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Abstract A new neural network model named state delay input dynamical recurrent neural net-
work is presented. The model with new topological structure and learning algorithm has signifi-
cance for weight matrices and makes training process of weights become more distinct and
straightiorward. Simulation shows that the speed of learning and convergence is improved by input
of the priori input-output state knowledge., The new neural network is then applied to identifica-
tion of robotic dynamics through strategy of combining information obtained from simplified model
with identification of unknown nonlinear dynamical information. This method reduces computing
time and accelerate the identification speed. Simulation results show the efficiency of the new neu-
ral network and the strategy.
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1 Introduction

Industrial robot is a multi-input-multi-output (MIMO) system with high nonlinearity
and uncertainties in kinematics and dynamics. External disturbances and inherent com-
plexities in a robot system, such as inertial payloads, interactions between joints, correla-
tions between robot's positions, orientations, gravitational effects, etc., will definitely a-
rouse error between theoretical and actual trajectories. This will lead to decreased working
performance in a working cycle. Although intensive research has been done in literatures
to develop control algorithms for a robot to improve its performance, 1ts kinematic or dy-
namic model is simplified, excluding much information that would atfect working perform-
ance. It is difficult to identify the lost modeling knowledge by conventional methods. Neu-
ral network has competitive ability ol approximating any nonlinear continuous functions,
and neural network's applications become new focus in identifying unformulated factors in
robot study.

Identitication of robot system using neural network can involove network structure
and identification scheme. For neural network structures, researchers in different fields
have proposed topological structures and learning algorithms that can be used in different
research fields'''?!, As to identification strategies, one can approximate the forward dy-
namics or inverse dynamics that are assumed totally unknown. However, doing so means
heavy computational burden and decreased ability in online identification and control. So
Bl The first part can
be expressed by formula, such as gravity and Coriolis. The second part includes all the
nonlinearities that cannot be formularized, such as magnetic field of servo actuators and
the damp of air. For the reason that the simplified model represents the system's primary
motion property, it is more reasonable to identify the second part of nonlinearity, which i1s

less time-consuming and is more possible for online identification and control.

another way is dividing the nonlinearity of the system into two parts
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2 State delay input dynamical recurrent neural network

In this section, the state delay input dynamical recurrent neural network (SDIDRNN)
1s proposed with topological structure shown in Fig. 1. The input and output of the net-
work are added to the last hidden layer as one part of input. Different from CIDRNN', in
SDIDRNN the input-output knowledge i1s not added to contexts shown by the dashed part
in Fig. 1, but to a autonomous group of nodes named state contexts. Specially, these
nodes are identical in structure with the input layer of Elman network if there are only
three layers, but it is not the case for more layers. Generally, they are treated not as input
layer nodes, but as the parallel neurons to context ones. Note that if there is no specific
denotation, the “hidden layer” in this paper refers to the last hidden layer connecting with
the output layer. The matrix between state context nodes and hidden layer nodes is called
feed-forward filter weight matrix with definite meanings. In compound input dynamical re-
current neural networks(CIDRNN) the matrix is constant, making the network’s generali-
zation limited and the performance dependent on the filter factor. In SDIDRNN it is de-
signed to be variable and weights are updated by BP update rule to improve adaptive capa-
bility. The number of state context neurons equals to the sum of nodes in both input layer
and output layer. Each neuron holds the prior state information of one node in the two lay-
ers. In order to get satisfactory convergent and learning rate, one can preprocess the prior
state knowledge by multiplying a filter factor A, As a factor of experience, A can be greater
or less than 1. The state context influence upon the output layer is strengthened when A>
1, while it is weakened if A is less than 1. If A=0,then SDIDRNN is an Elman network.
Thus, the Elman network can be considered as a special case of SDIDRNN.

@ —> Context

@ ——> State Contex

Fig.1 Topological structure of SDIDRNN

The net input net;”’ (k) of the ith hidden node is composed of three parts, i. e., knowl-

edge transmitted from input layer, context layer and state context layer.
M1 M+P

Q
net® (k) = D wP « o2 (k) + D wi? « ol (k) + D wh? « ol (k) (1)
= ] r=1

- =1
where Wi, Wi and W;/* are weights from input layer, context layer and state context

layer to the hidden layer, respectively. 0;*, ol , and ol are output of input node j, con-
text r and state context ¢, respectively, M, P and Q denote the numbers of nodes in the in-

put layer, the hidden layer and the output layer,respectively. The most popular BP learn-
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ing algorithm 1s chosen to train the neural network The function of training signal is

)
= = >3 E. = EE[y.ﬂ(k) ()T (2)

n—1 [=
where S is the number of samples for tralmng. The weights are tuned using gradient

search method . In order to decrease the trend of oscillating and increase convergence capa-
bility, a momentum term 1s used in the generalized learing rule. The generalized equation
used BP algorithm with momentum term is
wi’ (k+1) = 98, (B)o" (net;” (k))oi™ Y (k) + aAw® (k) (3)

where 7€ (0,1) 1S the update rate, a €| 0,1) is the momentum coefficient. §;™ (k) is the
back propagation error signal for the /th node of the nth layer. 0" " (%) is the output of
the 7th node in the (n—1)th layer. ¢( * ) represents the activation functions.

W:?” and W}’ can be tuned by the following standard BP algorithm, whereas more
computaion should be done to adjust weigthts Wi and W§?. To tune weight W%, one
should get the partial derivative of J with respect to this variable. That 1s,

80(2) (k)
(c2) Z (8(3)wﬁ>1 awgz) (4)
Note that

(2) (2) (c1) q

S = /et ®) a(ng;(ﬁ” = £t ) [0 ) + D 2]
ir tr - ik =

, - r:l) (2) _.___1 -
f (net® (k)| anoi® (k=1 +b 0(2)(k—1)+2w(“"2)(a& au(;f"” D+b% azii” ))

(5)

where a,, and b,, are the diagonal elements in self-feedback coefficient matrix A and feed-
back coefficient matrix B. f( ¢ ) is the activation function of neurons.
If the knowledge of input-output states is added to context nodes, namely, the feed-

forward filter weight matrix is constant set as in CIDRNN, a certain term should be con-

Mt-P (s1)
tained in (5) which includes the output 0;” (k) of the system. Henee,zc aawuz) should

be included in the last summing term. The learning rule becomes mueh complex because

M+ P (s1)
00,
the output 0;* of the neural network in term E :C S
(c2)

wit®’. Therefore, this computation process is recurrent and 1t makes the learning algorithm
very lengthy, complex and uneasy to understand. It will also cause the computation bur-
den more heavy if the feed-forward filter weight matrix is variable. However, this adjus-
ting process will be independent if it follows the strategy proposed in this paper which
makes the hierarchy clearer and the learning rule easier to understand.

If dependency relationship between o0, (k) and wi:> can be neglected, (5) can be
simplified as

- is a function of variables w;”’ and

00:% (k)

S F(net® (D)) a0l (k—1) + 56,02 (k—1) ] (6)
wir
As to weight matrix W©?
of 2 90:% (k)
0(® M+P (s1) (1) =
where aw(f;f) = f (net(¥ (k)) C (k) + Ew(s‘?) agkw(é} ) (8)

because when t=1,2,+*,M, 0"V (k) and w(m 1S mdependent of each other, (8) can be re-
written as follows.
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a;zﬁi(;f) = f (net!® (b)) :0.55” (k) + :Z:lm{iz} —agi:g;zf) : =
f (net® (k)) ol (B) + Zpl‘wgz) agi(_s(i) | (9)
Without consideraton of the depender;cy betweerf?ﬁm (k)andtzﬁf” : (9) is simplified as
agi;;’f) — F (net® (£))0C (k) (10)

Thus, we have so far introduced the topological structure and learning algorithm ot the
state delay input dynamical recurrent neural network in details. The following contents are
to prove the superiorities of SDIDRNN through a nonlinear dynamical system.

_ y(R)y(k— D[ y(k)+1.5]

1+ y(R)*+y(k—1)°

+u(k), and 400 samples are generated randomly in the closed interval [ —0. 5,0, 5 ]as
training set. The training destination is root-mean-square error (r. m. s). SDIDRNN is
compared with the other three types of neural network, this is, BP, improved Elman and
CIDRNN. In the process of learning, all parameters needed by these four types are set to
be identical, namely weight matrix W" between the input and the output layer, W' be-
tween the hidden and the output layer, self-feedback coefficient matrix A and feedback co-
efficient matrix B. Assume that A=0. 7] and B=1I, where I is n identity matrix. The
feed-forward filter coetficient C 1s equal to 0. 6 in CIDRNN. The learning algorithm ap-
plied to the four networks is error back propagation algorithm (EBP) plus a momentum
term. Learning rate »=0.1, momentum coefficient «=0. 1, filter ftactor A=1.0. Training
cycle is 50. The curves of root-mean-square error are shown in Fig. 2. Note that 1 denotes

BP, 2 denotes Elman, 3 denotes CIDRNN, 4 denotes SDIDRNN.

i 1
.22'_' “ /

Consider a nonlinear system in discrete representation y(k—+1)
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Fig.2 Curves of r.m.s Error

By analyzing the four curves of r. m. s error in Fig. 2, one can find that on one hand,
curves of BPNN and improved Elman are in little difference. Their convergence rates are
far from satisfying compared with CIDRNN and SDIDRNN. On the other hand, CIDRNN
and SDIDRNN converge relatively rapidly but the latter is superior to the former in con-
vergence rate and steady state accuracy, thus SDIDRNN is of more competitive learning
capability than the other three types of network mentioned above.

3 Online adaptive tracking identification of robot based on SDIDRNN

As mentioned above, the robot system can be expressed by two parts, 1. e., the
known and the unknown. In order to decrease the computation burden and mmprove the
possibility of online utilization, we utilize the known part as the primary model, while the
output of the neural network identifier, approximating the unknown part of the system,
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works as supplement for the primary model. This strategy is introduced in literature**,

The neural network identifier keeps tuning weights until the error between the output of
the identifier plus the mechanism model and actual output of the system is less than a pre-
set error scale.

A two-link robot i1s used to study the problem of adaptive identification and to prove
the efticiency of SDIDRNN in online adaptive tracking identification, The scheme is shown
in Fig, 3 where 7., 1s the torque defined by the mechanism model, z,, 1s the output of
SDIDRNN, representing the torque of the system's unknown part. r is the actual joint
torque equal to r,, plus r,,.

qa(k) yqaCk) yqa (k)
- = (k)

™ Robot System —

o Ton(R)
¢——>| Simplified model

4 ’

NNI rnf_(k) —

e (k)

Fig.3 Scheme for online adaptive identification

Trajectory settings are listed in table 1,
The simplified dynamic model of the two-joint robot is
r = M(g)g + H(qg,q) + G(qg) (11)
where M&ER"™", HE R, GE R**' denote the mass matrix, vector of Coriolis and cen-

trifugal torques, and gravitational torques, respectively. & R**' is the vector of joint ac-
tuator torques, the vectors g,q , g are the joint angle, joint velocity and joint acceleration,
respectively,

Table 1 Desired trajectory
Trajectory T T, T
=0, 2cosa+0. ]

v=0, lsing+0. 6 is . os 0. s
Accelerating{ 0, T, | Uniform| T,, T— T, ] Decelerating| T— Ty, T|
d:(CDS(I/’IS '*zsft'-l':rr)+1)VﬂI i=V. . _cos{ [:——(T*—";}.)]H/Tb}—i-lva

In order to identily the unknown model of the robot system, one can rewrite (11) as

where Flg,q,q) = M,(q) +M,(q) + D) (13)
In (13),M,;(g)=1_[0. 6sgn(qg,) +1.2qg,,0. 6sgn(qg;)+ 1.2 ¢,]" is the vector of friction

torques, D(z) =0, 008sin(2¢) I is sine disturbance, M, (g )=1(g,+0.06¢9,,0.06¢g.)" is mass
compensation vector for links. Suppose the system 1s unknown, What we want to do is to

approximate the unformulated part of F(q,¢, g) by training SDIDRNN. [/, =0. 4m, {,=0.
6m, m; —6. Okg, m, —4. 0kg, sample time is 4s, sample rate 1s 0. Ols, and training cycle is
100.

From Fig. 4 to Fig. 7 are curves representing the identification results of the two con-
figurations. One can find that using SDIDRNN and the identification strategy proposed in
this paper, we could get satisfactory result. especially, the computational consumption is
greatly deduced. During each identification cycle, the network tunes weights lor a small
number of times (only 100 for this sample) and outputs satisfactory result., The neural
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network after learning then can be used as the model representing the unknown dynamics

and applied to robot control.
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Fig. 4 Identification result of Joint 1(config. 1)
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Fig.5 Identification result of Joint 2(config. 1)
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Fig. 6 Identification result of Joint 1(config. 2)
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Fig. 7 Identification result of Joint 2(conhig. 25

4 Summary
A new type of neural network SDIDRNN 1is proposed based on Elman network and the
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learning algorithm is derived. The learning ability that 1s crucial in online identification is
improved. In this paper, by combining the formularized dynamics with the output of neu-
ral network identifier representing the unpredicted dynamics of the system, the computa-
tion ot the network identitier i1s reduced, and the identitication speed is up. This property
1s significant in online system identification and approximation of unpredicted dynamics.
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