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Abstract This paper proposes fault tolerant algorithms for routing mobile agents in a single channel
wireless sensor network which cover every node in the network. These algorithms use local knowledge
(assume no knowledge of global deployment or topology, etc). We propose the algorithms and show
mathematical analysis to support our claims. The paper ends with simulation studies and discussion
of results.
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1 Introduction

Ad hoc wireless sensor networks (WSN) are gaining prominence in areas of sensing, event detec-
tion and target tracking. Applications of this technology range from monitoring and control in military,
ecological, environmental and domestic systems. WSNs are also used in automating buildings, uni-
versities factories etc. The Wireless sensor networks are one of the most constrained computational
environments with restricted battery power which penalizes excessive network transmissions and CPU
utilization. Algorithms for such networks must be computationally low cost, less prone to sensor failure
and highly energy efficient. Further, they must not depend on any network topological information
for efficient or correct operation as random deployment means such information is very expensive to
gather. We consider the problem of designing algorithms which result in some computation occurring
on all nodes of a sensor network. We propose three algorithms which meet some of these objectives.
1.1 Why a mobile agent based approach?

Mobile agents carry code and data which enables them to take dynamic decisions which may
not be possible in other solutions. For example, while calibrating a sensor network, several schemes
require more than one sensor to be involved in the process. This may need logic (code) to be carried
around to the nodes to determine which sensors need to be involved in the calibration. Further, the
agents running our algorithms return to the node (which originated the process) with the status of their
activities which could contain valuable information they have gleaned from the sensor network.
1.2 Some applications of our solution

There are several problems which can be easily solved using our algorithms directly, especially
problems which need every sensor to be reached and some data gathered from each. For example

1) Propagation of model parameters to every sensor node for systems which rely on models whose
parameters frequently change with time or environmental conditions. For example, Elnahrawy and
Nath[2] describe an approach which needs a noise model and prior knowledge. Our solution could
update sensors with this information.

2) Global calibration of communication and sensing parameters of the sensors themselves. For
example, the average large scale path loss for an arbitrary RF T-R separation and the speed of sound
(for acoustic sensors).

3) Software redeployment: The mobile agents help identify if some sensors are running faulty
or obsolete software and prompt them to update their versions from a base station or another sensor
node in the sensor network. Even though Reijers and Langendoen[1] describe a scheme for distributing
software updates wirelessly in a sensor network, their paper does not discuss a practical scheme which
ensures that these updates actually reach every sensor in the network.

2 Related works

Marwaha et al [2] describe a hybrid algorithm which reduces route discovery and end-to-end la-
tency in mobile ad-hoc networks. Their algorithms appear to be a product of intuition rather than
based on concrete mathematical proofs. Their paper considers algorithms for route updations while
our algorithms are for visiting all nodes for the purpose of parameterization, calibration, software rede-
ployment, etc. Further, agents in their work act independently, which causes many of them to repeat
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what others are doing. In our scenario, we ensure our “labeling” scheme in multiple agent schemes
works such that each sensor is visited by at most one agent with the primary aim of reducing latency.
Further, our paper goes on to describe an algorithm which uses both agents and queries. Wu et al [3]

describe a genetic algorithm based approach to solving the mobile agent routing problem after proving
the optimal routing of agents in a WSN to be NP complete. Their approach, however, presupposes
existence of global information and a hierarchical model of the wireless sensor network. This is different
from our view where we do not put any such topological restrictions.

3 Problem formulation

3.1 Assumptions

We assume that each sensor contains a node identifier which could perhaps be pre-distributed.
The node identifier for the n′th sensor can be represented as IDn. The edge set E(G) which represents
the communication links in the wireless sensor network G forms according to the spatial constraint

∀u, v ∈ V (G)
“
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, where r is the communication radius of the sensors in

question.
3.2 Agent

An agent Ai is defined as an entity consisting of data, code and state. We formally define
jump(Ai, x, y) as the agent′s move from sensor x to sensor y.
3.2 Itinerary

An itinerary Ui of agent Ai is defined such that agent Ai takes subset of G while performing it’s
task. An itinerary history of agent Ai is defined as HAi

. When an agent jumps from x to y, it stores
the ID of y on the itinerary history (which we also call the stack) and performs an operation g(), which
is a function evaluated at each sensor which could include gathering data, setting some flags, triggering
operations in every sensor, etc. If y already exists on the itinerary history, it does nothing. Stack
operations like push and pop are used on the itinerary history.

4 Our algorithms

Given a randomly deployed wireless sensor network, represented by a fully connected graph
G(E, V ), the problem we wish to solve is to be able to visit every sensor in it. This problem is
equivalent to determining a Hamiltonian cycle in a graph G is a well known NP complete problem[4].
Given these requirements, we propose three algorithms in our paper. The first algorithm utilizes a
single agent to traverse the network and is based on a variant of the depth first search(DFS). While
conventional depth first search (DFS) uses coloring, we use a more efficient mechanism utilizing two
stacks. This is more energy efficient than conventional color based DFS. The reason is that the single
agent would have to reach a sensor to determine if it has been colored already. In our case, that extra
jump to a sensor is eliminated. We look at algorithm 1 which uses a single agent. We note that in the
algorithm, u always denotes the ID of the sensor on which the agent resides and v the ID of the sensor
on which the agent was residing before jumping to u.

Algorithm 1.

Visiting vertices in G using a single agent
REQUIRE: u always denotes the ID of the sensor on which the agent
resides and v the ID of the sensor on which the agent was residing
before jumping to u
COMMENT- Initialization done only at first node
agentState = firstV isit
Stack = {Φ}
WHILE stack is nonempty

IF agentState is firstV isit
COMMENT–Application specific activity at sensor
g()
IF all neighbors of u already on stack

agentState = recede
jump(A, u, topOfStack(stack))

ELSE
findNext(N(u))

ENDIF
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ELSE

COMMENT- We have been to this vertex before

pop(stack)

findNext(N(u))

ENDIF

ENDWHILE

subroutine: findNext(list)

find w such that IDv 6 IDw 6 IDx∀x ∈ list) ∧ w /∈ stack ∧ w /∈ exceptionList

IF w ∈ stack ∧ IDu > IDw

add(w,u) in exception list

repeat previous step of finding w

ENDIF

IF no such w exists

STATE jump(A, u, topOfStack(stack))

ENDIF

agentState = recede

jump(A, u, w)

return to main routine

It is noteworthy that when the number of sensors failing increases, a part of the graph gets
disconnected and hence there is no way any agent can reach some sensors. That explains why some
sensors (which are alive) are not reached by any agent.

4.1 Using more than a single agent

A single agent is far more prone to sensor failures and takes longer amount of time than if we used
more than one sensor. We now propose a method using multiple agents {A1, A2, A3, · · ·} and prove an
improvement in each of the areas enumerated above where a single agent algorithm performs poorly.
To ensure integrity, we must ensure that ∀i, j ∈ [1, n], CAi

∩ CAj
= {φ} if i 6= j, where CAi

is the set
of vertices which agent Ai visits. Based on a system parameter λ ∈ Z+, an agent A traverses a random
path Pl in G. Pl = {w0, w1, · · · , wn−1} is a path chosen randomly such that it must have at least λ
unique vertices and is called the labeling path. The set Lλ = {l0, l1, · · · , lλ−1} is defined as the label
set. A assigns labels as follows χ : Pl → Lλ such that χ(wr) = lr mod λ. Upon reaching wn−1 ∈ Pl,
A replicates itself into λ agents which traverse backwards along Pl counting the vertices incident upon
each x ∈ Pl using the algorithm similar to the one used by a single agent. This scheme partitions the
graph G.

Let us now turn our attention to the improvement this scheme offers when vertices fail. Since the
labeling partitions G, each vertex x ∈ Pl has some neighbors Ni(x) such that ∀y ∈ Ni(x) =⇒ y /∈ Pl.
This is called the subtree incident upon x such that |Ni(x)| > 0. Let pi be the probability of vertex
failure when an agent Ai traverses the subtree incident at wi. pi depends on how many nodes are in
Ni(x) and the time Ai spends in Ni(x) but we are not interested in those questions. Our objective is
to show that with an increase in λ, the expectation of the count increases. Suppose λ = 1 and we use
one label, which is identical to a single agent based count. In that case, the expectation of the count is

C1
av = n(G)

Y

i∈[0,n−1]

(1− pi) where CA1
= V (G).

For the general case, Cλ
av =

X

(06k6λ−1)
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|

Y

(i | i mod λ = k)

(1− pi) where
[

(16k6λ)

CAk
= V (G).

For a equally partitioned graph, ∀i ∈ [0, λ−1], pi = p. In this case, Cλ
av = (1−p)

λ
n n(G). Clearly, since

p 6 1, Cλ
av becomes smaller as

λ

n
→ 1. In the general case n(G)(1−pmax)

λ
n 6 Cλ

av 6 n(G)(1−pmin)
λ
n ,

where pmin = min{p1, p2, p3, · · · , pn} and pmax = max{p1, p2, p3, · · · , pn}. Clearly, as λ increases, both
the lower and upper bounds increase, increasing the value of Cλ

av. Now we turn our attention to latency.
We assume that the latency Λ (time taken) for an agent Ai to reach the sensors in G is proportional

to the number of vertices reached by Ai, CAi
. For λ = 1, Λ ≈

X

(06k6n−1)

Ck. For the general case,

Λ = max{CA1
, CA2

, CA3
, · · · , CAλ

}. CAi
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X
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Ck. Clearly,
X
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Ck <
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Ck for

λ > 1. With this justification, we now present an algorithm which reaches the vertices using λ agents.
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We present the Algorithm 2 which reaches every sensor and uses more than one agent. This
algorithm reaches every sensor and performs the sensor specific processing which is application specific.
In the first line of the algorithm, u is assigned the ID of the current vertex where the processing begins.
In line 2, Pl is chosen from V (G) such that |Pl| > λ. During the jump call, the agent A will find itself
at the vertex corresponding to the last entry in Pl. This is followed by a call to the replicate function
which replicates the agent into λ agents {A1, A2, · · · , Aλ}. From that point on, each of the agents acts
independently and reaches every sensor not already labelled by another agent or labeled by it′s own
color. After the end for (end of the for loop), the agents act independently as per Algorithm 1.

Algorithm 2. Visiting vertices in G using λ agents
REQUIRE- u← ID of the current vertex
choosePl ∈ V (G) such that |Pl| > λ
∀x ∈ Pl

labelcurrent node ← label
label← (label + 1)modλ

COMMENT- The Agent A will find itself at the vertex corresponding to the
last entry in Pl

jump(A, u, x)
COMMENT- replicate agent A into λ agents {A1, · · · , Aλ}, from this point on
each agent shall execute seperately reaching every sensor which is not labelled
by any other agent or already labelled by it′s own color.
replicate()

endfor
All λ agents perform operations independently as in Algorithm 1

4.2 Queries and agents

A query q is defined as a question/response mechanism initiated by the sender of the query Sq

to obtain a certain information qi from the recipient of the query Rq. Queries in sensor networks are
cheaper than transmitting agents as they are smaller in size. In this section, we look at queries and
agents working together towards achieving a common goal. The queries are cheap because of their
small size but their cost increases explode exponentially with query depth (as their replies cannot be
aggregated leading to an increase in cost) while an agent is larger than a query but it does not multiply.
Intuitively, if we use an agent which travels only to some sensors and sends queries to it′s neighbors
within a small depth triggering off the function g() to be evaluated in them, we should have a lower
energy consumption. This is because the number of sensors to which the agent has gone is reduced as
the agent is larger than the query packet.

Suppose a query is initiated at sensor u; the set of sensors (denoted as Nd(u)) which have a path
of length d or less from u are said to be within depth d.

At a sensor u, the agent issues a query of depth d and all sensors in Nd(u) execute g() and reply
to the query with basic topological information. The agent at sensor u determines which sensors in
N1(Nd(u)) − Nd(u) it needs to visit and proceeds towards those sensors. It uses the stack as in the
previous algorithms to keep track of where it is going. The subset N1(Nd(u))−Nd(u) deserves special
mention. This subset is empty if all the sensors at depth d from u have neighbors within Nd(u), in
which case queries reach all the sensors and we do not need to dispatch an agent further. All sensors
visited by the queries are marked, and once marked, those sensors do not respond to further queries at
later time. Algorithm 3 works on these principles.

The cost of a depth d query can be shown to be bounded as

X

06k6d−1

(q + ku)dk−1
max + q

′

(
dd+1

max − (d + 1)dd
max + 1

(dmax − 1)2
)

where dmax is the highest degree of the sensor graph G, q, q
′

, and k are constants. This expression
is clearly exponential in d. For queries to be effective, the depth d must be large enough to avoid the
agent visiting many sensors (and saving power) without the queries themselves consuming too much
power. We will show in simulation that such an optimal d can be determined.

Algorithm 3.

REQUIRE:u← ID of the current vertex
agentState == firstV isit : Initialization done at first vertex
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WHILE 1

IF agentState == firstV isit

COMMENT - Build local topological information using queries of depth d from vertex u

Nd(u)← Query(u, d)

Ru = N1(Nd(u))−Nd(u)

IF Ru == Φ

agentState = recede

jump(A, u, topOfStack(stack))

endif

determine w ∈ Ru such thatIDw /∈ stack

jump(A,u, w)

ELSE

pop(stack) : Note- agent state is recede

find w ∈ Ru such that w /∈ stack

IF ∄w

jump(A, u, topOfStack(stack)

endif

agentState = firstV isit

jump(A,u, w)

endif

endwhile

5 Simulations and results

We considered several simulation scenarios where the sensor network was disconnected. We con-
firmed that different instances of the agents mentioned in this paper could traverse every connected
component of the network. Further, we confirmed that the simulation results were as predicted by our
equations.

For illustration, we consider the following scenario (fully connected) of a randomly deployed wire-
less sensor network consisting of 100 sensors over a 196 square meter region. The communication radius
of the sensors was 2 meters.

5.1 Sensor failure and number of agents

Fig. 1 Number of sensors reached (Y axis) vs number of agents used (X axis) under increasing sensor failures

First, we analyze the effect of random sensor failure on the number of sensors which are reached
by our algorithm. We use a different number of agents in our deployment scenario and fail sensors
randomly as the agents traverse the network. We determine how many sensors have been reached by
the agents which have successfully returned to the originating sensor. As is clearly visible from the
results in Fig. 1, if we follow a certain curve (say for example the curve for 5 sensor failures), increasing
the number of agents along the X axis has a clear effect on increasing the number of sensors reached in
the network. In fact, these curves follow the theoretical prediction that the average number of sensors

reached Cav varies as n(G)(1−pmin
λ

n
), where n represents the number of agents used. The curve seems
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to conform to y = n(G)(1−
k

x
).

It is noteworthy that when the number of sensors failing increases, a part of the graph gets
disconnected and hence there is no way any agent can reach some sensors. That explains why some
sensors (which are alive) are not reached by any agent.

5.2 Time required to reach all nodes and its relation to the number of sensors

Next we consider the question of latency which is the measure of time taken for the agents to cover
the sensor network. The Y axis of this curve represents the time taken to cover the network and the X
axis represents the number of agents used. Assuming a network which is equally and fairly partitioned

by the agents (though this may rarely happen in practice), the latency with λ agents should follow a
C

λ
like distribution. Our simulation results show a similar curve to what is theoretically predicted, though

the curve is not exactly a
C

x
like curve, due to the simplifying assumption that the network is equally

partitioned, which did not hold exactly true for our simulation. This can be seen in Fig. 2.

Fig. 2 Time taken in seconds to reach entire sensor network (Y axis) and number of agents used (X axis)

5.3 Hybrid algorithm consisting of agents and queries and energy reduction

Now consider the case of agents and queries. We simulate the process of reaching every sensor
under three conditions when the ratio of cost of query to a sensor vs the cost of sending an agent is

1

1000
,

1

500
, and

1

100
. The results of the simulation can be seen in Fig. 3. The queries grow as an

exponent of the degree of the region of the graph and the agent cost is directly proportional to the size
of the agent. If queries are not performed to sufficient depth, the agents will be dispatched to too many
nodes and hence the full power of the queries will not be exploited. If queries are performed beyond
this threshold, the total cost begins to increase since the query cost is exponential and is not sufficient
to offset the agent cost, no matter how small the query information is.

Fig. 3 Energy consumption (Y axis) plotted against query depth (X axis).

Here too, initially the cost of sending the agent dominates over the cost of queries, hence, the
agent costs need to be minimized. We notice that there is an increase in cost when we increase query
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depth initially. The reason for that phenomenon is that the query depth increase incurs a cost penalty
without sufficiently mitigating the cost in terms of reducing the number of sensors which the agent
visits. As the query depth d reaches its optimal, fewer sensors are visited by the agent. This leads to
the steep reduction in the energy requirement curve as shown. This is very promising.

6 Future work

There is scope for future work in the works presented in this paper. They can be summarized as
1) What is the optimal number of agents needed for reaching maximum number of sensors
2) What is the optimal query depth for algorithm using queries and agents. The query depth is

critical to reduction in power consumption. A clever choice of query depth can increase network lifetime
drastically.

3) Study of more failure mechanisms other than what have been considered in the paper.
4) Theoretical work on the relationship between the query depth d and the query to agent cost

ratio.

7 Conclusion

The need for efficient mechanisms which permit certain logic to reach every sensor to aid cali-
bration, software redeployment, etc has motivated us to present the three algorithms along with the
theoretical analysis and simulation results, all of which are very encouraging.

We presented a single agent based scheme which was simple yet could be improved by using more
agents. While we use theory and simulation to boost our assertions, we present yet another mechanism
using queries and agents, creating a very energy efficient mechanism to achieve the same goal. The
success of this hybrid approach depends very strongly on the query depth d. More future work would
concentrate on the relationship of the parameter d and the parameters of the sensor deployment and
agent cost to query cost ratio etc.
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