%20 % 5 H 3 4 % Vol. 29, No. 5
20034 9 H ACTA AUTOMATICA SINICA Sept. , 2003

Robust I, — [, Filter Design for Uncertain
Discrete-Time State-Delayed Systems”
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Abstract This paper is concerned with the problem of full-order robust I, — . filtering for uncer-
tain discrete-time systems with a single delay in the state. The uncertain parameters are supposed
to belong to a given convex bounded polyhedral domain, entering into all the matrices of the sys-
tem state-space model. Sufficient conditions are established in terms of linear matrix inequalities
for the existence of filters guaranteeing a prescribed energy-to-peak disturbance attenuation level
for all possible uncertainties and time delays., And the admissible filter can be found by solving a
convex optimization problem with global convergence assured. A numerical example demonstrates
the validity of the proposed filter design procedure.
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1 Introduction

Time delay exists commonly in dynamic systems due to measurement, transmission
and transport lags, computational delays, or unmodeled inertias of system components,
which has been generally regarded as a main source of instability and poor performance.
Therefore, in recent years considerable attention has been devoted to the analyses and syn-
theses for time-delayed systems. In contrast with the great number of results obtained for
controller designs, the filtering problem receives relatively less attention and still leaves
much to be investigated, especially for systems with both parametric uncertainties and
time delays. For discrete-time state-delayed systems, both Kalman filters'!’?*) and H. fil-
ters-®**'have been designed. In this paper, another important performance (/, —[..) is in-
troduced, upon which the corresponding energy-to-peak filtering problem is considered.

The I, — 1. performance first appeared in [ 5], following which considered the control-
ler design upon such a performance index**!. Then[7,8] introduced it into the filtering
problem, with both full-order and reduced-order filters designed for precisely known sys-
tems. Very recently, [ 9,10 ] further extended these filtering results to systems with pa-
rameter uncertainties. However, to the best of the authors’ knowledge, the I, — .. filte-
ring problem has not been addressed for time-delayed systems, whether with or without
parameter uncertainties,

The main objective of I, — /., filtering problem is to design filters guaranteeing a pre-
scribed [, —[.. disturbance attenuation level for the filtering error system with respect to all
energy bounded disturbance signals. We consider a class of discrete-time systems with a
single delay in the state and parameter uncertainties residing in a polytope. Sufficient con-
ditions for the existence of full-order robust /, — /.. filters are established in terms of linear
matrix inequalities (LMIs) and the filter design problem is finally cast into a convex opti-
mization problem, which can be easily solved via etfective interior point algorithms.

2 Problem formulation
Consider the following uncertain discrete-time state-delayed system:
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x(k+1) = Ajx(k) +Ax(k—d) +Bo(k), x(k) =0, YA (1)
y(k) = Cx (k) +Dw(k), z(k) = Hx(k)
where x(k) € R" is the state vector, y(k) € R™ is the measurement output, z(k) &€ R? is the
signal to be estimated, w(k) € R? is the disturbance input, and d=0 1s a known constant
delay. Suppose the system matrices are uncertain but belong to a given polytope

M=[A,,A;,B,C,D,H]E & (2)
f=={[A, (1),A,Q),BQR),CQ),DQR),HQ) ]=

ZAI'I:AUMA:{:‘sBHCHDHHi]; Zsj/lf = 1,4 ;O}
i=1 =1

Construct the following full-order filters
xp(k+1) = Apxr (k) +Bry(k), xg(0) =20 (3)
z2p (k) = Cpxp(k)
Then the filtering error system can be described by

E(h+1) = AjE(k) + A KE(Ek—d) +Bo(k), Ek) =0, ViE<O (4)
e(k) = CE(k)
where E(R) ={xT (k) ,x;F(R)} T, e(k) =z(k) —zp (k)
— . B AU O ] — L _Ad- -— _ B B ] = _ . L
AG_,_BFC Al Ad—_o_, B__BFD , C=[H Crl, K=1[1I 0]

(5)
and I denotes an identity matrix of appropriate dimensions.

Our purpose i1s to design filters of form (3) for system (1), which guarantee: a) the
filtering error system (4) is asymptotically stable when w=0;b) the I, —[.. gain of the fil-
tering error system (4) is below a prescribed positive constant ¥, 1. e. , under zero initial
conditions

le|2 < ¥ o] Yw € L,[0,00) (6)

where||@| %= EcoT(k)co(k) , and |e|% = sup {e" (k)e(k)}. Filters satisfying the above
k=0

two conditions are called [, — .. filters. In the following, [A.:sA4 »B;,C, ] denotes matri-
ces [ AgivAg s B;»C;,D;, H; ] evaluated at each vertex of the polytope.

3 [I,—I. filtering analysis

To facilitate the presentation of our results, first consider the system with exact data,
i.e., MER is fixed.

Theorem 1. Consider system (1) with M & R fixed and let y>>0 be a given constant.
Then the filtering error system (4) is asymptotically stable with (6) guaranteed if there
exist matrices P€E R***" and Q& R " satisfying

__P PEO PAd PB“

* —P4+K'QK 0 0 P CT-

) . B AN M (7),(8)
% * ¥ — I

where * denotes the entries induced by symmetry.
Proof. First, the asymptotical stability of the filtering error system (4) with @=0 1s
established. Choose the following Lyapunov functional candidate;

V(ER)) = ET(RMPER) + D ET(HK QKE(s) (9)

s=kb—d
where PE€ R**?* and Q€ R™*" are positive definite matrices to be determined. Then along

the trajectory of system (4), we have

AV(ER)) = V(E(E+1)) —V(ER)) =
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ET(B)[ATPA, — P+ KTQK JE (k) + 28" (R)AT PA ,KE(k — d) +

E'(k—d)K'[AJPA, — Q]KE(R—d) =
n' (k)En(k)

where

TATPA, — P+ K'QK AIPA, ]
. 4T Ter VT 5. 0 0 d
n(k) = {E (k) &E(k—dAK" ) = « ATPA,— Q]
By Schur complement, (7) guarantees H<O Therefore, from the standard Lyapunov
stability theory we can conclude that the filtering error system (4) is asymptotically sta-

ble. To establish the I, —I.. performance, consider the following index.

J=V(E®R) — ZmT(s)m(s) (10)

Under zero initial condition V(E(k)) | a=o ""0 Then for any nonzero @€ ;| 0,o0) and
£ >0,we have

J=V(EWRE) —VER)) |imo— D 0" (Dals) = DI [AVEG) — o' (Dals)]
s=0 s==0)

—1
= E n' (s)Im(s)
where T

n(s)={E'(s) & G—ADK' o' ()},

ATPA, — P+ K'QK  A{PA, ATPB -
1= * ATPA,—Q AlPB
% % BTPB — I

By Schur complement (7) guarantees [I<{0, which implies J<C0. Then from (9) and
(10) we have

ET(R)PE(R) < V(E(R)) < ZmT<s>w<s> (11)
On the other hand, by a Schur complement operatlon (8) 1s equivalent to
C'C << ¥'P (12)

Now we can conclude from (4), (11) and (12) that for any 2 >0 there exists
—

e" (B)e(k) = ET(BCTCE(R) < YE'(BMPER) <7 D 0" (Do) < ¥ > o' (als)

s=0

Taking the supremum over £>>0 yields (6). And this Ect;}ncludes the proof.
Extend Theorem 1 to uncertain cases, and we obtain the following corollary.
Corollary 1. Consider system (1) with M€ R representing an uncertain system and let

vy>0 be a given constant. Then the filtering error system (4) 1s robustly stable with (6)

guaranteed if there exist matrices P& R**** and Q& R™*" satisfying

“_P PE@I' Pg_df PB;‘—
—P+K'QK 0 0 P Ci 7 -
____Q O <O! _* ),ZI“>0! VI"""— ] ,S
% * ¥ — J_

(13),(14)

4 [,— 1. filtering synthesis

Theorem 2. Consider system (1) with M & R {ixed and let y>0 be a given constant.
Then an admissible I, — [.. filter exists if there exist matrices R€ R**", F& R*™", Q€
R™", Ar€R™", BF€R™", Cpr € R?*" satisfying
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—R — F RA, +B:C RA, +B:C+Ar RA;, RB + BiD"
* ""'F FA FA FAd FB — -
’ ’ R F H'
¥ * % 3% — O -r ’ -
% ¥ * * * — 1 _
(15),(16)
Furthermore, under the above conditions, an admissible /, — /., iilter can be given by:
AF — (F_R)_IA_F’ BF — (F_R)_IBFg CF — CF (17)
—R F_.

>0, I—RF™! is nonsingular and F—FR™' F>0.

Proof. Since (16) implies

x F

Therefore, we can always find square and non-singular matrices M and N satisfying I —RF™!

=MN"'. Now introduce the following matrices
"R I- I F-

Jpﬁ_MT 0 Js = 0 NT_ (18)
_ P, P07 TR M )
. 1 — p—

With R>0,F>0,F—FR 'F>0,MN"'=I]—RF™! and by means of matrix inverse
lemma, we can conclude that P;; >0 and P,, — PLP;'P,=M'R'F[F—FR 'F]'FR'M

>0. Thus we have P>0 by the Schur complement. Performing congruence transtorma-
tions to (15) by J,=diag{I,F ',I,F',I,I} and to (16) by J,=diag{I,F',I} yields

—R —1 RA,+B:C RA,F'4+B:.CF'+AF' RA, RB+ BgD"
* — F! A, A, F! Ay B
% % — R+ Q — I 4+ QF™! 0 0 < 0
* * % — F '+ F'QF™! 0 0
% % % — Q 0
% % ¥* ¥ * — T ~
(20)
"R I H' i
* F' F'H"—F1I!ICLI>0 (21)
% * 2l | )

Define the following matrices
Ar = M'AF'N', B =M'By, Cp=CpgF'NT (22)
Since M, N, and F are all non-singular, the matrices (Ar, Br, Cr) are uniquely de-
fined. Then with the standard matrix manipulations, it 1s not difficult to show that (20)

and (21) are equivalent to

— J5J s JEA T s JEA, JiB

% —Jil s +JSKTQKJs 0 0 JiJe J3CT-

X% % —Q 0 <> B v- I _>0
] ¥ * X% -——IJ

(23),(24)
Performing congruence transformations to (23) by Jy==diag{Js',Js'sI,I} and to
(24) by J,=diag{Js',I} and considering (19) yield (7) and (8). Then we can conclude
from Theorem 1 that the filter with a state-space realization (Ar,Br,Cr)delined in (22)
guarantees that the filtering error system (4) is asymptotically stable with an /, —I.. noise
attenuation level 7.
From the above proof we know that the filter matrices can be calculated from (22).
However, there seems to be no systematic way to determine the matrices M and N needed
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for the filter matrices. To deal with such a problem, first of all, let us denote the filter
transfer function from y(&) to zx (k) by Tw = Cr(2I— Ar) ' Br. Substituting the filter
matrices with (22) and considering MN'=1—RF™! yield T., =Cpl[2I—(F—R) 1Az 1!
(F—R) !Br. Therefore, an admissible filter can be constructed by (17).
Then we have the following corollary.
Corollary 2. Consider system (1) with M & R representing an uncertain system and let
¥y>0 be a given constant. Then an admissible robust I, —I.. filter exists if there exist ma-

trices RER™", FERY", QER™, A€ R™", BR€ R"™™, Cr €& R?”*" satisfying

—R —F RA,; +B;C; RA,; + B:C;+Ay RA; RB;,+ B:D;"
x —F FA,; FA,, FA, F B,
% % — R+ Q —F+Q 0 0
% % * —F+Q 0 0 <0 (25)
¥ % * — @ 0
% ¥ ¥ ¥ ¥ — ] |
"R F H -~
x F HI —Cr|>0, Vi=1,,s (26)
x % I

Furthermore, under the above conditions, an admissible /, —I.. filter can be given by
(17).

Remark 1. Corollary 2 casts the robust /, —[.. filtering problem for system (1) into an
[LMI feasibility test, and any feasible solution to (25) and (26) will yield a suitable robust
filter. Note that (25) and (26) are LMIs not only over the matrix variables, bust also over
the scalar y*. This implies that the scalar ¥° can be included as one of the optimization var-
iables for LMI (25) and (26) to obtain the minimum noise attenuation level. Then the op-
timal full-order robust I, — /.. filter can be readily found by solving the following convex
optimization problem:

min %) subject to (25), (26) with § = ¥ (27)

R, F,QuAg:Bp Cprd

The minimum noise attenuation level is given by v* = /8" , where §" is the optimal
value of §, and the corresponding filter is given by (17).

5 An illustrative example
Consider the following uncertain discrete-time system:

xk+D =] 0 "+ -+ ° Jow (28)
L— 0.2 o 0.1 p 0.4

y(k) = |1 0]x(k)+0.4w(k), =z(k) =11 2 |x(k)
where d_=0 1s a constant delay, and p represents an uncertain parameter satisfying p] <.0. 2.
Assume w(k) is an energy-bounded signal and our objective is to design a robust [, — . fil-
ter for estimating z(k). By solving the convex optimization problem (27), we can obtain
the minimum noise attenuation level y* =0. 4565 with the associate filter matrices

A= [ OO0 0,298 1 F0.0001T 0 gsss 1 saan) oo
Figure 1 shows the [, — .. disturbance attenuation level bound of the filtering error
system by connecting the obtained filter (29) to (28) for the whole uncertain domain,
which 1s evaluated by Theorem 1 in a pointwise manner. The effectiveness of the filter de-
sign 1s apparent.
Figure 2 presents the simulation curves of estimating signal z(%k) by filter (29) for the

fixed system p=0. Here we assume w(k) to be
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0.5
T Y*=0.4565 |

0. 4
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— 0. 2 — 0. 1 0 0.1 Q. 2

o

Fig.1 Disturbance attentuation level of the filtering error system

(2, 20 << B < 30
w(k) =<—2, 20< k<30 (30)
0, else

From the figure we can see that w(k) drives zr (&) to deviate from 2(k). However,
when w(k) 1s zero, the deviation tends to be zero due to the asymptocal stability of the fil-
ter error system. Now we will further analyze [, — .. performance. Fig. 3 gives the chan-
ging curves of the disturbance signal and the filtering error signal. From (30) and Fig. 3,

we obtain that ”a)"z:\/ZmT(k)m(k) =9, 3808 and |[e] . 2\/sgp{eT(k)e(k) b =0.1735.
E=(

Then 1t can be easily established that =0, 0187<y* =0, 4565, showing the effective-

ness of the filter design procedure.
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Fig.2 =2(k) and zp(k) signals Fig.3 Disturbance and filtering error

6 Concluding remarks

The [, —[.. performance index is introduced into uncertain discrete-time state-delayed
systems and full-order robust I, —/.. filters are designed by means of linear matrix inequali-
ties. It should be noted that the filtering analysis and synthesis addressed in this paper are
delay-independent, and will be inevitably conservative in the presence of small delays.
Therefore, further investigation efforts can be directed at developing delay-dependent ap-
proaches to the filtering problems for time-delayed systems.
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