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Abstract The construction of multidimensional morphological wavelets is addressed by combining
mathematical morphology with multidimensional wavelets. First, the multidimensional multi-
channel lifting scheme, a general framework of multidimensional morphological wavelet construc-
tion, is presented. Then the multidimensional multi-channel Haar morphological wavelets are con-
structed with max (min) operator. Finally, two examples are given to reveal the advantages and
applicability of morphological wavelets.
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1 Introduction

In the last decade, several constructions of one-dimensional (1-D) wavelets have orig-
inated from signal processing and mathematical analysis. In fact, we need multidimension-
al wavelets and filters for image processing and video coding. An obvious way to build
wavelets of high dimension 1s through tensor products of one-dimensional constructions,
which result in separable filters. However, this approach gives preferential treatment to
the coordinate axes and only allows for rectangular division of the frequency spectrum. Of-
ten, symmetry axes and certain nonrectangular divisions of the frequency spectrum corre-
spond better effects to the human visual system.

In the early 1990's, several constructions of multidimensional filters became availa-
ble''~*], These are typically concerned with two and three dimensions since the algebraic
conditions in higher dimensions become increasingly cumbersome. The lifting scheme **'*
provides a useful way to construct multidimensional wavelet. Its basic idea 1s to start with
a very simple or trivial multiresolution analysis and gradually develop to a multiresolution
analysis with particular properties. In [ 6], Kovatvi¢ and Sweldens proposed the construc-
tion of multidimensional wavelets with arbitrary vanishing moments, Its basic idea 1s to
use low pass signal to predict each high pass signal, and then utilize all high pass signals to
update low pass signal. All of the prediction operators and the update operators are Neville
filter. And Neville filter can be constructed by multivariate polynomial interpolating'’*®.,
Notably, all these operations are linear operations, not nonlinear operations as morpholog-
ical operators.

In 2000, Henk introduced morphological operator to the framework of wavelet as pre-
diction operator and update operator-®**!, But Henk did not use lattices and sublattices to
do signal sampling, which led to increasing difficulty in multidimensional morphological
wavelet construction.

This paper addresses the construction of multidimensional morphological wavelets by
combining mathematical morphology with multidimensional wavelets. Section 2 contains
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the background material including an overview of multiresolution analysis in the multivari-
ate case. In Section 3, multidimensional multi-channel lifting scheme, a general frame-
work of multidimensional morphological wavelet construction, is presented, Section 4 and
Section 5 propose Haar morphological wavelet construction with two examples. Finally,
Section 6 draws the conclusion.

2 Preliminary

Multidimensional filters, lattices, multiresolution analysis and morphological opera-
tion are briefly discussed in this section. More complete description of these notations is
givenin [ 1,2,11].
2.1 Multidimensional filters

A signal x is a sequence x ={z, € R|k € Z?} of real-valued numbers, where Z? is
the d-dimensional Euclidean integer space. The action of time invariant FIR (H) is the
convolution of x with the impulse response sequence

(Hx); = D, DRt cn byt yny T onyoon, (1)
The z-transform of a filter H is defined as
H(Z) = D 0wt DR i on, 21 o2y (2)

2.2 Lattices and sublattices

Lattice is defined as d-dimensional Euclidean integer space., Let D be a d Xd nonsin-
gular matrix with integer coefficients. A sublattice of K=27% is DZ?, Let |D| denote the
determinant of D . Further, if |D| =M, then there are M distinct sublattices, each of the
form DZ¢ +¢; with t; € Z¢ and 0<;<CM —1. Given a sublattice L=DZ? +t¢, signal sam-
pling can be carried out on it.
2.3 Multiresolution analysis

LLet D be a d Xd nonsingular matrix with integer coefficients, |D| =M. A d-dimen-
sional multiresolution analysis consists of a sequence ol successive approximation spaces
V,. More precisely, the closed subspaces V. satisty

J

].) "'CV_lcv(} CVI C"" 2) CIOSLZ (LQZV}‘):LZ (Rd)

&z
5) Each V., has a Riesz base, which is derived from translations and dilations of scale

function {¢, , =M"p(D'z—k) | kE Z*}.

Scale tunction ¢(x) &€ L, (R?) satisfies the refinement relations ¢(x) = thgo(D:r:'—k) .
where h, form the impulse response of a FIR. Using a vector function notatioilegj = { ;. () |
k€ Z?}and filter operations, we can express the refinement relations further as @; =M /*
H®;,,, where H is defined as ( y D) H. The wavelet functions satisfy refinement relations
given by gbj,,;:M”z G:P;11. Let W, ,=span{¢; .. |REZ}; then V1, =V, DWW, ,, @D
W, m—1 and ¢,;,;,, forms an unconditional base for L; (R%).

2.4 Morphological operation

Mathematical morphology is a very important branch of mathematics, and is often ap-
plied to image processing. The basic idea of morphology is to capture desired information
from signal by using morphological operator, called detector. Many morphological opera-

tors have been constructed. Two of them, max(“V”) and min(“ A”), are used in this paper.

3 Multidimensional multi-channel lifting scheme
3.1 Lifting scheme based on low pass signal prediction
In [ 6], Kovacvié and Sweldens proposed the construction of wavelet families with ar-
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bitrary vanishing moments. A multidimensional signal is divided into M components 1n
terms of D by lazy wavelet. Then each high pass signal is predicted by low pass signal. Fi-
nally, low pass signal is updated by all high pass signals, The polyphase matrix is now
MX M matrix given by

1 U] Uz UM—I_ B 1 0 QeeeQ -~
0 1 O O — P, 1 00
P O O 1 0 — P, 0 1.0 (3)

Fig.1 Lifting scheme based on low pass signal prediction

Prediction operator P; and update operator U, are all Neville filters. Neville filters can
be constructed by multivariate polynomial interpolating[?'gj. However, many existing
wavelets, such as two-dimensional 4-channel morphological wavelet''®!, could not be con-
structed by this scheme. We propose a novel prediction scheme based on each channel sig-
nal predicting each other.,

3.2 Lifting scheme based on each other channel signal predicting (novel prediction)

The polyphase matrix 1s an M XM matrix given by

"1 U, U, U1 T 1 O 0 0 0 )
0 1 O o 0 — P, 1 — P, — Py.3 — Py, M
P=10 0O 1 oo 0 — P, — Py 4 1 — Py 3 — P, M
0O 0 0 0 4 [— PM—I,{J — PM—-l,l — PM——I,Z — PM—1,3 *et 1 _
(4)

where P;,; is a prediction operator, which is used by ith channel signal to predict jth chan-
nel signal. U, is an update operator used by ith channel to update low pass signal. Many
rich filters can be constructed by this approach.

4 One dimensional Haar morphological wavelet construction

In the following sections, x is the original signal. s and d denote low pass signal and
high pass signal, respectively.
4.1 One-dimensional 2-channel Haar morphological wavelets

In this case, matrix D degenerates to an integer M in one-dimension case, M is the
number of channels. In [[10], Henk provided one-dimensional 2-channel Haar morphologi-
cal wavelet construction. The analysis operation can be expressed as s,=x3, A Top+1r dn=

Xn — Z2a+1. An alternative expression is the lifting scheme. s, =z, s d, =Zons13 Ay =5, —
d,s 55’ =s, N\ (s,—d;”). Its synthesis is defined as 5, =s¥ +{dP’ V0O), d,=s,—dV.
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4.2 One-dimensional multi-channel Haar morphological wavelets

In M >3 case, the analysis of one-dimensional multi-channel Haar morphological
wavelets can be defined as

Sn = IMny Aig = Tppns 11 M—1,
dzg,lril — 35 T di,ﬂ v S‘EII) = 5, N (s, — max(dﬂi ’ %13: B !dﬁil.u y0))

Its synthesis is defined as s, =s'" +max(di') ,ds oo vditly . ,0) ,d; . =s,—d!..

If we use min operator instead of max operator, the analysis can be expressed as

Sn = IMpy Ain = Tagris 1K1 <IM—1
dflj — $n T di,n ’ 5511} =5, V (s, — min(a’ffi ’ é]i 9 *°° !dﬁv}il,n y0))

[ts synthesis 1s defined as

S, = Sy +min(dy., sdsiy st sdr1,ns0)s  di, = 5, — di])
4.3 Example

A simple two level transtorm ol one-dimensional 3-channel morphological wavelets 1s
depicted in Fig. 2.

X RE |

(a) The analysis of morphological wavelet (b) The synthesis of morphological wavelet
Fig. 2 Two level transform of one-dimensional 3-channel Haar morphological wavelet
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5 Multidimensional multi-channel Haar morphological wavelets
5.1 Multidimensional Haar morphological wavelet based on low pass signal prediction

In this section, n1s an integer vector. The analysis of multidimensional Haar morpho-
logical wavelet 1s defined as

dflrf — S T d:',?: ’ 5:-::1) =5, N (s, — maX(dil?q !déli ¢ *°° !di}—)—l.n »0))
Its synthesis 1s defined as
Sn — 5511) + maX(dHi sdéll s **° 9d§v}il,n y0)od;n = S, — dfli

5.2 Multidimensional Haar morphological wavelets based on novel prediction

The novel prediction scheme is more complex than low pass signal prediction scheme.
The construction procedure of multidimensional Haar morphological wavelets is discussed
for two cases, 1.e., M is even or odd.
5.2.1 M is even

The novel prediction scheme 1s to predict each channel using all other channels. Its a-
nalysis 1s defined as

M-1
g — Lpn s d:',n :II}:—HI.! 1gng_—1! d.gflr: — 2(5n+ Z(“1)1+£+1di.n)/M

1=1

S0 = 6 A sy — max(d$), + dS5d, 4 dSD s eee oS0+ dSD,0) « M/O)
Its synthesis is defined as
Sn — Sfxl} —+ max(dﬁi +- dgli !défi +- déli » > %y ﬁil,n -+ dili Q) o M/4
din=3s,— @D 4+d0) M/4, 1<i<M—1,j=i+1,i=M—1,7=1
The two-dimensional 4-channel Haar morphological wavelet, proposed by Henk!'*, is
a particular example of these wavelet families.

5.2.2 M is odd
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In this case, the analysis of multidimensional Multi-channel Haar morphological

wavelet can be defined as
M—1

N T el 9d;‘_ﬂ i I[}T+If 51 g Z gM’_lg d:},: — 2(5,1 —dj,ﬂ _I- (-— I)Hﬁlda.n)/(M_]-)
=1
where i=1, j=M—1; 1<i<M—1, j=i—1

M—1
g =g A {sn — [max( ((M—— 2) o di}) — E (= 1) « g ),
=1

M—1
((M—2) «dih — >, (—1)* o ) ) ,o»,

1=1

M—1
(M—2) « d21, — D (= DF¥D . g0 ),0) |« M—D/[2+ (M—2)]}
i=1

Its synthesis is defined as
M—1

Sa =58n T {[max( ((M—2) + i, — Z (— 17 =« il )
-

M—1

((M—2) «dih— DI (=D e dl ),

1=1

M—1
(M—2) s dRy,, — D (= DFMD o g® ) 0) |« M—1)/[2« (M—2)]}

=1

M-

diw =sn— {[(M—2) « d} — D7 (= D*dR ]« (M—1/[2+ (M—2)])
k=1

where i=M—1, j=1; 1<i<M—1, j=1+1.
5.3 Image transform using Haar morphological wavelets
In this section, the two-dimensional Haar morphological wavelet is used to transform

image. One of the possible sampling matrices in the hexagonal is given by D =
20 207
L 10 —10

. Fast in-place calculation [ 6 | is used in this experiment.

(b) Two-dimensional Haar morphological wavelet
Fig. 3 Image transformation using two-dimensional Haar morphological wavelet

The result of two-dimensional Haar morphological wavelet transtorm is shown in Fig. 3.
Broken line is used to explain the role of hexagonal matrix in Fig. 3.

The main difference between Haar morphological wavelet and linear Haar wavelet is
the morphological operator. From Section 4. 3 and Section 5. 3, we can learn that there are
many advantages using morphological wavelet.

1) The morphological Haar wavelet decomposition scheme may do a better job in pre-
serving edges in x,, as compared to the linear case. This is expected, since the signal anal-
ysis filters in the linear Haar wavelet decomposition scheme are linear low pass filters and
smooth-out edges as such.

2) The signal analysis of morphological wavelet guarantees that the range of values of
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the scale signal 1s the same as that of the original signal x,. Furthermore, 1t guarantees
that il the original signal x, 1s discrete-valued, the scaled signals will be discrete-valued as
well, a desirable property in lossless coding application.

The basic idea of mathematical morphology is to use morphological operator, detec-
tor, to capture desired information {rom signal. In Section 4. 3, the min operator is used to
detect the minimum information of a signal. And in Section 5. 3, the two-dimensional de-
tector 1s used to capture the minimum information from image.

6 Conclusion

Classical wavelet transform is based on linear operation. The lifting scheme, recently
introduced by Sweldens, has provided a useful way to construct nonlinear wavelet decom-
positions. Mathematical morphology and wavelet are combined by Henk!'” to construct
one-dimensional Haar morphological wavelet. In this paper, one-dimensional morphologi-
cal wavelets are generalized to multidimensional morphological wavelet by combining
mathematical morphology with multidimensional wavelets, introduced by Kovacévié and
Sweldens'®?. All kinds of Haar morphological wavelet analysis and synthesis are given in
this paper. One example 1s given to show one-dimensional Haar morphological wavelet
computing procedure, Furthermore, two-dimensional Haar morphological wavelet is ap-
plied to image transform. All these results indicate that morphological is not only feasible
but also necessary for many applications, because it has many advantages, such as captu-
ring desired information.

However, there are still many problems in this field. For example, the relations be-
tween morphological operator and vanishing moments are worth researching to construct
good wavelet. Furthermore, not only min operator and max operator, but also many other
good morphological operators need to be introduced into the framework of multidimension-
al wavelet,
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