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Abstract Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor in-
terference (ISI) and imposes new design and implementation challenges. In this paper, based on
the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are
proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended
Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results
show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster
tracking convergence speed.
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1 Introduction

Target tracking is an essential capability for wireless sensor networks (WSNs) and has been con-

sidered as an ideal problem for studying collaborative signal and information processing[1]. Usually

the tracking system needs to dynamically schedule sensors to undertake the sensing tasks and process

the distributed information with the consideration of the limited resource constraints such as power

or bandwidth. Prominent target tracking approaches include the information-driven sensor query-

ing (IDSQ)[1,2], extended Kalman filter (EKF) based zone prediction[3], and entropy based sensor

selection[4].

Different from the passive sensing mechanism generally used in acoustic, seismic or thermal sensors

where a sensor measures energy already in the environment[2∼4], a sensor adopting the active sensing

mechanism senses the environment actively by emitting energy and measuring the reflected energy. In

this paper, we will consider WSNs of ultrasonic sensors where the sensors are used for ranging of the

target actively.

Ultrasonic sensors have been widely used in location service or node localization in WSNs. MIT

Cricket[5] is a famous in-door location-support system. It allows applications running on mobile or

static users to learn their physical locations by using listeners that hear and analyze information from

beacons spread throughout the building. The distance between a user and a beacon is measured using

the time difference between simultaneously transmitted radio and ultrasonic signals. An active mobile

architecture and a passive mobile architecture are introduced dependent on whether the mobile user

is used as transmitter or receiver. An improved Cricket system is reported by developing a hybrid

approach that runs EKF in the passive mobile mode and relies on an active mobile mode when the

EKF state estimation is not satisfactory. In the Bat ultrasonic in-door location system[6], a wearable

electronic Bat is attached with the object to be located for transmitting a short pulse of ultrasound,

the times-of-flight of the pulse are measured by ultrasonic receivers mounted at known points on the

ceiling. The distances from the Bat to the receivers are calculated and the location of the object is

determined from three or more such distances according to the principle of trilateration.

Different from the Cricket and the Bat systems where the mobile users are collaborative with the

infrastructure, a target in a WSN is non-collaborative with no information exchange with any sensor.

A serious problem in WSN of active sensors is the inter-sensor interference (ISI) when nearby ultrasonic

sensors work simultaneously. Such interference will result in error sensor readings and must be dealt

with properly. ISI also introduces a new technological constraint in design and implementation of a

WSN.

In this paper, we introduce two time-division based distributed sensor scheduling schemes to avoid

ISI. In the periodic sensor scheduling scheme, each ultrasonic sensor senses the target alternatively
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within the predefined time slots assigned to it. Whereas in the adaptive sensor scheduling scheme, sim-

ilar to IDSQ, the next tasking ultrasonic sensor is selected adaptively according to the state prediction

of the target.

The paper is organized as follows: ISI will be described in Section 2. EKF will be introduced

in Section 3. Sensor scheduling schemes, including the periodic sensor scheduling and adaptive sensor

scheduling, will be addressed in Section 4. Simulation results will be reported in Section 5. Finally

conclusions and future work will be introduced in Section 6.

2 Direct ISI and indirect ISI

As shown in Fig. 1, usually the sensing region of an ultrasonic sensor can be approximated by

an area with cone shape. We have identified two types of ISI, direct ISI and indirect ISI. Direct ISI

happens when the sound wave propagates directly from a transmitting ultrasonic sensor (Sensor 1 in

Fig. 1(a)) to another receiving ultrasonic sensor (Sensor 2 in Fig. 1 (a)). Indirect ISI happens when

the sound wave propagates from a transmitter (Sensor 1 in Fig. 1 (b)) to another receiver (Sensor 2 in

Fig. 1 (b)) via the reflection or diffusion by other objects (including the targets). Such an object can

be located inside or outside the sensing range of the transmitting ultrasonic sensor.

Fig. 1 Sensing region, direct ISI and indirect ISI

The approximate direct ISI region and the indirect ISI region of an ultrasonic sensor are illuminated

in Fig. 2. Since direct ISI only requires the single trip sound wave propagation from the transmitter to

the receiver of another ultrasonic sensor, which is different from the sensing mechanism where a round

trip sound wave propagation is required, the direct ISI region of an ultrasonic sensor is quite larger

than its sensing region. It is also shown in Fig. 2 that the indirect ISI region is much larger than its

sensing region and its direct ISI region. More comprehensive ultrasonic sensing and propagation models

to determine the sensing and ISI regions will be studied as future work.

Fig. 2 Sensing, direct and indirect ISI regions of an ultrasonic sensor

3 EKF tracking algorithm

The following constant velocity target motion model is used in this paper:

X(k + 1) = FkX(k) + Gku(k) (1)
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where X(k) is the state of the target at the k-th time step which happens at tk, x(k), y(k) are x- and

y- coordinates of the target at time step k, xv(k), yv(k) are the velocities of the target along x- and y-

directions at time step k, ∆tk is the time interval between the time step k and time step k + 1. u(k)

is the Gaussian white acceleration noise with zero mean and covariance matrix Q.

The observation model at time step k is

zs(k)(k) = hk(X(k), s(k)) + vs(k) (2)

with

hk(X(k), s(k)) =
q

(x(k) − xs(k))2 + (y(k) − ys(k))2

where s(k) is the sensor that gets the range measurement zs(k)(k) at time step k, (xs(k), ys(k)) is the

known location of sensor s(k), vs(k) is the Gaussian white measurement noise of sensor s(k) with zero

mean and variance R(k). s(k) is decided by the sensor scheduling schemes which will be described in

Section 4. ∆tk is not necessary to be the same for each time step k.

EKF operates in the following way: Given the estimate X̂(k|k) of X(k) with covariance matrix

P (k|k), the predicted state X̂(k + 1|k) is calculated as

X̂(k + 1|k) = FkX̂(k|k) (3)

with the prediction error covariance

P (k + 1|k) = FkP (k|k)FT
k + GkQG

T
k (4)

The predicted measurement is

ẑ(k + 1|k) = hk+1(X̂(k + 1|k), s(k + 1)) (5)

Then the innovation, i.e., the difference between the measurement and the predicted measurement, is

given by

γ(k + 1) = zs(k+1)(k + 1) − ẑ(k + 1|k) (6)

with the covariance

S(k + 1) = Hk+1P (k + 1|k)HT
k+1 + R(k + 1) (7)

where Hk+1 is the Jacobian matrix of the observation function hk+1 with respect to the predicted state

X̂(k + 1|k). The EKF gain is given by

K(k + 1) = P (k + 1|k)Hk+1(X̂(k + 1|k), s(k + 1))S−1(k + 1) (8)

and the state will be updated as

X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)γ(k + 1) (9)

with the error covariance matrix

P (k + 1|k + 1) = P (k + 1|k) − K(k + 1)S(k + 1)KT(k + 1) (10)

For details of EKF, the readers can be referred to [7].

4 Sensor scheduling

Sensor scheduling is used to avoid ISI and implement collaboration between sensors. We suppose

the network is synchronized and the time is divided into time slots. The period for each slot should

be larger than the die-out time of the ultrasonic wave in a ranging operation. In this paper, to avoid

ISI, sensors are scheduled such that during any time slot only one sensor in an ISI region can sense the

target. Single target tracking is considered in this paper.

4.1 Periodic sensor scheduling

In periodic sensor scheduling, as shown in Fig. 3, the time is divided into periodic cycles, and

in each cycle, a sensor senses the target alternatively within the predefined time slots assigned to

it. If a scheduled sensor detects the target, it will calculate the time difference between its current

measurement time and the time of the previous time step, then fuse its measurement with the existing
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target estimation using EKF, and forward this new estimation update together with its measurement

time to the next scheduled sensor.

Fig. 3 Sensor scheduling according to ISID

It is not difficult to form an interference graph for a given ultrasonic sensor network in which

each sensor node corresponds to a node in this graph and there is an edge between two nodes if ISI

exists between them. Then the assignment of the time-slots to sensor nodes such that the total number

of required time slots is minimized with the constraint that any two node of one edge can not be

assigned with same time slot becomes the classic graph coloring problem which is well known to be

NP-complete[8]. However optimal solutions can be found for certain networks with specific network

topologies, e.g., the cellular network with the hexagonal cell shape[9].

Sensor scheduling (i.e., to determine the time slot for each sensor) is critical for tracking accuracy.

Because it may be computational prohibitively expensive, efficient heuristics are desirable. Here we use

a very simple heuristic, the incremental sensor ID (ISID) heuristic in which the time slots for sensors

are assigned iteratively and in each iteration the time slot of the unassigned node with minimal sensor

ID is assigned. For example, for a network of 8 nodes where each node is in the ISI region of any other

node, the ISID scheduling result is shown in Fig. 3.

For a larger WSN, the same time slot can be reused by 2 different sensors if they are far away

and do not interfere with each other. One example time slot assignment result for a network with a

specific regular shape is shown in Fig. 4 where the time slot assigned for each sensor is marked by a

digit number beside it. The sensing region of each sensor is shown and the ISI region of sensor 6 is

demonstrated by a solid circle. Any sensors inside the circle can not be assigned to the same time slot

with sensor 6. The reuse of the time slots is also shown in the figure when two sensors are far away.

Fig. 4 Sensor scheduling for a larger WSN

It is possible that for 1 time slot, within one ISI region, an ultrasonic sensor is scheduled for

sensing, but there is no target in its sensing region, as a result no detection can be available for that

time slot. In this case, the current tasking sensor will forward the latest estimation update and the

corresponding update time to the next scheduled sensor without new update. Therefore different from

the classical EKF, the EKF tracking algorithm for periodic sensor scheduling has the following unique

characteristic: 1) at most 1 range measurement data can be available at a time step for each ISI region.

2) range measurements of different time steps are generated by different sensors, i.e., s(k) is different

at different time step, therefore the measurement equation changes at each time step. 3) The time

step index k is only imposed when there is a measurement from a scheduled sensor, therefore, the time

difference ∆tk between 2 successive measurements is variable due to the unavailable measurements

(empty detection) at certain time slots and packet loss during communication.
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4.2 Adaptive sensor scheduling

A critical drawback of periodic sensor scheduling is the existing of the empty detection when a

scheduled sensor can not generate an effective measurement which results in lower tracking accuracy

and wasting power of the sensors. This problem is shown in Fig. 5 for a WSN with 6 ultrasonic sensors.

In the scheduling cycle identified by the solid ellipse, the sensors are scheduled from sensor 1 to sensor

6, however, only sensors 1, 5, and 6 generate effective detections whereas sensors 2, 3, and 4 generate

empty detections.

Fig. 5 Effect and empty detections in periodic sensor scheduling

Adaptive sensor scheduling is introduced to solve this problem by scheduling next tasking sensor

for the next time step according to the predicted tracking accuracy[10] which is derived from the trace

of the covariance matrix of the state estimation. We suppose each sensor knows the measurement

characteristic of the other sensors (such as their locations, orientations and measurement functions).

Using EKF, the current sensor can easily calculate the predicted covariance matrix for any other sensor

according to (4), (7), (8) and (10) without the real measurement is taken using that sensor. The sensor

with the best tracking accuracy is selected as the next tasking sensor. Then the current sensor shall

forward its own measurement time and estimation result to the selected sensor.

Due to the uncertainties in the target motion model, even using adaptive sensor scheduling, it is

still possible that the scheduled sensor can not detect the target. If this happens, this scheduled sensor

will trigger the periodic sensor scheduling mechanism until the target can be captured after which the

adaptive sensor scheduling will be used again.

5 Simulation results

Simulations have been done for comparisons between the 2 proposed sensor scheduling schemes.

As shown in Fig. 6, the monitored field is 300cm×300cm square area. The bottom-left corner of the field

is with the coordinate (0, 0), whereas the upper-right corner is with the coordinate (300, 300). Each

ultrasonic sensor has the maximal sensing range of 300cm and the maximal measurement angle is ±22◦.

There are 8 ultrasonic sensors located along the edge of the area respectively with coordinates (60, 0),

(180, 0), (300, 60), (300, 240), (240, 300), (120, 300), (0, 240) and (0, 120). The orientations of the

sensors are respectively 80◦, 90◦, 170◦, 180◦, 260◦, 270◦, 350◦ and 0◦ such that the field can be covered

mostly and any 2 sensors are not in the sensing ranges of each other. For example, the orientation of

sensor 1 is 80◦ instead of 90◦, such that sensor 7 can not be detected by sensor 1, otherwise the true

detection region of sensor 1 will be reduced greatly because any target in the sensing range of sensor 1

with a distance greater than the distance between sensor 1 and sensor 7 can not be detected.

In this setup, each sensor is in the ISI region of any other sensor. We assume the duration of a

time slot is 50 ms. In periodic sensor scheduling scheme, totally there are 8 sensors in the network,

so 400ms is required for one cycle during which each sensor can sense one time in the periodic sensor

scheduling scheme.

The target has the initial true state (70, 80, 70, 80) and moves according to the constant velocity

model of (1) with Q = 900I where I is the identity matrix. For initialization, we assume the nearest

sensor (sensor 1) detects the target and initiates the tracking procedure. The initial location estimation

of the target is set to the point along the central line of the beam pattern of the detecting sensor with
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the distance to the detecting sensor equal to the initial measurement. The initial velocity estimation of

the target is set to 0. The initial covariance can be set heuristically according to the orientation and

measurement of the detecting target. In this simulation experiment, it is set as Diag(200, 1000, 10,

1000).

A typical true target trajectory is shown by the central line in Fig. 6. The estimated trajectories

of periodic sensor scheduling and adaptive sensor scheduling are also shown in the figure. Their time

slots associated with effective detections are indicated along the true target trajectory by small circles

and “+” symbols respectively. It is clear that the trajectory obtained by adaptive sensor scheduling

is much closer to the true trajectory than that obtained by the periodic sensor scheduling and the

adaptive sensor scheduling generates more effective detections.

In this simulation, totally there are 39 time slots. The associated sensors with effect detections

using periodic sensor scheduling are shown in Fig. 7. There are only 17 effective detections with the

effective detection ratio of 43.6%. For example, for the first cycle, although the sensors are scheduled

from sensor 1 to sensor 8, but only sensors 1, 3, 6 and 8 generate effective detections. The associated

sensors with effect detections using adaptive sensor scheduling are shown in Fig. 8. At all time slots,

the selected sensors generate effective detections achieving the effective detection ratio of 100%. For

example, after the initial detection of sensor 1, sensor 6 is selected and senses the target for 4 successive

time slots followed by sensors 3, 6, 3, 6, 8 and so on.

The benefits of the adaptive sensor scheduling are shown in Fig. 9. Obviously the adaptive sensor

scheduling can converge much faster with higher tracking accuracy than the periodic sensor scheduling.

Fig. 6 True and estimated trajectories of the target Fig. 7 Associated sensors with effect detections

using periodic sensor scheduling

Fig. 8 Associated sensors with effect detections

using adaptive sensor scheduling

Fig. 9 Convergence of the tracking accuracy

6 Conclusions

This paper highlights the ISI problem in a WSN of active sensors and presents two time-division

based distributed sensor scheduling schemes, the periodic sensor scheduling and the adaptive sensor

scheduling. EKF is modified for estimation in periodic sensor scheduling, as well as estimation and

covariance prediction in adaptive sensor scheduling. Simulation results show that the adaptive sensor

scheduling scheme can utilize the sensors more effectively, with fast tracking convergence speed and
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higher tracking accuracy. As the future work, a more comprehensive ultrasonic sensor model for study

ISI is required. Collaborative sensing strategies (for example by using single transmitter with multiple

receivers), and certain simultaneous sensing mechanisms (for example by using code division by means

of specific signal processing techniques) are promising future research topics for WSN of active sen-

sors. This paper uses EKF as the estimation and prediction algorithm, however, it can only deal with

the noises with Gaussian distributions, more advanced techniques (such as particle filter) are required

for sensor scheduling with more general non-linear non-Gaussian systems. Tracking and adaptive sen-

sor scheduling for maneuvering targets, for multiple targets, using multiple modalities are among the

challenging problems for further study.
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