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Abstract This paper discusses identification of the emergency state and the optimal algorithm of
dispatch scheme for a supply chain system (SCS) with continuous demand. In a collaborative sup-
ply chain network, a manufactory may receive raw material from several suppliers. Once these
suppliers are not able to meet its demand completely, the SCS is then in a state of emergency.
What this paper has studied indicates that there exists an efficient method to judge whether the
SCS is 1n this kind of state. Furthermore, this paper presents an optimal algorithm and the corre-
sponding mathematic proof for the system not in an emergency state,
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1 Introduction

In a supply chain network, a manufactory may receive raw material from several sup-
pliers. When the supply-capacity and lead-time of each suppler are known, whether there
exists a fteasible dispatch scheme depends on the specific type of demand of the manufacto-
ry. There are two typical types of demand, 1. e., discrete demand and continuous demand.
Discrete demand means that demand of the manufactory takes place in multiple stages, and
this kind of demand frequently appears in assembly systems, for example, in a MRP(ma-
terial requirements planing) system, the demand of material often takes place in different
stages; continuous demand indicates that demand i1s continuous in a duration. And it often
appears in a continuous production system. Apparently, different types of demand will re-
sult in different dispatch problems.

According to the characteristics of continuous demand, this paper discusses the identi-
fication of emergency state and the optimal algorithm of scheduling scheme for a supply
chain system, This problem has a strong background of application. For example, the
supply of fuel in some manufactory in Nanjing induces a typical multi-supplier continuous
demand problem. The fuel required by the manufactory is to be offered by multiple suppli-
ers, and the velocity of consumption is nearly steady (1. e., the velocity 1s a constant). Be-
cause the shortage will interrupt the process of production, which will finally cause large
losses, the identification of emergency state and obtaining of optimal scheduling scheme
seem to be very important. This kind of problem can be depicted as follows:

Manufactory A has continuous demand for some material in a period of time in the {u-
ture. A;,A,,**,A, are n suppliers being able te offer the needed material. With each dep-
ot A;, we associate an available material quantity (capability) x,(>0), :=1,2,+,n. A is
the destination, which has a constant rate of material demand v in a duration | s, f]. Let ¢,
denote the lead-time from A, to A. Our problem is to find conditions to determine whether
the SCS is in a state of emergency. Further, we should give an optimal dispatch algorithm
(i. e., deciding suppliers to participate in offering material and the quantity of the material
provided by each selected supplier).
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2 Relatied definitions
Before we define the state of emergency, we assume the {followings.
1)A has a total demand z in [ s, f]. It means that z=(f—s)v,or f=s+x/v.

2)0<t <t <1, < f. The problem excludes those suppliers whose lead-time ex-
ceeds the latest demand time, 1. e., f.

B)in,}fx. It assumes the quantity of all available material of all suppliers is not less
i=1

than x.

According to the above depictions, the dispatch scheme is to decide which suppliers to
participate in offering material, and how much material to be provided by each selected
supplier. Therefore, any scheme can be denoted as follows:

J '4 s
© — {(Ail "ril)’(Aiz ’xiz)’”-’(Aim ,xim)} (1)
m
/ / .. . . |
where 0z éxik ,Exik ==X 41y12°*"»1, 1S an arrangement of the sequence 1,2, ,n,m<<n.
=1

According to (1), there are m suppliers, A; ,A; ,**,A; that will provide the material,
and the quantity 1S :1::1 ,:r:;; g ° ,xfm ,respecti-vely.
Definition 1. A scheme ¢ is feasible, if for Y& [s, f],
E ;r:k = (t—5s).v (2)

k€ {j | ;<tsj € ub())
where sub(¢) denotes the set of subscripts of the suppliers associating with the scheme ¢.

Accordingly, sub(¢) ={i, 1, 5*** i, }. The left-hand side of (2) means the quantity of ma-
terial having reached A at ¢ according to scheme ¢, and the right shows the consumed
guantity from the start time s to time ¢.

If no feasible scheme exists, then the supply is not able to meet the continuous de-
mand. In this situation, the SCS is called to be in a state of emergency, and we need some
specific emergency method to deal with it. These emergency measures will be discussed in
another paper. Our paper, however, involves: 1) determining whether the SCS is in a
state of emergency by giving the determinant conditions, and 2) proposing an optimization
scheme, when the SCS is not in an emergency state. Let IT denote the set of all schemes
that are feasible for s, and we have the following definition;

Definition 2. The SCS is in the state of emergency if no feasible scheme exists (i. e.,
n=¢ .

In order to give a understanding of the above concepts, we present an example as fol-

lows Table 1.
Table 1 Lead time and available material of each supplier(x=400,v=20,5s=6, f=26)

Al Az Ag Aq, A5 Aﬁ A? AB A‘H AID
Li V/ 4 o 8 10 12 15 16 24 25
x; 50 10 100 90 120 90 140 200 120 110

Table 1 presents some data including the quantity of demand, consumption velocity,
start-time, finish-time, and relative data of 10 suppliers. For example, ¢ = {(A,,10),
(A;,60),(A:,90),(A;,110),(Ag,130)}; it is easy to see sub(¢;)={1,3,6,7,8}. Fur-
ther, when t=10, Z x, =2t =70<(t—s)v=(10—6)20=280. That is to

RE (i | £,<t)i€ sub(p) )}
say, when t=10, (2) does not hold, therefore ¢, is not feasible. However, we should not

conclude that no feasible scheme exists for the SCS only because ¢, is not feasible. In fact,
there does exist feasible schemes.

3 Identification of emergency state
Apparently, the key to determine the state of the SCS is to find the existence of feasi-
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ble solution. The following theorem gives the existence condition of feasible schemes. In
order to illuminate the problem easily, without loss of generality, we assume 7,=0,5,=0,

xgﬁo 9:))0:09 E :.II'ZOQZ_})I*:O When necessary.

i€ ¢ i€
Theorem 1. Feasiblg solutions exist for the SCS (1. e., [I77%), if and only if VA& ({1,
9y eeeyn)
—1
M= (e —s)v (3)

1=
E—1

Proof. “=” (reduction to absurdity): if % 9217;'<(fk —s)v, we consider two situa-
i=1{
tions.

When 2=1, (3) does not hold. We can deduce 0<(¢; —s)v, 1.e. » £; >s. Therefore,
when t=s-+e(e is a very small positive number, such that s+e<lt;), for YV ¢, (2) does not
hold. Therefore, no feasible scheme exists for the SCS, and the result is contradictive to
assumption.

When £>1, we assume t, =1t, —e(g is a very small positive number), and we have

k1 k1
Ez; < (#y —s)v. In this case, for any scheme ¢(see (1) ), it has E x:£2x5<
i=0 i€ | 1, <ty + i€ ub(p} 10
(¢t —s)v. Therefore, when t=t;, , (2) does not hold, and thus the scheme ¢ is not feasi-
ble. The result is contradictive to assumption.

“<«” we design a scheme gof as follows:

g1
90! = { (A x1)(Aysxz) e ?(Arr—l » L g1 ) ’(Aq L E‘Ik)} (4)
k=0
where g is a subscript which makes
g1 q
E.Ik < x < 2}:}.::;e (5)
k=0 k=10

As E:ck =1 ,there definitely exists a subscript ¢ (0<lg<in)such that (5) holds. Here
k=1

we make an assumption, Let R( go’ ,t) denote the total reached quantity from s to ¢ accord-
ing to ¢'. We consider two cases, If t&[¢,, (], then R(¢ 1) =z=(t—s). v; if tE€[s,2,),

—1
when ¢,_;<t<t,, we have R(go’ ,t)}R((p’ sl y ) = 23:1- =(t, —s)v=((—s)v. Therefore,
=10

¢ is feasible.
Theorem 2. The SCS is in a state of emergency, if and only if 3 2€{1,2,+,n;}

—1
dlx < (e~ v (6)
t==0

Thus, we can determine the state ot the SCS according to Theorem 2. As for the SCS
depicted in Table 1, we can conclude that it is not in an emergency state. Further, accord-
ing to the proof process of Theorem 1, we can obtain a feasible scheme ¢':

gof —— {(Al ,50) !(AZ ,10),(A3 ,100) g(A,;l 590) !(AS !120) !(Aﬁ !30)}

4 The optimal algorithm

From Theorem 1, we can see that if [T ¢ then there is a feasible scheme go'(GII).
However, the given feasible scheme may include so many suppliers that sometimes it 1s
unpractical. As for example, in an inventory system, the number of involved depots may
directly affect the total set up cost. From the point view of reliability or cost, a feasible
scheme with fewer depots is preferred***!, Let N(¢) be the number of suppliers included
in ¢. Apparently, in this example, N(¢')=6. When II##¢, the optimization problem is

minN (o) (7)

e I
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In order to make our optimal algorithm more understandable, we first introduce the
process of the algorithm by using the data of Table 1; then we will give mathematical
proofs. The corresponding approach in details is as follows.

1) Find all the depots, whose associated lead-time ¢; is not bigger than u (=s=6).
We have {A;,A,,A;}, and the corresponding available quantity is {50,10,100}. Select
A;, because it has the biggest quantity. 2) As 100<x=400, let u=61+100/20=11. Find
all the depots except A; whose associated lead-time is not bigger than u(=11). We have
(A|,A;,A,,A:}, and the corresponding available quantity is {50,10,90,120}. Select As,
because it has the biggest quantity, 3) As 100-+120=220<400, let u=11+120/20=22.
Find all the depots except A; and A;, whose associated lead-time i1s not bigger than «(=17).
We have {A;,A,,A,,A;,A;,A;}, and the corresponding available quantity is {50,10,90,
90,140,200}, Select Az, because it has the biggest quantity. 4) As 100+120+200=420
>400, let zz =400— (100+120)=180. Therefore, ¢ ={(A;3;,100),(A:,120),(A;s,180);

Following the example above, we present an algorithm to solve (7).

Algorithm I (IT#$)

1) u=s, k=1, TOTAL=0,1I,=¢

2) solvei,: max x;=x; I, =L+ {i}
€ljlysuj@l)

3) if TOTAL+;1: <z, then TOTAL=TOTAL+z, , u=u-+tuz, /'u,k k+1,g0 to
2) 3 otherwise, .:z: —-I"_TOTAL
4) gD ={(A rI )9(A r.’IC )y s (A,

‘K—1

9I5K_1 ) s (AiK ’I:K )}

§ Mathematic proof

Hereinafter, we will give the strict proof of the correctness of Algorithm 1. In order
to make problems easy to discuss, by slightly modifying Algorithm I, we propose a more
generalized algorithm.

Algorithm IT(JT7%4)

1) u=s,d=1, TOTAL=0,J,=¢

2) deE {] \ tjéu!j%]d—l} !Jd:Jd-1+{jd}

[ Apparently, {j|t.<<u,j €& J.—1}7%9$, otherwise, let t=u-+¢, and ¢ is a small positive
number, and no scheme will make (3) hold. That will result in [I=9¢]

3) if TO'I]ﬂ\L—I-:z:j <z, then TOTAL=TOTAL+z; ,u=u+tx,; /v,d=d+1,go to
2); otherwise, x,, —=z—TOTAL

4) o= 1{(A; ,le);(Ajzngz), 5 (A; sz, ), (A )}

Let IT' be the set of all possible solutions derived from Algorlthm I1.

Lemma 1. If I[I%¢, any scheme derived from Algorithm II is feasible. That is IT CII.

Proof. It can be easily proved by Definition 1.

Because Algorithm I is the special case of Algorithm II, the scheme derived from Al-
gorithm I is also feasible.

Lemma 2. If [I# ¢, then there is at least a scheme ¢, & II' , which is the optimal
scheme of (7).

Proof. Suppose q:f = {(A; , :r:l ), (A, ::a:’;2 )5y (A ,;z:’;m )} is the optimal solution of

(7) (O<xfk <z, ,Za’:; =x). Without loss of generality, suppose 7; <7, <+*»<i,. That
k=1

3

m—1 m m—1
s, ¢; Kby, Ko<t . [t is easy to see that’;‘rik <Z.:r:';it :xézxﬁ ; (Otherwise,;xik ==
=1 b=1 =

E:r:;; . It will make contradiction with the fact that go’ 1s the optimal solution of (7)).
Considering the scheme go”, go”= { (A; sz )9 (Ay sz ) sy (A vz )W (A »xl ) !y
m—1

m~1

iy,

x: =x—2xfk —>0. Apparently, go”GH’. Theretore, like ga’ . go” 1s also the optimal solution
k=1
of (7).
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Theorem 3. I {(A.;1 v Vs (Ay s ) yores (A, ' Ti ) (A ,:r )} o1s a scheme deriving

E—1

from Algorithm I, and {(A; »x; ), (A, ,x;, )., (Ajﬂ,_1 Z; )y (A ,sx; )} is a scheme
deriving from Algorithm [ (II#¢), then £<d.

Proof. When d=1, we have =1, the theorem is proved. In the following discus-
sion, we assume d>2( Reduction to absurdity)

If k>d, then z:}: <z= Zx +xj, gzx That is,

ZI <Zx (8)

We will obtain a result contradlctwe to (8). Consider two sequences x; y i) sty T,
and x; »x; »°**,x, . Because (8) holds, It is easy to see that there is at least one element in
Zi »Xi 5" s X; » Which is smaller than the corresponding element of x; ,x; ,*-,x, . Let h
denote the position of the first element such that we have

Ty =X

Iiz ?..a— Ijz

(9)

Liy, }"' L1
Ly, < Lj,
First consider the two sequences x; % JAFRLLEY % and x;, % SRRELLEY Our thought 1s to
adjust the order of z; ,z; ,***,x; , and try to make every element of x; ,x; ,**,x; no big-

ger than the corresponding element ot z; ,x; ,***,x; . We hope that by ordering z; ,zx,,
*yx; q times, we have the sequence x @ ,::r: CERMEEFTN and . =x @ holds, m=1,2,

m

««+,h, If this can be done, the theorem i 15 proved In order to proof it, let us first retro-
spect the process of obtaining x, according to Algorithm I.
h

. . . 4 .
T, = max TN FUEE O S PO R TR S Y, =s—|—z.rfm /v . According to Algo-
——

h 1€ {j'rjﬂu#. j@fhﬂl}

h—1
rithm 11, j, € (jlt;<u"»j € Joo1}s Jaor={j1s7zs " sja-1}s &' =s+ Dz, /v. Three cases
m= 1

are considered.

A) From (9), we conclude u' =u", Further, follows that, j, € I,_; (Otherwise, if
jh % I—1, then jh & {J ‘ Zj“gu”#j %Jh—l U I, } - {] | fjguf '] % I } Therefore, Zj, --<-..Iih .
This makes contradiction with (9))

As 1, €1,—1, let j,=1.,1<c<h. Adjust the order of j1s***5j.s***+js s and we have the
SEQUENCe 1 5***5jc s> sfh’ s jo Tjnsjh =jerim =jm(mFc,h). Apparently, z, =z
m=1,2,,h—1(Ilf m=c¢, then ‘=" holds).

B) If x;, <I. s then ;" € I,,. As j, € L,—,, let j;"’ =1,, 1<{e <h. Adjusting the

(1) N (1) (1) ~(2) + (2) (2) (2} — (1) - (2) —— (1) r(2) e (1)
Order Of] "tele o9 Jr » WC have! Jv 9" s Je 2o fn s Je T Ih v Jan —Fe sIm T JIm

(m7*%esh). Therefore, the sequence T 2T ) 9" 9 T becomes - JORE FERAAEE FOP Appar-
1 2 h 1 A h
ently, II. ;Ij(z) ,mzl 529"' 9h_1.
O itz <z then we repeat the process. No more than A—1 times will we elicit
A

x; =Zx;*V, That is because when the subscript sequence is adjusted A—1 times, we have
{]ﬁh b !]éh_l) '!Jf(lh_ll) } = {11 ’ iz s **% ih*—l } — Ih—l e ]h—l- It iS casy O see thﬂt jihnl) #
JETY e gV P That is P € {5 | ,<d»j€ Ji—1 = I-1}. Therefore, T, =

z;#»-v, That is to say, by adjusting the order ¢ times (g<lh), we elicit the sequence Z . s
1
Ijéq) ,“',.‘:C(q) ’ and I >I {q) s 71— ]. 2 gh

By the same token, the order of x; ,x; ,***,x; can be adjusted so that no element ot
. . d *
this sequence will be bigger than the correspondrng element of x; sx; »+**»x;,. When this
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s done, we will have elicited the result contradictive to (&). The theorem has been proved.
Theorem 4. The solution deriving from Algorithm I is the optimal solution of (7)
According to Lemmma 1, Lemma 2 and Theorem 3, it 1s easily proved.

6 Conclusion

This paper shows that there exists an efficient method to identify the state of the SCS
(Theorem 2). When the system is not in a state of emergency, this paper gives an optimal
algorithm (Algorithm I), and the corresponding mathematical proof i1s presented. Howev-
er, a very important problem, which this paper does not discuss, is that when an SCS is in
the emergency state, how can we deal with 1t? This may require some specific emergency
methods and techniques that need further research. As we know, [ 3] discussed a scheme
with discrete demand. This paper, however, considers the continuous demand. Future re-
search may focus on a general demand function that is more representative,
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