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Hybrid System Monitoring and Diagnosing
Based on Particle Filter Algorithm"
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Abstract State estimation of hybrid system, which consists of discrete state estimation and con-
tinuous state estimation, 1s a critical issue in hybrid system study. Utilizing the advantage of parti-
cle filter, which can estimate the discrete and continuous states simultaneously, we propose a new
approach for monitoring and diagnosing of hybrid system. After giving the derivation of algorithm
and design steps, we discuss the i1ssues arising {rom algorithm implementation and propose an im-
proved algorithm. The result of simulation shows the feasibility of particle filter in hybrid system
monitoring and diagnosing, and it also demonstrates that the proposed improved algorithm can a-
chieve better result,
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1 Introduction

With the technology development and ubiquitous application of computers in engineer-
ing, complicated systems have become prevalent in engineering environment today. Usual-
ly, complex systems comprise discrete and continuous states sirmmultaneously and are called
hybrid systems, in which two type states interact each other. It is far from satisfying the
requirement to use only traditional analysis and synthesis approaches in analysis or design
of such systems. So, the study of hybrid system theorem have attracted more and more at-
tention since the end of last century., States -estimation and diagnosis of hybrid systems
have become an active research domain recently. In present stage of hybrid system fault di-
agnosis, traditional diagnosis techniques, e. g., model-based diagnosis approach etc, are
indispensable means. Since hybrid system comprises discrete and continuous state varia-
bles simultaneously, its state estimation and diagnosis need some more powerful method
than those traditional methods. Recently, particle filter has been used in states estimation
and diagnosis of hybrid system since it can estimate discrete states and continuous state
simultaneously. Motivated by this idea, we propose an approach to state estimation and
diagnosis of hybrid system with particle filter. Although particle filter 1s etfective in gener-
al state estimation, there exist some issues when it 1s applied to hybrid system fault diag-
nosis, We discuss these issues and propose a modified approach to make particle filters
suitable for hybrid system fault diagnosis. Simulation results demonstrate that particle fil-
ter 1s a promising powerful means in state monitoring and fault diagnosis of hybrid system.

2 State monitoring and diagnosis of hybrid system
2.1 Hybrid system model and its state estimation

We call those complex dynamical systems as hybrid systems, in which interactive dis-
crete state variables and continuous state variables coexist. Problem of state monitoring
can be formulated as follows: given system model and measurement information, how to
determine system states, including discrete and continuous states. State monitoring plays
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a critical role in engineering. When we treat some abrupt faults that may guickly change
system operation mode as discrete states, fault diagnosis of hybrid system relates to state
monitoring problem in some close way. So, we expect to apply those state estimation ap-
proaches to faults diagnosis. We do not discriminate between discrete state estimation and
fault diagnosis in the sequel. State monitoring and diagnosis of hybrid system 1s a compli-
cated and difficult task. Firstly, its model description 1s complex in general. Secondly, 1n-
teractions between discrete state variables and continuous state variables make system dy-
namical characteristics more complicated. Finally but not the least, hybrid system is a
high-autonomous large system in general. To cope with state estimation and diagnosis in
such system, we need three diverse efforts as follows. The first factor is the state estima-
tion technique, which ensures us to track the normal trajectory of hybrid system opera-
tion, i.e., given commands and measurements, to determine the operational mode of hy-
brid system and track continuous state variables simultaneously. The second issue is how
to construct mode hypothesis set, in other words, the technique to determine fault candi-
dates and their probability when predicted values differ from actual measurements. The
third 1s how to determine the mode of the system , and this relates to traditional diagnosis
technique closely. This paper concerns the first and third issues. The interesting point
here is that we introduce a novel technique, 1. e., particle filter algorithm, into hybrid sys-
tem state monitoring and fault diagnosis.
2.2 Particle filter

The first particle filter algorithm was proposed by Gordon in 1993', in which SIR
(sampling importance resampling) was proposed by Rubint?, Particle filter algorithm ap-
proximates states probability distribution by clusters of discrete samples (so-called parti-
cles) with corresponding weights, If every particle is regarded as an assumption of system
state, we apply system stochastic model to those particles and get a new cluster particles,
then compute the likelihood of every particle alter measurements. The particle that pre-
dicts system performance better i1s endowed with a higher weight, since it is likely the state
that the system should be. To prevent those particles with less weights to occupy proba-
bility density distribution, it 1s necessary to resample from the distribution and obtain new
particle set to approximate the state distribution., Iteratively, resampling makes the ap-
proximation by those particles closer and closer to the true distribution. Compared with
other {ilter technique (e. g. , Kalman {ilter), the advantage of particle filter is that it can
express arbitrary distribution and follow system states naturally as continual measure-
ments are acquired. Another merit of particle filter is that its computation burden depends
on the number of particles and not on the model complexity., The three preconditions of
particle filter implementation consist of: 1) Probability distribution of system states; 2)

Stochastic system model; 3) Observation function O, which is used in likelithood computa-
tion.

3 Application of particle filter in hybrid system's diagnosis
3.1 System model and expected goal

One class of hybrid systems can be described by JMLM (Jump Markov Linear Model)
equation
s, ~ P(s, 15,21)
x, = A(s,)x,.y +B(s)u, + F(s,)n, (1)
y. = C(s)x,y + D(s)u, + G(s,)E,

where y. € R™ denotes observations, x, € R denotes unknown continuous states of the

system, u, € R is known control signals, s, € {1,+*,n,} denotes unknown discrete states
including those abrupt faults we discussed above . It is assumed that the noise processes
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are i.i.d Gaussian, 1. e., 5, ~N(0,1I) and § ~N(0,I). So continuous states and output
can be express with continuous density as the following.

plx,|s.vx,01) = N(AGDx,—1 +BGou, ,F(s,)F(s,)")

by, | x,58) = N(C(s)D)x,1 +DCsDu, »G(s,)G(s,) 1)
where (A,B,C,D,E,F,P(z,|z,—,))are system matrices with appropriate dimensions, de-
pending on discrete state of operation s,. It is assumed that F(s,)F(s,)' >0 for any s,. The
initial states are x,~M(y,30) and s, ~P(s,). It 1s assumed that one can compute contin-
uous system states accurately by linear Gaussian model, if discrete state s, is given. In gen-
eral, state estimation of hybrid system comprises estimation of continuous state and dis-
crete state. The problem can be formulated as follows : how to determine discrete state s
and continuous state X by system models when system output y,,, are given, i. e., estimate
discrete and continuous state probability distributions p(s,., |y1..) and p(xo., |y:..) Chere x;,,
denotes all x in [7,7 ]).

In Bayesian monitoring, one usually derives p(s,.,|y..,) and p(x,.,|y:.,) from the pos-
teriori distribution p(xy,, 50, |¥1,.) by standard marginalization. When we only concern a-
bout the probability of state in present time, we can simplify them as » (s, | y:..) and
p(x,|y...). In general, one can expect to compute posteriori density recursively, i. e.,
Py, 1 x5 (X095, | X0 195,21

Py 1 y.-1) ,

Apparently, it i1s an intractable problem. One should tackle it with some numeric approxi-
mation techniques, e. g., particle filter, etc.
3.2 Particle filter and its improvement

In particle filter algorithm, the posteriori distribution of probability 1s approximated
by a set of weighted samples, i. e., particles {(x}.,,s.,)w) .} ;. One can approximate it

P(xm »S0,¢ | .Vm) — P(xo,r—1 »80,¢—1 | Yii—-1) *

N
as the following point-mass distribution pn(dx,.,s50. [y1..) :Ewﬁé‘% s (dx,,,+51,,)» Where

Oy
=1
8.y () is Dirac-delta function, and dx denotes continuous distribution. Since p(X;,, sS0.¢ [¥1..) =
(X0, | V1.0550..) P(So.. |¥1.:.) s 1t is possible to design a more effective algorithm. Here, den-
sity p (Xo.. | V1.:9 So..) 1s Gaussian, and can be computed analytically if marginal density

p(so., |¥1..) 1s given. The last term in the above equation can be deduced recursively as

P(y: ‘ Yi.:—1 ’Soﬂ)p(st I Stﬂ_l) (2)
P(y; ‘ yl:t——l)

Assume that the posteriori distribution can be expressed by a weighted sample set

p(50=tl yl;r) — p(s{),r—l'ylzx—l) X

N
{sb,swi )iz, as pn(So., |¥1..) =Zwié‘53_t (51,,). The posteriori distribution of x,,, is a Gaussi-
i=1 '

an mixture, and it can be computed effectively with a bank of Kalman filters as

N
pN(x(}:z l J’m) — J.p(x{hr | 50;.\: aJ’l,z)dP(Sml J’m) — Zwif-’(xu,: ‘ yl:t !Séhz)
i=1

Generally, it is impossible to sample from real posteriori distribution P in implemen-
tation of particle filter. Alternatively, one can sample from the known distribution Q, and
multiply those samples from it by weight Prp (s)/Prgo(s), i. e., the ratio of likelihood of
samples from the two distributions. It is assumed that oy (dx,.,s5,..1y1,.) 1s replaced by

g(dxt., —1+50.,—1 |V1..-1) In the sampling stage, where z, denotes state estimation in time %.

A new path {x{.,,5. ;= is obtained by integral |g(dX,., s30.. [X0.:~1550.c—19 ¥1..)dp (Xg,.—1 s

So.r—1|¥1..—1) from current path {x{’_;,s: -1 }i=;. For convenience of integral, we only

concern the particle in time # and not the whole trajectory. As a result, one can use ¢(dx,,

Et 'x{l:r:—l !50=.¢—1 ’ }’1,¢)3I 1 (d}(}=r-—1 !3{);:—1 ) 1O replace term q(di[}:ﬂ ’E‘G:t ‘x[l:r—l » SO:t‘—l ’

Q:t —1 EED;?:F
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¥:1..) In the above integral. All in all, particles gotten from g( ¢« ) must be multiplied by
importance weight:

_ p(dxy,. 50, | yi.)  pUdx,,.— a50=r~—-1‘ Yi,:) % p(dX,,s, | X0, S0,e—1 Y1, )
g(dXo..s50.. | y1.0) p(dxo,.—1 5S0.—1| Y1.0-1) g(dX, 5, | X0.:~150.1—1 V1.,
Py 1 X55)pCR 58S, | X021 950,01 9 ¥1.0)

q(X,,5, | X0.0—1 950,01 ' V1.0
Here, the prior p(X,,5, [Xo..—1sS0..~15 V1..) 1s simplified as Markov density p(X,,5, |x, - »

w, oC

5,10 =p(X, |x,-1+5,—1)p(5, |s,—,). Apparently, it is difficult to obtain the optimal sugges-
tion distribution g( * | * )= p(dX, 5. [X0.:—1+50.:~13V1.:)s SO we use g( » |+ )=p(dx, |x,—; ,
s;—1) p(5,1s,—1) instead. From the above formula , we can compute important weight by

likelihood function, i. e., w,<p(y, |X,,5,).

We obtain different particle filter algorithms when different function of optimal sug-
gestion is adopted in important weight computation. One simplification of particle filter is
introduced by Rao-Blackwell theorem 7%, which is a well-known result of statistical
probability theory-®"), With formula (2) and its deduction above, computation of »(x,,,
So.. l¥1..) 1s divided into two steps. One samples discrete state firstly, and then computes
continuous states distribution using Kalman filter with corresponding model. Original
problem turns into sampling from posterior p(so.,, |¥:1,.) s and important weight is computed as:

. p(sii}:t‘yl:r) _ P(So,r—1|y1=:) p(srlsﬂuz—-l !y1=r) o p(yr‘ylgr sSmt)P(S;|50=r+~1$J’1=r--—1)

gCsocl Y1) PCSoumtl Y1-1) q(si | S0,m1 9 Y1) q(s: | Soui—1 91,00
where the suggested distribution is chosen as g(sq.; 1¥1..) = (s, 1S0.c=1 s ¥1.:) P2(S0.:=1 |V1.0~1).

To avoid integral problem, we do not sample from past trajectory and use transition prior
q(sz |50=:—1 aJ?1=.+,) ZP(S.: |50,z—1 s Y1.:—1 ) ZP(Sz |5r—1 ).

Before computing important weight we consider the following 1ssues. At first, we can
compute output predictive density as p(y,|y1.,~151,.). On the other hand, one can notice
that the optimal suggested distribution in last formula is g(s, |so,c~1sy1.:) =P (s |S0,e~1 5
y1=r) ’ Wthh SatiSfyies BaYESian rlﬂe P(S;, |50=r—1 !yh.t) :p(yr ‘ylgr—l !50=t)f)(5: |30=r—1 ' V1.:—1 )/
(¥, |y1..-1+50..—1). As a result the important weight is simplified as w,ocp(y, |yi..~1»

§

50=;"1)=2p(yr [ Vie1950.:-195:)p(s, |s,—1)s where n, is the number of discrete states.

st—nl

Convergence result of particle filter could be found in [ 4 | and its references.
3.3 Implementation of particle filter algorithm

It is assumed that particle number is N. We implement weighted important sample in
two stages by Rao-Blackwell theorem. Firstly we sample from discrete distribution p(s, |s,—1) »
and then we compute important weight of particle by continuous outputs predictive density
PY V=195 ) =N, ¥, =1 5S1.,). Implementation steps of Rao-Blackwellised particle fil-
ter are given as follows:

Step 1 (Initialization). the aim is to produce initial values of particle filter stochastically.
Sample N initial values {s} };-; from discrete state set S= {1, -+, n,} stochastically, and
then continuous state initial values {x{}/_,, so we get a set {x},s;}:=; with N particles.

w,

Step 2 (Sample of discrete states). at time ¢, one samples N samples {5;};=; from

transition prior 5,~ p(s,|s,—,) as a prediction of discrete state.

Step 3 (Continuous prediction). predict system states and output with Kalman filter
algorithm .

Xoee (2) = AGDXx' (¢ — 1) + BGDu(e)
S =AGHSAGH + FGHFGH’
K' = C(GH3L.CGH +GGHGGEH
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Yore (£) = C(G5D) X4 (2) + DG u(e)
Step 4 (Computation of important weight). discrete state s' is computed as follows:
the variance between prediction and measurements y(¢) is given as e= y{(t) — y.. (¢t), and

w,C p(y, 1y1.,-15:), then w, = exp( % e (K') 'e)//|K'|. We get these normalized

N
weights wi=w!/ > 1w} at last.
i=1

Step 5 (Important sampling). according to high or low of important weight of parti-

cle, we decide to multiply or discard samples and form a particle set {s:}; = F({5}L;)
which is used as posterior in the next circle, where the algorithm F can be found in [ 4].
Step 6 (Update). update Kalman filter as follows and return to step 2.
(1) = xbe () + 3L CGHUKD N y(2) — yie (2))
S=3 . — 3. CGH (KD C(sH 3
3.4 Issues arising from diagnosis based on particle filter

As aforementioned, particle filter describes system state probability distribution by a
swarm of particles, which are endowed weights evaluated according to their predictive pre-
cision with measurements. In the important sampling, these weighted particles are multi-
plied or discarded to form the prior used in recurrence. Recursively, the approximation is
closer and closer to the true state distribution. In particle filter algorithm, number of dis-
tinct discrete states in particles set (1. e., possibie system mode) decreases and converges
to some state gradually. So particle {ilter tracks the system mode effectively. In some
sense, particle filters are suitable for state estimation of hybrid system as mentioned above.

Since we consider some abrupt faults as a discrete state in hybrid system as mentioned
previously, particle filter can be applied to diagnosis of such faults in theoretical speaking.
Unfortunately, some problems arise when particle filter is sued in diagnosis task. At first,
the fault state is possibly detected only when it is included in the particle set, When fault
1s excluded trom the particle set, the probability it becomes the last state of particle filter
i1s zero. Since fault transition probability 1s very low, the probability fault state is sampled
and included in particle set 1s very low. Consequently, it is ditficult to be detected by par-
ticle filter algorithm in time. It is one result of phenomena so-called “Sample Impoverish-
ment”’, On the other hand, one may think it 1s true that once a fault state i1s included 1n
sample set, 1t will be replicated with more offspring in resample stage when fault oc-
curred. But it 1s not true in practice. Due to transient dynamics characteristic arising from
such abrupt fault, the filter predicts system output poorly, thus its weight is low and 1t 1s
excluded from particle set'®,

One should cope with these issues before applying particle filter to fault diagnosis of
hybrid system. Increasing particle number is the simplest solution. Its effect is equivalent
to increase of the fault probability while keeping particle number fixed. Although it is in-
feasible in some restricted environment since its computation burden increases as particle
number increases, it is a solution to this issue in some case. Another way is to ensure
those important system modes (1. e., discrete states denoting faults) are included in parti-
cle set 1n resampling stage with some approaches, while the particle number is fixed.

3.5 Improvement scheme of particle filter

To cope with these issues arising when we apply particle filter to fault diagnosis dis-
cussed 1n last subsection, we improve Rao-Blackwellised particle filter. The basic idea here
1s to ensure those important states (i. e., fault states) to be included in the particle set in
resample stage., If they explain following measurements well, they obtain higher weights,
and are replicated in resample stage of next circle, otherwise they will disappear quickly.
We propose the following two improved approaches to ensure those important states(l1. e.,
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all possible fault candidates) to be included in sampleset in some way.

1) To sample N particles from prior probability as the usual particle filter algorithm
does, then increase the number of those discrete states with 0 samples in sample set to a
small positive integer (e. g., 1) . The number of discrete state with the largest number de-
creases to a corresponding integer in the meantime.

11) To assign every discrete state 1 sample firstly, then sample N —#n, samples from
prior probability as the usual particle filter algorithm.

Here we adopt the first method. Then we only need to modity the second stage in par-
ticle filter algorithm.

Step 2 (Sample of discrete states) at time ¢, one samples N samples {5;}/., from tran-

sition prior §,~ p(s,|s,—,) as a prediction of discrete state. Then check the members of the
particle set. If the particle number of some discrete state is 0, then force it to be 1 and

subtract 1 from the particle number of the state with maximum particles, thus we get a

new particle set {5;}X,.

4 Simulation and its results analysis

To demonstrate the feasibility of algorithm proposed here, we consider the system as
fOHOWS:

x(k) = A()x(k—1) + B(s)u(k) + F(s)n(k)
Y(k) = C(s)x(k) + D(s)u(k) + G(s)&(k)

i

0.4 0.15 0.1°
where n, =3, n,=3 and n,=2; system matrices are A(1)=1(0.15 0.6 0.15(,A(2)=
0.1 0.1 0.7_
0.7 0.1 0 0.4 0.1Z2 0.1 0.2
0.1 0.5 0.1|, A3 =1]0.1 0.7 0.15{,B(1>)=B2)=B@3)=(0.2|, C(1)=
0.1 0.12 0.6 0.1 0.12 0.3 0.2
C=C@=["1 01 o3 F=0.05Lc, D=D@=D@®=[0 0, G=

0.051;x; snoises are p~ N (0, I) and §~ N (0, I); System input is constant 1, i. e., u(k)
=1; system mode evolves according to Markove rule, its transition matrix 1s P =
0.998 0.001 0.001°

0.001 0.998 0.001|. In the simulation example here, system mode changes trom
0.001 0,001 0.998
mode 3 to mode 1 and from 1 to 3 at =50 and 150, respectively, see Fig. 1. We hope our
results of the example can help us explain several aspects as follows: 1) Whether Rao-
Blackwellization could improve particle filter; 2) Give some tips for choice of particle num-

s(t)

0 20 100 150 200

Fig.1 Behaviors of system
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ber; 3) Verify the effectiveness of the improved algorithm.
4,1 Comparison between general particle filter and Rao-Blackwellised particle filter

To compare RBPF (Rao-Blackwellised Particle filter) with PEF (Particle filter), one
can compare estimating error ratios and computation time along particle number increase
from 50 to 500 by step size 50. Since particle filter algorithm is essentially stochastic, we
repeat the experiment 30 times. The results, 1. e., the mean estimating error ratio and
computation time, are given in Fig, 2. It shows that the estimating error ratio of RBPF is
lower than that of PF, but it consumes longer time. As a trade-off, we choose appropriate
particle number as 100-200 in this example.

:;- ]_5 b J I | + ! I I ";" 400 ! | | ! I I !

%10 —+ PF errors % —+« PF errors

§ ) - RBPF errors E 200 -0~ RBPF errors )
b SM x o

< g O— o —6—6—06—F =

o ! | J | i ] ! | S 0 | | { | | | |

a, 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500

particle number particle number

Fig. 2 Comparison of PF with RBPF

4.2 Improved effect of proposed scenario

The same experiment repeats with the improved particle filter proposed previously.
Experiment result is presented in Fig. 3. Comparing it with Fig. 2, one can draw some con-
clusion about the improved approach. Firstly, one can obtain satisfied results when the
particle number in algorithm takes a lower number than the original algorithm, especially
in the case of Rao-Blackwellised particle filter algorithm. Improved algorithm consumed
longer time than the generic particle filter. As compromise between error ratio and compu-
tation time, it is appropriate to choose sample number as 100 here, In the end, we demon-
strate discrete state estimation results of the original algorithm and improved algorithm in
Fig. 4 and Fig. 5, respectively. From two figures one can observe apparent etfect of the im-

proved scheme of particle filter. Obviously, improved algorithm proposed in this paper is
feasible.

10 —————— — ~ 300 —————————— ———
~ —— PF errors > % PY¥ errors
S & RBPF errors £ 200r 5 RBPF errors
=S =
b5 —O—O6—6—0—6—0— 00— o
w0 1 L | [ | 1 ! 1 8 O | | | | | | | |
50 100 150 200 250 300 350 400 450 500 5O 100 150 200 250 300 350 400 450 500
particle number particle number
Fig.3 Results with improved algorithm

3.5 : f f - . . . . : " . — 1 : . F . . 1
3. 0 PSS T yc state hr—— S MMM T state M
2.5 | | — RBPF estimate | L e RBPF estimate ,

ﬂ ~ # PF estimate * .+ PF estimate ‘
2,.0.| | N=100 | 1 an g N=100 f ]
1.5 :}. | ) ) |
1. 0%l G — SN ] 1 Lo e -

RBPF errors=70% RBPF errors=3%
0.5 PF errors=9.5% | PF errors=6Y% |
1 | } i | | 1 | ! 1 1 ik ( i ! a l ! | J L 1
00 20 40 60 80 100 120 140 160 180 200 OO 20 40 60 80 100 120 140 160 180 200
t/s t/s

Fig.4 Estimated results without improved algorithm  Fig. 5 Estimated results with improved algorithm
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S Conclusion

Taking the advantage of particle filter that can estimate continuous and discrete states
simultaneously, we propose the state monitoring and diagnosis of hybrid system approach
based on particle filter. It provides a new effective method for research on state monitoring
and diagnosis of hybrid system. Simplification and deduction of particle filter are given at
first. Then, we discuss issues for application of particle filter in hybrid system fault diag-
nosis, and propose improved algorithm and apply it to state estimation and diagnosis of hy-
brid system. Due to low probability of fault, it is possible that fault state is not included in
particle set and it is impossible to be diagnosed. We propose the improved method to force
all possible fault states to be included in particle set. The algorithm is suitable for state
monitoring and diagnosts of hybrid system. Simulation results demonstrate that we can ex-
pect a better effect using the improved algorithm.
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