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Abstract A deadlock prevention strategy for flexible manufacturing systems is developed based on
Petri nets and their structural analysis. The concept of elementary siphons is proposed, it is a
class of SMS (strict minimal siphons) with a smaller cardinality, particularly in the Petri net mod-
els of large-scale systems. By adding a control place for each elementary siphon to make it never be
emptied, deadlocks can be prevented for a special class of Petri nets, namely S* PR. That means
not all SMS need to be considered when ensuring no siphon loses its tokens., For 8’ PR, An ap-
proach is proposed for finding elementary siphons and SMS. Compared with the existing methods
that control all SMS in a Petri net, the deadlock prevention policy has at least three advantages:.
1) only a smaller number of SMS need to be controlled, hence the deadlock-freeness or live Petri
net model obtained has less additional places and arcs; 2) not need to compute the set of siphons
beforehand; and 3) this policy is more suitable for large-scale Petri nets. These methods are illus-
trated with an example.
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1 Introduction

Based on Petri nets, several methods have been developed to deal with deadlock prob-
lems in FMS context. The {first one is to limit the number of processing parts entering an
FMS. This method ensures the liveness of Petri net model although it 1s much conservative
and hence deteriorates the system productivity and resource' s utilization''*. The second
one 1s to avoid deadlocks by controlling requests for resources. The aim of this method is
to forbid the request for a resource if permission of this request will lead to deadlocks'.
In Petri net formalism, this method intentionally disables an enabled transition in order to
avold deadlock states to be reached. It is conservative as well. The third one 1s to ensure
deadlock-free by modifying the structures of Petri net models'*'*, which is usually called
deadlock prevention. A control place is added for each SMS such that every SMS becomes
a controlled one and hence it cannot be cleared of tokens. The drawback of the method
proposed in | 4 ] is that the resultant Petri net model becomes more complex due to the nu-
merous additional places and arcs. The last one i1s called deadlock detection and recover-
y% ™ Once deadlocks are detected in Petri net models, automatic or manually actions will
be employed. High productivity and resource’ s utilization can generally be achieved by
this method, which however requires some auxiliary devices, Moreover, some unlocking
control software must be programmed when designing controliers for robots, machine
tools, etc %%,

This paper proposes a deadlock prevention method based on elementary siphons. §°
PR i{s used for modeling FMS in this paper. We verify that if elementary siphons are
properly controlled, all SMS in a Petri net can possibly be marked and the controlled S°PR
1s hence live. Because the number of elementary siphons is smaller than that of SMS, the
controlled Petri net has a smaller number of additional control places and arcs. We assume
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the reader to be familiar with Petri nets %,

2 Elementary siphons of Petri nets

In this section, we present the concept of elementary siphons. Elementary siphons are
a unique type of SMS. The number of them 1s much smaller than that of SMS, particularly
in a large Petri net structure. This concept is suitable not only for S°PR class but also for
more general Petri nets, This research reveals that a live controlled S°PR can be obtained
by just controlling its elementary siphons rather than all SMS in it. Iz 1s used to denote
the set of elementary siphons in an PR net system in the sequel.

Definition 1. Let N=(P,T,F) be a Petri net (not necessarily an S°PR) and SCP be
a siphon of N, A P-vector As is called the characteristic P-vector of S iff Vp& S,As(p) =
1; otherwise, A5(»)=0.

Definition 2. LLet N=(P,T,F) be a Petri net, SCCP be a siphon of N, and As be the
characteristic P-vector of S. n, is called the characteristic T-vector of S if ;=45 * C.

Theorem 1. The characteristic T-vector of the support of a P-invariant is 0.

Proof. The characteristic P-vector of the support of a P-invariant I 1s exactly I itself.
By definitions of P-invariants and characteristic T-vectors, this theorem apparently holds.

]
Theorem 2. Let S be a siphon of net N=(P, T, F) and n, be its characteristic T-vec-

tor. We can conclude that {t&€ T|n. (£)>0},{t&T|n.(¢) =0}, and {¢t& T|n,(¢)<<0} are
the sets of transitions whose firings will increase, maintain, and decrease the number of
tokens marked in S, respectively.

Proof. Yt& {+& T|n.(£) >0} there exist Dy, D;, D; such that S=D, U D, U D; (note
that D;, D,, and D; can not be empty sets simultaneously), and Vp& D,, p&t’'; Vp&E
D,, pEt; YpED;, p&&t'|U’t. According to the firing rules of Petri nets, the firing of z
will increase the number of tokens in D, , decrease that of tokens in D, , but maintain that
in D;. By Definition 2, if t€{t€ T|n,(t) >0} then one will have | D, |>|D,|. There-
fore, Vi€ {(t& T|ns(t)>0}, the token increments in S will be |D,|— |D;|(n,(2)) by the
firing of ¢ . The two other cases can be similarly proved.

Definition 3. Let S;, Si, S;, «*+, and S,(n€ IN/{0,1}) be SMS of a net N and 5 be
the characteristic T-vector of S;, 1=0,1,2,+*,n. S, is called a redundant SMS (denoted

by RS) with respect to S, S;s ***, and S, il 5., =n,, + 1, T* T1n, holds. We denote the
set of redundant SMS in a net by Hgs.

Definition 4. Let IT be the set of SMS of N. VS&II, if —35,, S,, *»«, and S, € II\S

such that 5., +n, T+ 1n,, =1, holds, S is called an elementary siphon. Obviously, we
can get IIgs UIlrs =11.

3 Solution to the elementary siphons in S°PR

The computation for SMS is a necessity for the approach in [ 4 ]. It is well known that
theoretically, the time complexity of traditional algorithms of siphon computation for gen-
eral Petir nets is exponential with respect to the size of a Petri net although it is not the
case practically. We develop a method to obtain SMS in an $° PR net based on its structural
analysis. The relevant notations,definitions,and results about S*PR can be referred to | 4 ].

Definition 5. Let {7y .77+ 37, ) &S Pr(mE IN/{0,1}) be a set of resources in an S°PR
(N,My). {risry5+,r,} is called a resource circuit, denoted by L, if ‘'ry(rZD, ‘r.[\r;
=,y and ‘r,[1F < hold. Note that the number of expressions may be larger than
m due to the fact that a resource can be shared by two or more processes.

Theorem 3. Let L={r,,7,,***,7,} be a resource circuit of an SSPR N, N=(PUJP°J

Po T F). S={risrayyr. ) U{plp€EU.etHWDA("NP) LU,e  H(r)} is a minimal
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siphon 1in N. And if S does not contain the support of any P-invariant, then S is an SMS.

Proof, We {irst claim that S is a siphon. For this, we have to proveVt&'S, t€ S,
Ve&'S, either t € {ry, rpsyrut ort€ {plp€E U, et HO A(p” NP) L U,et H(}
holds. We accordingly have the following two cases.

1) t&{riyry9°sr,} means 1€ {1,2,,m}, t& r,. By the definition of a resource
circuit, two subcases are considered.

a) There exists j& {1,2,++-,m} such that 'r,(\r;=. Ut€'ri(Vr;, tE€ {ri,ry,,
rn ) holds. b) There does not exist j& {1,2,-+,m} such that t& 'r;(\r;. From the defini-
tions of S*PR'"’, there must exist a state place p € H(r;) such that 1€ »" holds. There-
fore, one needs to prove p& S. Since S={ri,yryssr U{plpE U,etHUr) A(p~ [ P)
LT U,e.H ()} s one equivalently has to prove (7 (1 P) € U, H (). By contradiction,
assume (p~ [1P)SEU,et H(r). Hence we have 35&{1,2,+-,m}, (p" (NP)ZH(r;) and
t& ‘r;[1r; by definitions of S’PR. This is clearly contradictory to the condition that there
does not exist j&{1,2,+*-,m} such that :&'r,{)r;. Consequently, if there exists a transi-
tion t& {7,735 y7n and does not exist j& {1,2,++,m} such that t& 'r, (17}, there cer-
tainly exists a place p& H{(r;) such that t&€ p and pE€ S, 1. e., t € S’, Therelfore, Vi& ' {r,,
723 srmts tE& S holds.

2yt {plpe U, et HO AT NP) LU, et H(P)} means I, € LG € {1,2,++,k}),
p& H(r;) such that t & p. By definitions of PR, t& ! holds. Thus we can conclude that
Vi€ {plp€ U, et HOA (p NP) LU, H()}) means t€S".

By the proofs for cases 1) and 2), one can get Vi& ({ri,reysrt Ui{plp€E U.crL
HHOAOGD NP U, e tHG) ), t€ S holds, i.e., 'SCS'. Trivially, S is a siphon.

Next we prove S is a minimal siphon. By contradiction. Assume that S is not a mini-
mal siphon. That is to say, there exists a siphon Sx such that SxCS holds. Let S=5;z U
Ses Sk=S\Prs Se=5\Sg, Sx=Sxx USxrs Sxx =Sx[1Pxr» and Sxp =S\ Sxx. If SxCS is
true, then one of the following three cases holds: a) Syr =Sz, Sxr CSp; B)Sxr C S Syp =
Sp; and ) Sxr C Sk s Sxp C”Sp. We first deal with case a). By Sxp CSp, there exists at least
a place p€ H(r) such that r€ Sg(Sxx)s» PE Sp and p& Sxp are ture. From the definitions
of PR, we know that there exists a transition t& p° (] 'r; such that & "Sy; and t & 'Sy,
as shown in Fig. 1. Owing to p& Sxp , there does not exist a place px € Sxp such that Ft &€
»'[) px and hence t & Sy holds. We can see that

t&& Sxp. Moreover, there impossibly exists a place :_—_-.%
r; € Sxg (Sg) such that ¢t & r;, Otherwise, it leads i (7))
to (p (VP)ZZU,eLH () which is contradictory to
(p NP) € U,er H () defined in S. Hence ¢t & QD % 0
Sxg holds. As a result, we can conclude that Sy is
not a siphon since there exists a transition ¢ such
3 |

that both £ €Sy and ¢ & Sxx U Sk» (z € Sx) hold, e
which 1s clearly contradictory to the assumption. t O

Therefore, S is a minimal siphon. Case b) and ¢)  Fiz 1 The case of Sxx=S4,SxrCS,
can be similarly proved.

Consequently, S={r; 7y, sr, ) U{plpE U, et HOA(p” NP LU, et HG)} is a

minimal siphon in S°PR. And if S does not contain the support of any P-invariant, S is an
SMS accordingly.
Definition 6. let I, and L, be two resource circuits, We say that L., and L, are con-
nected if Jr& P, r&L,[1L,.
Definition 7. Let L,,L,,**yand L, (n€EIN/{0,1}) be resource circuits. We call L,
L.UJ++UL, a resource chain if Vi€ {1,2,-,n}, € {1,2,++-yn}\{i} such that L; and L,
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are connected.

Let LC denote a resource chain. Note that a set of resources may be both a resource
circuit and a resource chain. In that case, we preferentially treat it as a resource circuit.

Theorem 4. Let LC=<{r,,7,,**,7, ) be a resource chain of an SSPR. S={r;,7r;, ",
rot Uplp€ U,etc HM A" (NP CU,cic H()} is a siphon. If S neither contains the
support of any P-invariant nor is a superset of any siphon, then S is an SMS.

Proof. Similar to the proof ot Theorem 3.

Theorem 5, Let S=Sz U Sy be a siphon of an PR, where Sp={p|p€ (U,eH())
ANp” NP) L (U,et H())} and Sg={r1s72+***s7»}. We can conclude Sy is an L or an
LC.

Proof. By induction.

First we claim the case of |Sg|=2, 1. e., Sg={r;»r;} (It is proved in [ 4 | that | Sz |>
1, where S is a siphon in an S’PR. ). From definitions for SMS in S*PR, there exists a
place p& H(r;) such that p& Sp. 1f {t}=p»"[)'r, we have Ir&€ Pr, {¢t} =7"[)'r;. Hence
one can get r=r;. Otherwise,we have t& S" and S is not a siphon. As a result {¢}=r;(}'r:,
e, 7] r/#< holds. Similarly, we can prove that 'r;[) ;7% holds as well. There-
fore {r;, r;} is a resource circuit. The case |Sg|=2 is proved.

Assume that when | Sz | =m, {ry+7,,**,7, ) is a resource circuit or chain. The case
|Sg | =m +1 is proved as follows, If ‘r,,(\r.+; = holds, we have pE€ S, ¥YpE H(r+1).
Otherwise, there exists a place p— € S, {t}=p () rns1 Nt & S’'. This means {7, } U
H(r,+1) 1s included in S. While {r,,+1;\U H(r,+1) is the support of a P-invariant, we can
see that S is thus not a strict siphon. Consequently, 7, [) r.+; = is not possible. As-
sume that {z} ="r,(17,+1. We have {t}=p "(\'r,, where »p' € H(r,,). Obviously, p' &S
holds. Furthermore, assume {¢}="p(|r,+1» where p& H(r,.1). One can get p& S. Mo-
reover, there exists a directed path between p, and p,, and p, & S, where p, € H(r,+1)
and p, € H(r,). Otherwise, S will contain {r+;}UH(r4+1). Let {¢t'}=p; () rns1. Due
to ;1 &S, t' €r, holds. Otherwise, t€'r,.,. By t€ S, we have r,+, Nr, ={t'} #J.
One can see that {r;,7,,*,7,,} and {r,+,’ are connected. {7, s7,,°**s7, s7,+1} 1S either an
I. or an LC.

The sufficient and necessary conditions under which a set of places of an S*PR net is
an SMS are given by Theorems 3, 4, and 5. Accordingly, we can use Theorems 3 and 4 to
calculate SMS. The outline of our algorithm is. 1) Find all Ls of the net; 2) Find all LCs
of the net; 3) Calculate all strict siphons and siphons of the net based on Ls and LCs, re-
spectively; and 4) Eliminate each strict siphon which contains the support of any P-invari-
ant and each non-minimal siphon which is a superset of any siphon.

For example, Fig. 2 is the Petri net model of an FMS and it belongs to S° PR class.
There are three resource circuits, namely L, ={M1,R1}, L,={M2,R1}, and L, ={M3,
R1,M4,R2} and four resource chains, namely LC;, ={M1,R1,M2}, LC,={M1, M3, R1,
M4, R2}, LC;={M2, M3, R1, M4, R2}, and LC,={M1,M2,M3,R1,M4,R2}. From
these resource circuits and chains, one can get seven siphons, Q; ={p2s ps»s P11 P13 M1,
R1}, Q,={p:s pss p1ss M2, R1}, Qs:={p2y prs p1i» p1s> M3, R1, M4, R2}, Q,={ps,
Py M1, R1, M2}, Qs={p2s p1s pus puss M1, M3, R1, M4, R2}, Q;=1{ps» p7, Pis s
M2, M3, R1, M4, R2}, and Q;, ={p,, p1;» M1, M2, R1, M3, R2, M4}. 1t can be veri-
fied that five of them are SMS, namely S, ={p:, ps» p1zs M2, R1}, S;={pzs p7» P>
piss M3, R1, M4, R2}, S;={ps, p1s» M1, R1, M2}, S,={pss prs p13» M2, M3, R1,
M4, R2}, Ss=1{p:s pi1s» M1, M2, R1, M3, R2, M4},

In the following a method to compute elementary siphons is proposed.

Definitioin 8. Let N=(P, T, F) be a net with | P|=m, | T|=n and we assume N
has £ SMS, S,, S;, ***5, and §,, m, n, k& IN. Let A5 (5, ) be the characteristic P(T)-
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vector of SMS S;. We define [A |ix» =14 {451 |+ 1As " 1] and [9]ix. =[A lism X Cox, =

N 1N | I, SR [A]([q]) 1s called the characteristic P(T)-vector matrix of the
SMS of N.

L4 £
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Fig. 2 The Petri net model of an FMS Fig.3 The live Petri net with 3 additional places

Theorem 6. Let N be a net and [ 5] be the characteristic T-vector matrix of the SMS of
it. The number of elementary siphons in N is equal to the rank of [7].

Proof. Assume N has £ SMS and &' elementary siphons (£>=%'). Obviously, there
are k-k' redundant SMS in N. By Definition 3, n,(i=*k"+1,k'4+2,:+,k) can be linearly
represented by i, (j =1, 2, ,k'). According to the definition of the rank of a matrix,
we have the rank of I:;?],&xﬂ is k.

In Fig. 2, it is easy to verify that 9, =n, 1, and n.=n,+n,.. Hence, the rank of
. n] is 3. Thus S;, S;and S; are elementary siphons and S, and S; are redundant siphons.

4 Deadlock prevention policy

In [4], to keep all SMS being marked at any reachable marking, a place and several
arcs are added to the original net system for each SMS, which leads to a more complex Pe-
tri net controller. However, only a small number of SMS are considered in our method.
All SMS of a net system can possibly be marked if its elementary siphons are controlled.
For the case that there exists an emptiable siphon when all elementary siphons are con-
trolled, we have to add a place to control it using the control approach developed in [ 4 ].
Note that in [ 4] it is guranteed that no new siphon is generated owing to the addition of
control places. This research investigates conditions under which an SMS in a Petri net
system can always be marked by controlling its elementary siphons.

As stated in Definition 3, we use RS to denote a redundant siphon, RSg=RS[) Py to
denote the set of resources of RS, and Crs =(UJ{H() ,v&E RSz} )\RS to denote the com-
plementary set of RS. Elementary siphons can be similarly described.

Definition 9. Let (N, M,) be a Petri net system and RS be a redundant siphon of N.
We say RS is a controllable redundant siphon by elementary siphons if elementary siphons
of N are controlled means that RS is controlled.

et (N,M,) be an S°’PR. Assume that there are m elementary siphons S,,S,,+-, and
S,, in the net system. By the prevention deadlock method in [ 4], we add m control places
VaisVesseer, and Vg, to control S,,S5;,++, and S,,, respectively. The new net system 1s
denoted as (N, ,M;.). By the siphon control method in | 4 |, three control places Vg, ,Vs2 s
and Vs, are added to the net model in Fig. 2. The resultant Petri net which is live 1s shown
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in Fig. 3. This can be verified by the following procedures. Next we discuss the conditions
under which a redundant siphon RS of (N, M,) can not be emptied in (N4 ,M;,).

An empty redundant siphon RS at any marking M, € R(N,,M,,) must satisties con-
ditions Cond—-1, Cond-2, and Cond_ 3 as follows. That means if one of these conditions
deos not hold for RS, it will always be marked at M,,. For a siphon S, Ps and Cs are de-
fined in [ 4 1.

Cond- 1. By the definition of Cgs, Crs IJRS is the support of a P-invariant, which is
the union of RS; and (U {H(r),r€ RSz }). Note that RSg = RS[) Pk is the set of re-
sources of RS and U{H((»),»r& RSz} is the union of holders of those resources. If RS is

unmarked at marking M, , we have EMA(plpE Cgs ) =ZMM (p|pERS) = EMM (pl|p

& RS;) due to Yp&ERSp, My, (p)=0. Note that the union of the set consisting of a re-
source of RS and the holders of the resource is the support of a P-invariant. According to

the properties of P-invariants, Vr& RSk ,Mﬂ(r)—I—ZMA(p\pE H(r))‘:MA(r)—I-ZMA(p
1 pECrs (YH (7)) +ZMA (p|lpERSNMH(r)) =My (r) trivially holds, 1. e., Yr& RSk,
EMA (plpE€ECrs () H(r)) =M, (r). This equality means that when RS is umarked, all

tokens in each resource of RS are “stolen” by the holders of the resource, which are in-

cluded in RS.

Cond_ 2. Suppose that m control places are added for m elementary siphons in N.
From the definition of Ps, CsC Pg clearly holds. Due to the properties of P-invariants, we

can have the following relationship when an RS is unmarked: Vi€ {1,2,.m} EEMUA(P
PESH—1=Mn (V) =M (V) + D Mu(p| p€ Ps)IZMa (V) + > Mu(p| pE€ (Crs N

st));\’:;EMA(PlpE(CRSﬂPS}))y 1. €. Vje{laza'"ﬂ m}FEMOA(p|pES,)_"1;>~EMA

(plp€ (Crs N Pg)).
Cond_ 3. Assume that an S°PR is composed by £ S*P (N, = (P, U{p?},T,, F.)) via
shared resources. There are thus £ P-invariants due to 2 S’ P, whose supports are || I, || =

P.U{p?}, 1€{1,2,++-,k}. Whether | I, || NCrs*#, we always have, by the definition
of P-invariants, the following relationship: Vi€ {1,2,.. ,k} ’EMA (plpECrs N I L )

LY Ma (pIpE | L | D=Ma(pE{(p°}).

For an RS, by solving the set of inequalities derived from Cond- 1, Cond- 2, and
Cond- 3, we can find the conditions under which it 1s emptied. Otherwsie, RS can always
be marked if there does not exist a feasible solution. In other words, RS is controlled by
its elementary siphons.

Note that if, for an S°PR, the initial number of tokens in M,, (#}) is larger than or e-
qual to the sum of tokens initially marked at the resources possessed by the S°PR, the ine-
qualities derived from Cond- 3 must hold. Therefore, nothing but the inequalities derived
from Cond-1 and Cond- 2 need to be solved. When a redundant siphon is not controllable
by the above methods, an additional control place is added by the method proposed in [ 4].
If all siphons in the target net system are controlled, the augmented net system is live by
the results of [ 4 ].

Let us examine if the redundant siphons in Fig. 2 are controllable after all elementary
siphons are controlled. First we deal with S, = {ps, 7y p1s . M2, M3,R1,M4,R2}. For a
redundant siphon RS, we have Crs = (U {(H (), r€ RS;) } )\RS. Thus Cgsy, = (H(M2)
HM3) UH(R1) UHM4) U H(R2)\RS, = {pssPrzsPssPzs Pss P11y Pr1ss Pros Prs Pt \
RS,={pssP1zsDssPssPrisProsPot. Craa [THM2)={ps,p12}s Crea [ H(M3)=1{ps}» Crsu
ﬂH(Rl):{Pﬁ » P11 s Crs1 ﬂH(Mél):{Pm}r Crsq ﬂ H(RZ):{PQ}'
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We can obtain the following relationships (1) ~(5), (6)~(8), and (9), (10) by
Cond-1, Cond-2, and Cond- 3, respectively.

ZMA(P | p € Crse NN HM2)) = M, (M2) = 1=M,(p;) + My (pp) =1 (1)

ZMA(}f’ | p € Crss (N HIM3)) = M, (M3) = 1=M,(pg) = 1 (2)
DIMa(p | p € Crse N HRD) = My (RD = 15Ma(ps) +Ma(p) =1 (3)
Y Mu(p | p € Crsi N HIMA)) = M, (M4) = 1=>M,(py,) = 1 (4)
D Mu(p | p € Crse N HR2)) = Ms(R2) = 1=M,(py) = 1 (5)
Mﬂ(ﬁg) __MA(pg) __MA(plo) “I‘MA(pu) —|—MA(}'J12) é 1 (fOI' S1) (6)
My (ps) +Mu(ps) +Ma(ps) + Mu(po) + Ma(py) < 3 (for Sp) (7)
MA(Pg) ‘l‘MA(Pg) __MA(Pm) +MA(P11) _|_MA(}'312) < 2 (for S;) (8)
MaCps) +Mu(ps) +Ma(ps) < 6 (9)
My (po) +Ma(pro) +Ma(p1) +Ma(p1,) < 6 (10)

The complementary sets of elementary siphons are Csy = {ps, p11s P12/ Cs2 = { P55
Des Pas Pirots and Ce ={ P2 s P3s»Pss P11s Pr2). Due to the definitions of Ps and Cs, where S

is a siphon, we have Ps;={p:spP3sPosProsPrisDizts Poa={p2sDssDPisPssPsr»PssPro}s Psa
={pospPssPasPssProsPrisPizt. Crea (1 Psi=A{paspospPiospPrisbPizts Crsa [V Pss ={psspPs»Ps >
Dospiots and Crss [1 Pss = { pPss Pos Pros P11s P12;. Lhe supports of the P-invariants derived
from S°P in Fig. 2 are H I ‘ :{pil}!}bz y D3 s Pas Ps s Pes 7} and H I, H = P2 Do Pros P11 s
y4y. apla}- Thus we have Cgs, ) ” I H - {ps » Ps v Pe b Crss ﬂ “ I, ” — {PQ y Pios P11y Pi2 .
Obviously, (6) does not hold when (4) and (5) are taken into account. Thus RS, is con-

trolled in Fig. 3. We can also verify that another redundant siphon of Fig. 2 is controlled, as
well. Therefore, no more control place needs to be added and the Petri net shown in Fig. 3 is
live. To make the Petri net in Fig. 2 live, three control places and 14 arcs are added when
our method is employed. However, {ive control places and 22 arcs are added when the
method in [ 4 ] is used for this example. The number of reachable markings generated is 88
by either method. Our case study reveals that the more complex a net, the better perform-
ance of our method. For the net in Fig. 8 of [4], our method uses 6 control places and 32
arcs to make the net system live while 18 control places and 106 arcs were added to the o-
riginal net model to achieve the same purpose.

S Discussions and conclusions

In this paper, we propose a new deadlock prevetion policy. By preventing a smaller
number of SMS {rom being emptied, deadlocks can be prevented for ordinary Petri nets
and liveness can be guaranteed for S°PR, a special class of Petri nets proposed in [ 4 ]. The
advantage of this method lies in the fact that the final Petri net model 1s of much less addi-
tional places and arcs. In addition, we propose a method to compute elementary siphons
and SMS in an S°PR system with less computation burden. The concept of elementary si-
phons looks promising in deadlock prevention problems arising in FMS context. Further
research will apply this method to more general Petri net classes.
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W E ET Petri MWEHWRESW IR T FMS(EHHERE) —FWBHEYS T E. BET
Petri R —MIF KRB I E W —EE BRI E. & Petri NP EAEHRHE SR SMSOUZ#H
IMERR)EEGH—TMEFE. LHEHAEKE Petri MAGH , EAGIRHNES K SMSHEESE/NE
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