,,. Conditions (2) and (3) can be shown in a similar way as condition (1). [
3.2 The problem Fm/|p;(atbt),p;=p,;| f(C)

For the classical problem Fm|p; =p; | f(C), the makespan is sequence independent.

If the starting time of the first job is z, p,=max!{ p;;,the makespan is

Conx(m) =t + > p; + (m—1)p,

The above solution can be generalized to the 1prob1em Fm|p, Catbt),p;,=p; | fCC). We
consider each operation as a job,and the problem Fm|p,(at+bt), p; = p,; | f(C) is equiva-
[ent to the single problem 1| p;(a+562) | f(C) with n-+m—1 jobs. Job J, is considered as m
jobs (p,=max{p;}). Hence, for the problem Fm/| p;(at+bt),p,=p;| f(C), the makespan is

n+m—1

Cmax(t \ Jl!'“?JH'"!]H"'aJH) = t+ (a + bt) E bk_lcfz(fbl3"'#?“"'!}’“"'9?:1)
k=1

By the results of single machine problem we have the following solutions.

Theorem 6. For the problem Fm| p, (a+bt), p; = p; | Caux» the makespan is sequence
independent.

Theorem 7. For the problem Fm| p,(a+6b6t), p; = p; | Lmx »an optimal schedule can be
obtained by the EDD rule.

Theorem 8. Algorithm 1 generates an optimal schedule for the problem

Fm l 2 (a+bt) y Py = 2F I hmax(ln step 1 ,set A = {Jl !]2 y **°* !]z y *°° 9]3 s *°° !Jr:})'
Not all results of single machine problems can be generalized to the problem Fm/| p;(a-t+b6¢),

pi; = p; | F(O). It is easily verified that for the problem Fm| p, (a+b&2), p;, = p, \ijcj ;

placing jobs in the order of non-decreasing p,/w; (11+6p,) does not necessarily minimize
the weighted sum of completion times. Morever, if all jobs have equal weights, we have
the following theorem.

Theorem 9. For the problem Fm/| p,(a+bt),p, =p, )ZQ ,an optimal schedule can be
obtained by placing jobs in the order of non-decreasing p,.



No. 4 ZHAQO Chuan-Li et al. : Scheduling Problems under Linear Deterioration 535

4 Conclusions

In this paper we consider scheduling problems with deteriorating jobs, the deteriora-
tion function being d(x)=a+bx. In this model, the actual processing time of a job is the
product of its basic processing time and the deterioration function. For single machine
problems and tlow shop problems, varicus objective functions, including the makespan,
the weighted sum of completion times, the maximum lateness and maximum cost functions
are discussed, respectively.
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