% 20% 55 M H 31 & % {i Vol. 29, No. 5
2003 4 9 H ACTA AUTOMATICA SINICA Sept., 2003

Combined Petri Net Controller for Discrete Event Systems"

WU Wei-Min DONG Li-Da WANG Xiao SU Hong-Ye CHU Jian

( National Laboratory o f Industrial Control Technology & Institute of Advanced Process Control,
Zhepang University , Hangzhou 310027)
(E-mail; wmwu(@iipc, zju. edu. cn)

Abstract This paper addresses the problem of controller synthesis of discrete event systems
(DES) modeled by controlled Petri nets (PN) with uncontrollable transitions. The combined PN
controller for DES proposed has both the virtues of the mapping controller and the compiled one,
that is,it combines the advantages of the compiled controller in the aspect of obtaining and tracing
system state and the mapping controller in the aspect of implementing of control action. Examples
are used to illustrate the design method of the combined PN controller.
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1 Introduction

Petri net (PN) 1s an important tool to synthesize discrete event systems (DES) due to
its advantages such as graphical,distributed representation of the system state and compu-
tational efficiencies. From the control standpoint, the controller or supervisor of DES can
be distinguished between the mapping one,whose control law 1s a function computed after
each new event generated by the system,and the compiled one,whose control law is pres-
ented as a DES structure ', Various mapping controllers have been designed in [ 2~4]]
while synthesis methods of compiled controller can be found in [ 5,6 .

The ordinary PN model of DES considered here 1s able to model both resource conflict
and process synchronization. The restrictions against PPC (precedence path condition) and
PPIC (precedence path input condition)'™ are relaxed in this paper. In addition,the meth-
od presented here does not need any non-convex constraint transformation in order to deal
with the {iring of uncontrollable transitions. The combined PN controller designed in this
paper is a mapping one but it exploits the advantages of compiled controller.

2 Foundation of CtIPN and Control Constraint

A controlled ordinary PN (Ct]PN)is defined as a six-tuple G =(P,T,E,C,B,m),
where P is a finite set of state places, T is a finite set of transitions, PN T=C ,E€ (P X
TYU(TXP) is a set of directed arcs connecting state places and transitions,C is the finite
set of control places, BC(CXT) 1s the set of directed arcs associating control places with
transitions,and m: P—Z is the marking of the places (Z 1s the set of nonnegative inte-
gers). It is assumed in this paper that one transition has at most one connected control
place and one control place is exactly connected by one transition, The transitions connect-
ed by control place are controllable and the controllable transition set is denoted by T.,
otherwise uncontrollable,and the uncontrollable transition set is represented as 7,. The
places,transitions,control places and marking are graphically represented by circles, bars,
squares and dots,respectively,as shown in Fig. 1.
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Fig.1 A controlled PN

For a transition t& T,t is called an input transition to p if arc (¢, p) € E. The input
transition set of p is denoted by ““p. Similarly,the input place set of transition ¢ is denoted
by ‘¥ t,and output sets can be defined as p*” and t'#. The notation ¢'” represents the only
transition associated with the control place c,and ‘“¢ denotes the only control place associ-
ated with ¢,

A control u: C—=(0,1) assigns a binary token count to each control place. The set of
all controls is denoted as U. For two controls «; and u, »uy =u, holds if u, (¢) =u, (c) for
all c€& Cyand u; >wu, holds if u,(¢)=u,(c) and u, (¢) >u,(c) for at least one c&C. A con-
trol u; 1s more permissive than another control u,; if u; >wu,. The control u,,. s tuone (¢) =1 for
all c€ C,is the most permissive,and the control u,., » t,er (¢) =0 for all c€ C,is the least
permissive,

A transition t&€ T is said to be state enabled under marking m if m(p) =1 for all p&
‘» ¢, A transition t& T, is said to be control enabled (disabled) if m(*“z)=1 (0). Conven-
tionally,all the transitions in T, are assumed to be control enabled. A state enabled and
control enabled transition & T is said to be enabled.

The control constraint enforced in this paper is a linear marking constraint, which has
the following form

Dilim(p) < b (1
i=1

where coeificient /; is a non-negative integer,m(p;) is the marking of place p,,b is a posi-
tive integer constant and n is the number of places in the net. For convenience, the notation
M:(m) is sometimes used to denote the value of left side of (1) under marking m. Let
R..(Mc(m)) be the set of possible values of M-(m') under any reachable marking m' from
m ,and max|{ M:(m) | be the maximal in the set R.. (Mc(m)).

A marking m is said to be admissible if max| M (m) ] is not bigger than & under u,..
and the set of admissible marking 1s denoted as 2. The control policy U is a state feedback
policy that maps every m& (Q to a set ot controls U(m). For two control policies U; and
U, U, is said to be more permissive than U, ,denoted as U, >U, ,it U, (m) 22U, (m) for all
mé& and U, (m') DU, (m') for some m' €.

Definition 1. The place in the constraint inequality (1) is named as constrained place.
The entire constrained places constitute constrained place set,denoted by C,,that is,C, =

{P:P;|2 Zi??’I(Pi) ‘éb for Z.f:?éO}.
i=1
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Definition 2. The set of input transitions for the entire constrained place set C,is said
to be input constrained transition set,denoted by “°C,,that is, “C,={t|: & “p for pEC,}.

Definition 3. The set of output transitions for the entire constrained place set C,is said
to be output constrained transition set,denoted by C;” ,that is,Cy’ = {%1 tc p' for pE€C,}.

Definition 4. The set of transitions denoted by CC, is said to be common constrained
transition set,if its entry ¢ satisfies t& 2 C, [ C}".

Definition 5, Given the input constrained transition set ‘“ C,,the set *°C,,,.., =" C,—
CC, is said to be pure input constrained transition set.
Definition 6. Given the output constrained transition set C;” , the set Ci._, = C}’ —

CC, is said to be pure output constrained transition set,

According to the controllability of transitions, ““C,,.—, is divided into two subsets
D Coz pre—r and P Cym pre—r s wWhere P Co- pre—s =P Cpre—: (N T, and ¥ Coz pire—s = Cpre—~: 1 T »
respectively.

Example 1. Consider the Petri net illustrated in Fig. 1. Assume the net satisfies the
following constraint in its evolution;

2m(p;) +m(py) +mpr) < 3 (2)

Then!cp = { p, s Da s P by (I)Cp = {tyytizstystio) s Cfﬁﬂ = {t5stssls mcpure—z =mcp y Co pure~1
= {113} + P Cyre pre—t =Lz sts yt1o and Cis.—,=C;’. Note that CC,=¢ holds in this example,

3 Construction ok Monitor
3.1 Influence Path

The concept of influence path (IP) here is different from the ones in [ 2,4 ]. IP,which
does not exist in the plant,can be regarded as a copy of the precedence path (PP) in the
sense of construction. A path r= (¢, p1t; po"t, 1 Pa—1t,) defined in this paper is a string of
nodes such that both the beginning and end nodes are transitions and p;, € £? () ‘? ¢, for
1<Ci<<n— 1. The expression ‘€ (or & )x’ means that x is (or is not) a node in 7. A sub-
path of 7 1s denoted by n(x;,x;) ,where x is a node and 1<{:<j<{n.

Definition 7. Given an uncontrollable input constrained transition t & C,_ ,...—, s pre-
cedence path =, 1s a path such that. ¢, =¢,¢; 1s uncontrollablie for 1<{i<{n—1 and ¢, is con-
trollable.

A PP r, tor ¢t has only one controllable transition ¢, ,and ¢, 1s called the (unique) con-
trollable transition of #,. The case that ¢, is uncontrollable is not considered here since this

t'9 or has no influence on decision of the con-

case will lead to uncontrollability of the plan
trol policy.

For a given transition ¢t &’ C,_,,,.—,,it may have more than one PP. These paths are
joined together at some places or transitions,and these places or transitions are called the
joining nodes. The set of precedence paths for ¢ is denoted as 1I,. Let I'={¢, |1, € n, for
r, < 11,2, 1s controllable} be the controllable transition set with respect to z. Let I'(s) be
the subset of I, in which each transition is state enabled.i. e. ., (s)={¢,|t, €I, .¢, is state
enabled}. x€ (&) 1], if € (& )r, for r, € 1l,. The notation x,(¢,) is used to represent the
PP whose controllable transition is #,. Note that there are no restrictions against the PPC
and the PPIC in the definitions of PP and PP set. For a PP n,,when 3 p&x,,p& C,,the
PP violates PPC.

Example 2. In Fig. 1, there are three PP sets: ll,, = {m, (t;)}, ll.s = {7 (1) 7.
(t13)}s 0 ={m0(t1z2)s 7o (ts)},where m,, (1,) = (¢, Prt1) sy (1) =ty Pats Poty P 1)
ra (213 ) = Cty Pats Potiz) smio Cliz) = (tip Protiz) and w0 (£) = (1o psts ). Note that the con-
strained place p, € 1l,, and the controllable transitions #,; and #,, are in conflict,so this ex-
ample does not satisty PPC and PPIC.

Definition 8. Given an uncontrollable input constrained transition ¢t € ‘Y C,— s,.—.» the
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influence path set is constructed as follows;

1) Draw a copy of the transition ¢ and the joining transitions ¢, (denoted as ¢, and ¢;,_,
for ¢t and ¢, € nr,respectively) in the paths of 1l,,and the copied transitions are arranged in
the same order as the originals. The transitions ¢ and ¢, are called the original of ¢, and
t,— sTESpECtively.

2) Draw a place between the two adjacent copied transitions. Note that the originals
of the two transitions should be in the same PP, A place should also be drawn between the
controllable transitions in I, and 1ts neighboring copied transitions.

3) Connect the adjacent nodes obtained above by arcs from the controllable transitions
in I", to ¢, in the same direction of the corresponding PP.

The transitions ¢, and ¢;,—, in IP are associated with the so-called ‘always occurring’
events (denoted as e¢)'’). These transitions are fired as soon as they are enabled. The set
of IP for t,, (corresponding to ¢) is denoted as V,;, and the notation rx,, (¢,) represents the
IP with controllable transition ¢,. Similar to the case of PP set,z & V,, indicates that x
lies in the IP set. Transition t;, is called influence transition and the set of influence transi-
tion is denoted as T,,.

Example 3. Fig. 2 illustrates the 1P sets Vi, = {m 14 (2s) s712 (212D } and Nis = {m.15 (t1) »
s (213 ) } » which correspond to Il,;, and Il,,, respectively, where 1. (£5) = (t14 D1a s ) s
700 (s ) = (tyy Pistiz ) smas (8) = (85 pist1) and 7,5 (#13) = (t1s p1stiz ). The IP set correspond-
ing ll,, is omitted since it is a subset of V;;. Note that p;; and ¢;, are joining nodes.

The following lemma indicates that the firing of influence transitions represents the
maximal influence of the uncontrollable transitions on the control constraint.

B P13

Fig.2 The net of Fig.1 with a monitor

Lemma 1. For t€‘“C,_ .-, and its corresponding influence transition t,, ,if there are
no conflicts and no initial tokens in l{,,z and ¢, have the same firing times in the evolution
of the system.

Proof. By the definitions of PP and IP, both of the markings of p€&€ 1ll, and p,, € ¥,
can be influenced only by the same controllable transition 7€ I",. Once one or several tran-
sitions in I", fire,the same amount of tokens will enter 1l, and V¥, ,and reach ‘”¢ and ‘”’¢,,,
respectively. For any joining transition r, € [, and its corresponding joining transition
Tiv—2 & Vip s | Pt | = | “P1i,—4 | »1. €., the number of PP joined at r; is equal to that of IP joined
at t,—;. Suppose that the uncontrollable transitions in the PP set are also associated with
the ‘always occurring’ event e, which is the same as the original case in the sense of evalu-
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- (o>
ating the firing times of t. Then m(p)=m(p,) at any time for p&€ Pt and pip, € Tip—s. It
s also true for ¢ and t;,,. Thus the lemma is proved.

3.2 Monitor | | |
Definition 9. Given any PP set II,,and a PP =, (z,) & II,,the set is said to satisfy the

transition conflict condition (TCC) if the following statements are true: | N d
1) For any two transitions z; € x. (2,) and 2, & 11, such that #; and ¢, are in conilict an

any joining transition t; € m, (Zs % ), there are no transitions in any sub-path =, (t3,2;) that

are in conflict with zs ¢ 1I,,where 14 € (D, —t, ). | o — -
9) For any conflict,if not all the cransitions involved in it are controllable,there 1s

most one transition in some PP. N |
The TCC ensures that the firing of any transition ¢ & Il,,z€ p" for pE& I, will result

in the reduction of same firing times of t. Note that a conflict in which all the involved
transitions are controllable does not violate the TCC. The PP set considered in this paper
is assumed to satisfy the TCC,

Algorithm for construction of the monitor.

Step 1. For each t& C5., ., ,draw an arc {rom the monitor place p,. to t. The weight

function w of the arc satisfies: w= ) 1, where [, is the coefficient of p,€ ¥ ¢, p, € C,.
=1

Step 2. For each t&'“C,.,,.—,

D if t€C. e~ sdraw an arc from z to p,,,else if 1€ “ C,— nre—. s the beginning of the
arc is the copy of ¢,1. e. ,t;,,. The weight of the added arc 1s also w determined in the last
step, but /; is the coefficient of p, &' ,p, €C,.

2) if there exists some transitions & ]I, such that r and 7 € II, are in conflict,draw
an arc with weight of w from p,, to .

Step 3. For each t&€ CC, ,draw an arc between p,, and ¢,the weight function w of the

arc satisfies; w=|wl ,cuzz li"—z [; ywhere [; and [; are the coefficients of p, €t and

=] i=1
p;, €t'P ,respectively, p;, p, €C, and |w| denotes the absolute value of w. If w<<0 (&>0),
let p,, be the output (input) place of t,and if w=0,there 1s no arc between p,, and ¢ at all.
Step 4. Calculate the initial marking of monitor.

1) The monitor place p,,: mq (pm)—-—‘-ZZimg(pi).
i=1

2) The subnet constituted by IP sets:_for any place p;, in the subnet,its initial mark-
ing 1s calculated according to the equation m, (p;,) =Zm0 (p),where p&x,(¢;4¢t;),t; and ¢,

are any originals in the plant of ¢,_, € p{/ and ¢,,—; € ““p,, ,respectively.

The above algorithm does not consider the case when PP violates PPC except for the
case that the constrained places are connected by the transitions in CC,. In the case of
PPC, there is a slight modification for the algorithm. For simplicity,only the case that the
transitions in a PP have exactly one output constrained place is considered. Suppose rE 7, ,

p; € r'? is a constrained place. The following remark 1 represents the corresponding algo-
rithm.

Remark 1. In this case,weight w of the arc from ¢;, to the monitor place satisfies w=
max{l;,/,} ywhere [, and [, are the coefficients of p, € ” and p, € t'?” ,respectively, p; , p;
& C,. There is no arc between the monitor place and r,, (r;, exists when r is a joining tran-
sition). If /,>>1,,there is an arc from p,, to p;” with the weight of [, — [, ,else the arc is o-
mitted. If r is controllable, the arc from r to p,, 1s also omitted since it has already been

treated as one element in I,. The arc from p,, to p;” is designed in the same way as Step 1.
Remark 2. In Step 3,when ¢ 1s an uncontrollable transition,it is assumed that @ >0, It
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@< 0,this case should be treated as in the normal
mark 1 above. This assumption ensures that there
to p,..

The basic idea behind the above algorithm is that the monitor
way that it will get or lose the same tokens as the constrained

lat(—?d transitions fire. Step 2. 1 ensures that the monitor can track the set of marking for
which the control constraint (1) can be violated due to uncontrollable firing sequences. To
compensate for the excessive firing of the influence transition caused by the conflict, Step
Z. 2 also connects an arc from the monitor to the conflicted transitions that are not in the PP.

Example 4. By the construction algorithm,the monitor shown in Fig. 2 is constructed
to track the state of given constraint (2). Note that the arcs between p.. and t;; and #; are
designed according to Remark 1 and the weight of arc (z;5,5,) is 2.

By the algorithm,the following lemma can be obtained, which claims that the number
of tokens resided in the monitor place is the maximum that C, can reach under the control

case of violating PPC mentioned in Re-
are no uncontrollable input transitions

1s constructed in such a
places will do when the re-

of u,,.
Lemma 2. For any marking m,max[ M:(m) | =m(p,.).
From Lemma 2,we have the following corollary.
Corollary 1. For any marking m € Q,max| Mc(m) |<b if and only if m(p,,)<b.
The following lemma states that the monitor has no influence on its output transi-

tions.
Lemma 3. The monitor is incapable of disabling any already enabled transition in the

plant,

Proof. Suppose ¢t is an already enabled output transition of the monitor place p, and
p. €PtNC,. Then t&€Ci,..—, or t& CC,. By the algorithm,the weight function of the arc
from p,, to t is w. Obviously,m,(p, ) =w. For the case of m(p,,), p; must be marked since

t 1s enabled,and p,, obtains ZZI- tokens when the transitions in ‘%, or the corresponding in-

=1

fluence transitions fire, where [; is the coefficient of p, € ‘?¢[1C,. Note that Elixw when

i=1
te Cll. ., or Zli>w when t € CC,. The additional tokens suffice to make the tnequality

m(p,,) =w hglld. Thus,the monitor will not disable the already enabled transitions in the

plant.
Remark 3. If the transition 7€ “p; is also an output of p,, (under the case of PPC),the

firing of input transition to ‘’¢r should be considered. The firing of input transition to ‘*r

still ensures that the monitor place has enough tokens to enable ¢z and r simultaneously.

4 Control Synthesis Method

Definition 9. A control policy U is maximally permissive if the following statements
are true:

1) For any m€Q2,R.. (m(p,) U [ 1 Mp(p,,) = ;

2) For any policy U' more permissive than U, for some m € Q,R.. (m(p,.),U") N
Mr(p.)FD.

The above notation R.. (m (p,.),U) denotes the reachable marking set of p, from
marking m under control policy U,and Mz (p,.) = {m(p,) |m(p,) >b,meEQ}. By Corollar-
v 1,the first statement claims that constraint (1) is satisfied. The second statement states
that U 1s more permissive than any other control policies, Similarly, M. (m, U),
R.. (M-(m),U) and max| M-(m),U ] represent M. (m),R.. (M;(m)) and max| M. (m) |

under U, respectively,
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The tollowing theorem implies that if a control policy U such that m(p,,)<<b Y m&E

can be tound,then constraint (1) 1s satisfied.

Theorem 1. For any marking m& Q,max| M. (m) ,U |<<b iff R.. (m(p,,) ,U)Mz(p,)

Proof. From Corollary 1,the proof is trivial. ]

Definition 10. For a transition t& T, ,if ¢ will be enabled and {ires £ times after firing
all the transitions in I',(s) ,then ¢ 1s said to be £-enabled and % is called the enabling factor.

An influence transition ¢ is defined as 0-enabled if it cannot be enabled though all the
state enabled controllable transitions in I, are fired. A controllable transition is conven-
tionally defined as I-enabled if it is state enabled,and 0-enabled otherwise. A A-enabled in-
fluence transition ¢ means that ¢ can fire £ times at most. It is always possible to reduce the
firing times of a k-enabled transition through control disabling some state enabled transi-
tions.

The basic idea behind the following control algorithm is to search a candidate set ¢(m)
of the input transitions to p,, such that p, will get 8’ =b—m(p,,) tokens when the transi-
tions in ¢(m) are permitted to tire simultaneously under marking m. Usually,¢(m) is not

unique.
Algorithm for control.
Step 1. Search a candidate set ¢(m). The k-enabled (k340) transition in ¢(m) is se-

lected from ‘“p,, such that Zktw(t,pm) =p' Y t € ¢(m) where k, denotes the enabling factor

of . When some controllable transitions in ¢(m) or I',(s) (¢+& ¢(m)) are in conflict, their
common input place should have enough tokens to ensure that they are simultaneously fire-
able if control enabled. Otherwise,some controllable transitions should not be selected. If
¢(m) cannot be searched in this way,reduce some enabling tactors that are bigger than 1.
A reduced factor is denoted as K, ,which corresponds to k,. If the search still fails,subtract
1 from &' and re-search until 4'=0. If ¥’ =0 yo(m) =,

Step 2. Determine U(m).

1) For t&€ ¢(m): If ¢ is an influence transition with enabling factor k,,let w(*%,) =1
for each transition £, €I, (s) ,else if £ is controllable,let u(‘*t)=1.

2) For t& ¢(m) : If ¢ is an influence transition, the number of transition ¢, € I', (s) that
should be control disabled is determined in such a way that if any already disabled z,1s ena-
bled,z will be enabled. For other transitions in I (s),let «(‘““t,) =1. If ¢ is controllable
and state enabled,let u(‘“t) =0.

Remark 4. In Step 2.1 of the above control algorithm,if %k, has been reduced to K, ,not
all the transitions in I',(s) are control enabled. The number of transitions that should be
disabled is determined in such a way that after enabling any already disabled ¢,,z will be
enabled and fire more than K, times. Note that it is a case of PPIC when some controllable
transitions in ¢(m) or I,(s) (t&€ ¢(m)) are in contlict,

From the detailed steps of the control algorithm,it is easy to prove the following theo-
rem.

Theorem 2. The obtained control policy U is maximally permissive.

Example 5. In Fig. 2,the control policy U under marking m (m(p,)=1 for :=9,12,13
and m(p;) =0 for others) is determined as follows. By the control algorithm, ¢(m) ={z;5 ,¢1, } ,
both of K,;s and %,;, are 1. K,;s is a reduced enabling factor (k,5 1s 2). Let u(c¢;) =1 for
:=1,3 and u(c,) =0. u(c.) has no influence on the control at current marking since ¢, 1s
not state enabled.

3 Conclusions
This paper has addressed the control synthesis problem for a class of DES modeled by
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a more general CtlPN whose control specification is described as a place marking inequali-
ty. The net can model resource conflict as well as process synchronization. The uncontrol-
lable marking from which the control constrain may be violated 1s tracked by a monitor. A
maximally permissive control policy has been obtained based on the monitor state, Some
restrictions such as PPC (PPIC) needed by previous work are relaxed in this paper.
Though the designed combined PN controller has a characteristic of compiled controller in
acquiring system state,1t does not involve a non-convex constraint transformation that is u-
sually unavoidable in the compiled controller when there are some uncontrollable transi-
tions in the net, In the future,it is necessary to extend the method to a non-ordinary PN.
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