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Abstract An efficient simulation algorithm for performance sensitivity estimation of Markov dis-
crete event dynamic system is designed. This algorithm can give consistent and reliable results for
both steady state and transient performance sensitivity estimation. Compared with other simula-
tion based sensitivity estimation methods, the proposed algorithm is simple in mathematical de-
scription and is easy in program realization, The capability of this algorithm is illustrated with sev-
eral examples. Furthermore, our research shows that performance sensitivity of Markov discrete
event dynamic system is the sum of the estimation obtained from both smoothed perturbation anal-
ysis (SPA) and likelihood ratios method (LR), singly using any one of them usuaily can not give
consistent and reliable result.
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1 Introduction

Performance sensitivity estimation plays an important role in the analysis, designing
and optimization of discrete event dynamic system (DEDS). Due to the lack of effective
and easy computable analytic model, simulation is the conventional approach, sometimes
even the only means to analyze, evaluate and optimize such system Y. Since Markov model
i1s the most fundamental model for stochastic systems, efficient sensitivity estimation algo-
rithm for Markov DEDS is very useful. Although there are efficient algorithms*~* for
performance evaluation of such system, the estimation of performance sensitivity with re-
spect to system parameters is still full of challenge. IPA"! and LR"*! are two representative
methods for sensitivity estimation of DEDS. Unfortunately, both of them have strong re-
striction and are only applicable to limited applications'®~*1. When applied to Markov sys-
tem they usually give incorrect results'®*~', To widen the application of IPA method,
Gong'®l presented the idea of smoothed perturbation analysis (SPA), but it still has cer-
tain restriction. In recent years, performance sensitivity estimation of Markov system has
achieved great breakthrough. Several algorithms that can give consistent results for sensi-
tivity estimation of steady state Morkov system or discrete Markov chain were presented.
Dait*?, Dai and Ho'** put forward the SIPA method for sensitivity estimation of discrete
Markov chain. Cao, Yuan and Lin''" introduced the idea of perturbation realization for
sensitivity estimation of discrete Markov chain. In [12,13 ], Cao and his colleague further
developed the sensitivity estimation algorithm based on the potential theory for steady
state Markov system. Dai‘!'*! presented the PA method via coupling for steady state Mark-
ov system. The algorithm derived by Cao''*’**) is one of the most successful approaches for
sensitivity estimation,some good application of Cao’s algorithm can be found in [ 15~17].

Recently, most published sensitivity estimation work has focused on steady state sys-
tem. In this paper, new algorithm for performance sensitivity estimation of Markov sys-
tem 1s presented. This algorithm can be applied to steady state as well as transient per-
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formance sensitivity estimation, the later is often met in system reliability evaluation. The
proposed algorithm is based on the Improved Standard Clock (ISC) method presented in
(4], and has the advantages of simple mathematical description and easy program realization.

2 General description of the sensitivity estimation of DEDS

System performance measurement of DEDS is typically described as the following
form [ 2~5]

J@ = E[LG:@)] ~ 1 D L) (1)

where @ is a parameter of the system, @ is a random vector defined on probability space,
L(f,w;) is a performance sample extracted from i7th sample path, N is the total number of
simulation trials. According to the strong law of large number, the above estimation con-
verges with probability 1 as N—oco,

o] (@) /30 1s called the system performance sensitivity with respect to @, the simplest
way to estimate sensitivity is via difference method:

N N

ol ) _oELUe)] NLQ[;Lw%—Aﬁ,wJ = DL (2)
However, this approach is very inefficient. Cao"'®! has proved that if perturbation sample
path and nominal sample path adopt common random numbers technique, only when N
Af— oo, can Equation(2) convergence. While not employing common random numbers
technique, it requires N « (A@)*—>co, Furthermore,if 8 is a vector, each partial derivative
component of 8J (0)/90 needs to be estimated respectively, which is a time-consuming
work.

Due to the above reason, algorithm with high efficiency for performance sensitivity
estimation has drawn great attention. During the time of 1980s, a lot of algorithms such as
IPA and LR were presented. The common characteristic of these algorithms is extracting
the information for sensitivity estimation only from nominal sample path, rather than gen-
erating a perturbation sample path, therefore avoiding the inefficiency of difference method.

3 GSMP description of DEDS simulation

The estimation of system performance starts from sample path construction, which is
customarily named as DEDS simulation. From the viewpoint of random process, the so-
called DEDS simulation is to generate a sample path via Monte Carlo method., The usual
way to simulate DEDS is with the event scheduling simulation scheme''!, which is based

on the GSMP description of DEDS. The GSMP description of DEDS is a five-element
group {X,E, f.I'yG}, where X 1s the state set, E is the event set, and f is the state
transfer function defined as

f: X XE—>X (3)
['(x)ZFE is the feasible event set under state x, G is the event generating function set with
G, ( » )representing the pdf of time interval of event i. Let system’s initial state be x;for
each feasible event : € '(x), let y, be the residual trigger time. In DEDS simulation,
{(iyy,),i€I(x))} 1is called the future event table. Obviously, the first occurred event e’ is

e = arg min {y;} (4)
Now,move simulation clock ¢ to the time of j OZcurrence,and update the system as follows.
t' =t+y" (5)
= f(x,e’) (6)
, Vi Y i % ¢ and i € IM'(x)
Yi = (7)

gis i € I'(x") and i € '(x)
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where v* = min {y;} 1s the inter-event time span, g; is the residual trigger time of new fea-
1€ I'(x)

sible event sampled trom the pdf G,( « ). By repeating such steps, a sample path can be
constructed. Notice that the state of a DEDS is piecewise constant and that it changes only
when events occur. The sample path of DEDS can be simply represented by a sequence of
triples {x,_1s€ssts}s k=1,2,++, where ¢, is the time of occurrence of kth event ¢,. After
the sample path is generated, the L(8,w;) can be extracted.

4 Improved standard clock algorithms for Markov DEDS

The Markov DEDS represents a special case of DEDS where all G;( ¢ )are exponential
distribution. A high efficient algorithm for performance evaluation of such system was de-
veloped in [ 4 ]. This algorithm, named as improved stand clock method (ISC), is the ex-
tension of Vakili’s well-known stand clock method (SC)!?~*), The ISC method only gener-
ates state transfer sequence {x;—1se,}s £=1,2,+ rather than the detail sample path as u-
sual. ISC uses the conditional form tor performance evaluation

N
J(® = E[E[L(6,w) | Z]]~ %ZE[L(G,@) 1 Z = =z] (8)

where 2z is the state transfer sequence {x,—;s¢e.}, 2= 1,2, ++, 1n 7th simulation trail,
FElL(8,w)| Z=2;] is the mean performance measure under z;, which can be calculated ana-
lytically in the case of Markov DEDS.

Suppose G;(t)=1—e %", i€ E. Let the current state be x,—;, and define

Alzim) = ), A (9)
€ M2y 1)

The evolution of the system has the following characteristics

1) The next event ¢, is only state dependent and decoupled with time. The pdf of next
event 1S

[2~4]

A;
A (xk—l ) ,

2) The inter-event time y* 1s also state dependent and obeys exponential distribution

P{Bk:j ‘.Ik_ul}__ jEP(I,&q) (10)

with parameter A(xz,—1).

F(y" | z4m1) =1 —expl—A(xpq)2] (11)
Thus, if the initial state x, 1s specified, the corresponding state transfer sequence z can be
easily and efficiently generated in terms of (10) and (6). After 2 is generated, E| L(6,w) |
Z=z=.| can be extracted on the basis of the above characteristics 2. In the case of integral
style performance function, 1. e.,

L(Grw) = |h(x)dt = D h(ze1) yi (12)

v/

it is easy to obtain
E[L,w) | Z=2]= > 0 xer)/A(x1r) (13)

where h(x) is the state dependent weight function.

The algorithm of ISC presented in | 4 | has the capability of simultanecusly generating
a family of state transfer sequences with respect to different parameter set in one simula-
tion run. Assuming that the system parameter set has M possible configurations, denoted
by {A”yi:€E}y, m=1,2,+,M, the algorithm for simultaneous construction of M state
transfer sequences is given as follows'*.

Algorithm

1) Generate random number « U (0,1)

for m=1 to M do {

2) On the basis of u, generate e according its pdf, formula (10)



652 ACTA AUTOMATICA SINICA Vol. 29

3) Extract information for computation of E[L(fyw) | Z=2]"
4) State updating,x? = f(xi—1 ;€7 )

}

5) Goto 1 until the end of simulatton

6) Compute E[L(Oya) | Z=2]|"y m=1,2, M

In N simulation runs, the system performance measurement with respect to M param-
eter set can be estimated simultaneously in terms of (8). From the above, we can see that
ISC is tightly linked with conditional expectation variance reduction technique'. ISC
method is more efficient than usual SC method because it batter utilizes system'’s prior in-
formation and dose not need to generate detail sample path.

§ ISC based parameter sensitivity estimation

Assume that the performance measure of interest i1s related to the dynamic process of
system evolution from initial state to some specific state subsets. The steady state per-
formance measure can be seen as the special case of above. Due to the ergodicity of steady
state Markov process, system behavior only depends on the dynamic process in the regen-
erative cycle'!’,

Let 2 be the set of all possible state transfer sequences obtained trom simulation trial
(or from regenerative cycle in steady state case). The system performance measurement
can be expressed as

J(® = E[E[L(,w) | Z]]= D ,E[L(w) | Z= 2]P(2) (14)

z& {1
Differentiating (14) with respect to 8, we obtain

2] (0 _ 5 2E[LWsw) | Z=2]p () L SVE[L(g,w) | Z = 2]2P/¥0p

85 € 2 a@ & ) P(z)
(15)
By the theory of expectation of random function'’®, we have
o0J (@  TOE[LG,w) | Z17, T olnP(Z)
aﬁ E-— a@ | | E_E[L(ﬂyw) \ Z:\ ae ] (16)

The first item of (16) is actually the expression of SPA"), It reflects the sensitive of per-
formance measure with respect to § when the event sequence remains unchanged. The sec-
ond item of (16) is nothing else but expression of LR method"®, which reflects the varia-
tion of performance measures with respect to event sequence changing caused by perturba-
tion of 4. (16) indicates that performance sensitivity 1s the sum of that estimated by SPA
and LR methods.

On the basis of (16) the unbiased estimation of 9J(§) /38 can be written as

aj(ﬂ) 1 A OE[L(Bsw) | Z = =z, | _ Alnp(z;) !
Y N;{ 3 +E[L(Bsw) | Z = z; | ~ ,? (17)

where in usual cases N is the total number of independent simulation trials, and z; is the
state transfer sequence in the 7th simulation trial. In the cases of steady state, N is the to-
tal number of regenerative cycles in one simulation, and g;1s the state transfer sequence in
1th epoch.

The estimation of 3J (8) /960 needs three statistical quantities:E| L(8,w) | z; ]y OE[ L(4,
w) |z 1/90 and Alnp(z;)/20. Since E{ L (8yw) | z; ] can be acquired through analytic ap-
proach, so does 9E[ L (f,w) | 2; /98, 1. e., in the case of integral style performance func-
tion, taking (13) into account, we have

o - h(l?k—-l) aA(Ik_1)
— L . p— ; T e—
aaE[ Gryw) | Z = 2] ; e 5T o (18)

where z;,= | {z;-1+e,}y» £=1,2,**,n], and n is the length of the sequence.
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Thus, the applicable condition of (17) is that alnp(z;) /38 should be computed ana-
Iytically. Fortunately, p(2) can be expressed as the product of sequence state transition
probability when characteristics 1 (see Section 4) is hold.

p(z) = pley | z)ple; | ) ple, | 1) (19)
where pes [Ik—l):Aek JACx 4=1) s k=1, yn

Rewriting (19) in logarithm form and dilferentiating 1t with respect to § yield

alnp(z ) E ’811‘1;?)(.45';c I Xyt ) i ralek/aﬁﬁ IA(x,—)/00 (20)

F=1 & Aek Alze—) 4

Collecting and accumulatmg the three statistical quantities obtained from N simulation

trials Cor from N regenerative epochs in steady state case), the unbiased estimation of sys-
tem performance sensitivity can be determined in terms of (17).

6 Simulation examples

In this section, M/M/1/K and M/M/1 queueing system are chosen as examples to
verify the algorithm derived above, because such systems are widely used models and the
theoretical analysis of them is perfect ( see { 20 ]).

Let the customer arrival rate be A, the service rate be x4, and select the queue length
as the state variable. The five-element group of M/M/1/K(M/M/1)system is defined as
X = {0,1,2¢+,}, FEF= (1,2}, G=({1—e™*, 1—e*)} (21)
['(x) = Ef}’ iig’ f(x,e) = ij;: zz——; (22)
where “1” denotes the event of customer arrival, and “2” denotes the event of customer
leave.
6.1 Parameter sensitivity estimation of the mean crash time of M/M/1/K queue

The crash time T, of M/M/1/K queue, which is a random variable, is defined as the
first time when the queue x (¢) exceeds the capability queue length K under the given
xz(0). E[T,], the mean crash time is an important measure reflecting the reliability of
communication network*,

In this experiment,the capability queue length and the initial state are set as K=17,
x2(0) =0 respectively, and the measurements of interest are E| T, |, 9E[ T. ]/9A and
OE[T.1/op.

First, construct the state transier sequence according to the ISC method with simula-
tion trial ending at queue length x(#) exceeding K. Suppose that the state transfer se-
guence in the ith simulation is 2, =[ {xi-1s€s} s£=1,2,+*yn].

Next, extract three necessary statistical quantities form z;. Using characteristics 2 in
Section 4, the conditional expectation of T, under g; is given by

E(T. | z]= SEly | Az ]= 3 - (23)
ko= =1 Alxe1)
Differentiating (23), we have
d QA (x4 )/
—_ ’11,:_~ i — - " Y 24:
“ELT. | 2] 2 T € Ao (24)
By the definition of M/M/1/k queuing system, we have
A €p — 1 {A! T = O
— . — 25
AE& {#& €, — A(Ik-_l) A ‘,_‘aa Tp1 > 0 ( )
Thus, we get
oA, OA, | _ < il 0:, e, = 1 (26)
L 9A ou 0 1], e =12
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FOA(x~) 0ACx—1) ] 1 11, x40 >0
= (r - (27)
& a;{ ap _ __1 O__ ’ Xp-1 — 0
Substituting (25)~(27) to (23), (24) and (20), we obtain the three necessary statistical

quantities.

Finally, carry out N independent simulation trials, collect and accumulate the three
statistical quantities in terms of (8) and (17), the unbiased estimation of E[ T, ],9E[T.]/
dA and OE[ T.]/9u are obtained simultaneously.

Estimation of mean crash time and its parameter sensitivity under ditferent A, p 1s
shown in Table 1, which indicates that the maximal relative error is not greater than 2%
for ELT.], and is less than 7% for both 9E[ T.]/oA and 9E[ T. ]/du. These results are
obtained through 4000 simulation trials, Due to ISC’s capability of generating multiple
state transfer sequences in one simulation trial, all results in Table 1 can be estimated sim-
ultaneously.

Table 1 Mean crash time & its sensitivity estimation of M/M/1/7
[As 2] [E[T.], 9E[T.]/aA, oE[T.1/au]
»

Simulation results Theoretical values
[0.60, 1] [344.5, —2999. , 1454, $345. 8, —3182. , 1563. ]
0.72, 1] [137.9, —938.9,538, 2] 135.3, —894.0, 508. 4]
0.84, 1] [68.57, —321.8,201. 8] ' 68.53, —331.8, 210. 2]

The convergence histories of 9E| T, ]/96,0€ {A,u} using both ISC based algorithm
and difference method are plotted in Fig. 1 and Fig. 2 respectively. The straight lines in
both figures are theoretical values. In the case of ditference method, the difference step 1s
chosen as AA=Au=0. 01 (too small difference step should be avoided, see Section 2). The
comparison shows that the convergence of ISC based algorithm is much faster than the
difference method. Moreover, since ISC based algorithm obtains all measures of interest
with only N trials while the difference method must rely on 3N trials for the same work,
the actual computation burden of ISC based algorithm is far less than the difference method.

15 ' T ' ' T ' T 15 “
10 |- { 10 i 1
OE[T,]/3p 1 _ QE[T.]/2
SWW\' S 5 [ A g e RN g
| Ca
S 0 - : S 0 ﬁ
—t ==
Z -5 Z -5
DE[T 1/34 , A QE[T . ]/34
e . ] ik “d ' WW%&
—10 | — == — 104y v&g‘v :
_15 i i L : \ N ! __.15 . i i | ] 1 I
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
simulation trials( X 100) simulation trials ( X 100)

Fig. 1 Convergence history of ISC based algorithm Fig. 2 Convergence history of difference method

6.2 Parameter sensitivity estimation of steady state mean length of M/M/1 queue

In this experiment, the interested periormance measures are steady state mean queue
length denoted by L, and 8L/98,0€ {A,u}. By the regenerative theory''!, estimation of
steady state performance measure oi Markov system only needs one long-time simulation
trial with enough regenerative cycles.

Set x=0 (the null queue) as the regenerative state and introduce the following ran-
dom vector
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rl..7 [ “Integral of queue length in regenerative cycle”

| C ] L“Time span of regenerative cycle” | (28)
According to the regenerative theory, we have
r_ ELL.]
L= Frc (29)
Thus
oL 1 oFEl L, ] SE[C
. e E C ____E L , ! .
o0 ELCY ( o0 -C L of ) € Ayt (30)

Obviously, to get oL/98, E[ L. |, 3E[L.]/38 and E[ C],9E[ C]/20 should be pre-esti-

mated.
Let = be the state transfer sequence 1n regenerative cycles Apparently all possible 2 in
regenerative cycles form a sample space. Rewrite E] L, ],E[ C] in conditional expression
ElL.]=E[E[L.|Z]], E[LC]=E[ELC]| Z]] (31)
The followings is just like what we did in the above example. Perform a long-time
simulation trial with N regenerative cycles. We denote the piece of state transfer sequence
in ith epoch as 2z, =Z({xp—1s€s} k=1, ym), i€ {1,-+,N}. By applying characteristics 2
in Section 4, the conditional expectations of L, and C under z; are given by

T m

o Tr—1 _ 1
E[Lc ] Zj] o ; A(:Ifk—q) , E[C ‘ Zj:l ; A(Ik—l) (32)

Using the similar formulae in Section 6. 1 to extract the necessary statistical quantities.
OF[ L. |z 1/96,9E[C|z;]/30 and 3lnp(z,)/00, where € {A,u}, and feeding them to (8)
and (17), we can obtain estimates of E[ L, |,9E[ L, /36 and E[C],9E[ Cl/38. Finally,
estimations of L and 9L /00,0€ {A,u} can be determined in terms of (29) and (30).

Estimation of L,9L/9A and 9L /9u under different A, . are listed in Table 2. The re-
sults show maximal relative estimation errors not exceeding 8%. These results are ob-
tained through one simulation trial with 4000 regenerative cycles.

Table 2 Steady state mean queue length & its sensitivity estimation of M/M/1

LAy ] Simulation results Theoretical values
[0.60, 1] 1. 50, 6.29, —3.77] 1. 50, 6,25, —3.75_
0.70, 1] 2.46, 11.9, —8.32] (2.33, 11.1, —7.78]
[0, 84, 1] 5,66, 41.0, —34.5 ' 5.25, 39.1, —32. 8]

7 Conclusion

In this paper, we present an efficient algorithm for performance parameter sensitivity
estimation of Markov DEDS. This algorithm can give consistent and reliable results for
both steady state and transient perlormance sensitivity estimation, Another advantage of
this algorithm is that aside from getting all partial derivatives of interest with respect to
specific parameter set at the same time, it can simultaneously obtain a family of sensitivity
estimations under different parameter sets. The third advantage of this algorithm is its rel-
atively simple mathematical description and easy program realization. Moreover, an inter-
esting and important conclusion of this paper is that the performance parameter sensitivity
estimation of Markov system is the sum of those estimated by SPA method and LR meth-
od, and singly using any one of them usually can not give consistent and reliable result.
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Appendix A. Algorithm for example in Section 6.1
For convince, we define

-~ oT. _ oT. | + aQ
T, = E| T, , = | . = - T, =—
[T, | z:I QR np(z) 7 . ! Y
» Initialize ) )
- ol ol 0@l oQ
= 03 =A; T.=0; —— =03 = 03 = 0; =0
x Alx) = A 3 0 > 1 S

» Procedure
1) Generating random number ¢ c2U(Q,1)
2) Generating next event
If usCA/A(x), e=1 //customer arrival event
Else e=2 //customer leave event
3) Calculating 9A(x) /94 +9A(x)/du
It >0 ¢
IA(X) /or=1; OA)/ou=1;
' Else {
IA(x)/oA=1; QA(x)/du=0;
}
£) T,~T.+1/Ax) -
sy 9T aT._aAto/on 8T, _aT. _3A(x)/ay
oA oA [AXWT7 o o [A]
6) Calculating A, ,94./9A,9A./0u in terms of event e
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If e=1 {

Ae=A; OA/OA=1; OA./Oou=0;
b Else {

Ae =15 OA/OA=0; OA./Ou=1;
f
oQ 8Q+ oh 1 OA(x) 1 7]
o EXENES
Q. aQ t oA 1 OA(x) 1
8;1 O | 9p Ae o A(x)
8) State update

If e=1{
xz<x+1;//customer arrival, queue length plus 1

! Else {

x<x—1;//customer leave,queue length minus 1
}
If >0 A(x)=A+4
Else A(x)=2A
9) Check whether the simulation is finished?
It z<<K goto 1
else { //queue length exceeds K, simulation ends

oT. oT. 4 2Q oT. oT, 1 29Q
Oh O\ T “Or ou ou  “du

7)

)
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