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Abstract The construction of control Lyapunov functions for a class of nonlinear systems is con-
sidered. We develop a method by which a control Lyapunov function for the feedback linearizable
part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov
function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control
Lyapunov function for the overall nonlinear system is established.
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1 Introduction

The seemingly obvious concept of a control Lyapunov function (CLF) introduced by Artstein[1]

and Sontag[2] has made a tremendous impact on stabilization theory. It converts stability descriptions
into tools for solving stabilization tasks. One way to stabilize a nonlinear system is to select a Lyapunov
function V (x) and then try to find a feedback control u(x) that renders V̇ (x, u(x)) negative definite.
With an arbitrary choice of V (x) this attempt may fail, but if V (x) is a CLF, there are many control

laws that render V̇ (x, u(x)) negative definite, one of which is given by a formula due to Sontag[3]. The
construction of a CLF is a hard problem, which has been solved for special classes of systems. For
example, when the system is in the strict feedback form, CLFs can be constructed by backstepping[4].
For a linear system, we have obtained a universal formula to construct CLFs[5].

In this paper, the construction of control Lyapunov functions for a class of nonlinear systems is
considered. For the feedback linearizable part, CLFs can be constructed by the method presented in
[5]. Based on a CLF of the feedback linearizable part and a Lyapunov function of the zero dynamics,
we present a method to obtain a CLF for the overall nonlinear system.

2 System description and preliminaries

Consider a nonlinear system described by

ż = Q(z,x) (1a)

ẋ = Ax +B[F (z,x) +G(z,x)u] (1b)

y = Cx (1c)

where x ∈ Rr, z ∈ Rn−r are the states, u ∈ Rm is the input, y ∈ Rl is the output. Q(z,x) :
Rn → Rn−r is smooth. fi, gij : Rn → R, are assumed to be smooth with fi(0, 0) = 0, i = 1, 2, · · · l.

F (z,x) = [ f1(z,x) f2(z,x) · · · fl(z,x) ]T, G(z,x) = (gij(z,x))l×m and rank(G(z,x)) = l.

{r1, r2, · · · rl} is a vector relative degree of system (1), and r1 + r2 + · · · + rl = r < n. (1b) has the
following cannonical form:

A=blockdiag{A1, · · · , Al}, Ai =

266664 0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0

377775 , B=blockdiag{B1, · · · , Bl}

Bi =
h

0 · · · 0 1
iT
1×ri

, C=blockdiag{C1, · · · ,C l}, C i=
h

1 0 · · · 0
i
1×ri

.

From Isidori[6], if an affine nonlinear system�
ẋ = f(x) + g(x)u

y = h(x)
(2)
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has relative degree r < n for any x ∈ Rn, and the distribution G =span(g(x)) is involutive, then there
exists a global diffeomorphism on Rn that transforms system (2) into system (1).

The dynamics of
ż = Q(z, 0) (3)

is said to be the zero dynamics of system (1).
Assume M is an analytic n−dimensional manifold. Let V : M → R+ be a differential function.

V is said to be positive definite on M if V (x) > 0, x ∈M − {0} and V (0) = 0; V is said to be proper
if V (x) → ∞ as ‖x‖ → ∞.

Definition 1. If there exists a differential, proper and positive definite function V : M → R+

such that
inf
u

(LfV (x) + LgV (x)u) < 0 (4)

for each x ∈M −{0}, then V (x) is said to be a control Lyapunov function (CLF) for system (2) on M .
Assumption 1. For system (3), there exists an open set Λ ⊂ Rn−r, a nonnegative real number

h > 1, and a differential function U : Λ → R+ such that the set {z : U(z) 6 h+ 1} is a compact subset
of Λ, and we have

U̇(z) 6 −φ1(z) (5)

where φ1(z) is continuous on Λ and positive definite on the set {z : U(z) 6 h+ 1}.

Lemma[7]. Let E be a compact set in a product space Rm × Rn, and denote by Ez and Ex

its respective projections (i.e., E ⊂ Ez × Ex). Let χ(z) be a continuous real function on Ez which
is positive definite on the projection of the set {(z,x) : x = 0} ∩ E. Let ψ(x) be a continuous real
function on Ex which is positive definite on Ex/{0}. Let ξ(z,x) be a continuous real function on E
which satisfies ξ(z,x) = 0 for any (z,x) ∈ {(z,x) : x = 0} ∩E. let κ be a function of class-K∞. There
exists a positive real number K∗ such that for all K > K∗,

−χ(z) − κ(K)ψ(x) + ξ(z,x) < 0, ∀(z,x) ∈ E (6)

3 Main results

Consider system (1b). Divide Ai and Bi into their block forms as follows:

Ai =

"
Ai−1 Ai2

0 0

#
, where Ai−1 =

266664 0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0

377775 ,Ai2 =

266664 0
...

0

1

377775 ,Bi =

266664 0
...

0

1

377775 .
Assume βi1, βi2, · · · , βi,ri−1

are the coefficients of a Hurwitz polynomial

λri−1 + βi,ri−1λ
ri−2 + · · · + βi2λ+ βi1 (7)

Let pi3 > 0, P i2 ∈ Rri−1, p−1
i3 P T

i2 =
h
βi1 βi2 · · · βi,ri−1

i
. Then

Ai−1 − Ai2p
−1
i3 P

T
i2 =

266664 0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−βi1 −βi2 · · · −βi,ri−1

377775
is a Hurwitz matrix. Thus Lyapunov equation

Sri−1(Ai−1 − Ai2p
−1
i3 P

T
i2) + (Ai−1 − Ai2p

−1
i3 P

T
i2)

TSri−1 = −KFi (8)

has a unique positive definite solution Sri−1 for an arbitrary positive definite matrix Fi and K > 0.
Let Pri−1 = Sri−1 + p−1

i3 Pi2P
T
i2. For i = 1, 2 · · · l, then each Pri−1 is positive definite.

Since det

�
Pri−1 P i2

P T
i2 pi3

�
= pi3det[Pri−1 − p−1

i3 P i2P
T
i2 ] = pi3det [Sri−1] > 0, Pi =

�
Pri−1 P i2

P T
i2 pi3

�
is positive definite provided that Pri−1 is positive definite.

Use block matrix to express xT, that is,

x
T =

h
xT

1 xT
2 · · · xT

l

i
,xT

i =
h
xT

i,ri−1 xi,ri

i
,xT

i,ri−1 =
h
xi1 xi2 · · · xi,ri−1

i
, i = 1, 2 · · · l.
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Denote P = blockdiag {P1, · · · , Pl}, and

V (x) = x
TPx (9)

Let
ẋ = Ax +Bv (10)

Theorem 1. V (x) = xTPx is a CLF for system (10) on Rr.
Theorem 2. V (x) = xTPx is a CLF for system (1b) on Rr.
Proofs of these Theorems are similar to that of Theorem 1 given in [5], so they are omitted.
In order to give Theorem 3, for any given c > 0, denote S1 = {x : V (x) < c+1}×{z : U(z) < h+1}.
Define the function

W (z,x) =
hU(z)

h+ 1 − U(z)
+

cV (x)

c+ 1 − V (x)
(11)

Then W (z,x) : S1 → R+ is proper on S1.
Theorem 3. If system (1) satisfies Assumption 1, then W (z,x) : S1 → R+ is a CLF for system

(1) on S = {(z,x) : W (z,x) 6 c2 + h2 + 1}.
Proof. Assume W (z,x) 6 c2 + h2 + 1. This implies

V (x) 6 (c+ 1)
c2 + h2 + 1

c2 + h2 + 1 + c
, U(z) 6 (h+ 1)

c2 + h2 + 1

c2 + h2 + 1 + h
(12)

From (12), we get, when W (z,x) 6 c2 + h2 + 1,

c

c+ 1
6

c(c+ 1)

(c+ 1 − V )2
6

(c2 + h2 + 1 + c)2

c(c+ 1)
(13)

h

h+ 1
6

h(h+ 1)

(h+ 1 − U)2
6

(c2 + h2 + 1 + h)2

h(h+ 1)
(14)

By (12) and Assumption (1), the set S is compact. Also, from (12) the projections of S satisfy

Sx ⊂ {x : V (x) < c+ 1}, Sz ⊂ {z : U(z) < h+ 1} (15)

Let f(z,x) =

"
Q(z,x)

Ax +BF (z,x)

#
, g(z,x) =

"
0

BG(z,x)

#
. Then we have

LfW (z,x) =
h(h+ 1)

(h+ 1 − U(z))2
∂U

∂z
Q(z,x) +

c(c+ 1)

(c+ 1 − V (x))2
∂V

∂x
(Ax +BF (z,x)) (16)

LgW (z,x) =
c(c+ 1)

(c+ 1 − V (x))2
∂V

∂x
(BG(z,x)) (17)

Let XT
r−l =

h
XT

1,r1−1 XT
2,r2−1 · · · XT

l,rl−1

i
, F = block diag

h
F1 F2 · · · Fl

i
.

By Theorem 1, when
∂V (x)

∂x
B = 0, we have

x
T(PA+ATP )x = −KX

T
r−lFXr−l (18)

Since rank(G(z,x)) = l, by (17) we have

LgW (z,x) = 0 ⇒
∂V

∂x
B = 0 (19)

By (14),(16), and (18), we get, when LgW (z,x) = 0,x 6= 0,

LfW (z,x) =
h(h+ 1)

(h+ 1 − U(z))2
∂U

∂z
Q(z,x) +

c(c+ 1)

(c+ 1 − V (x))2
x

T(PA+ ATP )x =

h(h+ 1)

(h+ 1 − U(z))2
∂U

∂z
Q(z,x) −K

c(c+ 1)

(c+ 1 − V (x))2
X

T
r−lFXr−l (20)
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In view of (11), (12) and Assumption 1, then

LfW (z,x) 6 −
Kc

c+ 1
X

T
r−lFXr−l +

(c2 + h2 + 1 + h)2

h(h+ 1)
|
∂U(z)

∂z
(Q(z,x) −Q(z,0))|−

h(h+ 1)

(h+ 1 − U(z))2
φ1(z) (21)

Let us define

χ(z) =
h(h+ 1)

2(h+ 1 − U(z))2
φ1(z), ψ(x) =

Kc

2(c+ 1)
X

T
r−lFXr−l

κ = K, ξ(z,x) =
(c2 + h2 + 1 + h)2

h(h+ 1)
|
∂U(z)

∂z
(Q(z,x) −Q(z, 0))| (22)

From Assumption 1, χ(z) is continuous on Sz and positive definite on the projection of the set
{(z,x) : x = 0} ∩ S. Since xiri

= −XT
i,ri−1Pi2p

−1
i3 , i = 1, 2 · · · l, ψ(x) is positive definite on Sx/{0}.

From (22), it follows that ψ(x) is continuous on Sx, and ξ(z,x) = 0, for any (z,x) ∈ {(z,x) : x = 0}∩S.
This demonstrates that the conditions of Lemma are satisfied. It follows that there exists a positive
real number K∗ such that for all K > K∗,

ξ(z,x) < χ(z) +Kψ(x),∀(z,x) ∈ S (23)

From (20)∼(22), we get, when LgW (z,x) = 0,x 6= 0,

LfW (z,x) 6 −
Kc

2(c+ 1)
X

T
r−lFXr−l −

h(h+ 1)

2(h+ 1 − U(z))2
φ1(z) (24)

Let φ(z,x) =
Kc

2(c+ 1)
X

T
r−lFXr−l +

h(h+ 1)

2(h+ 1 − U(z))2
φ1(z). From (24), when LgW (z,x) = 0,x 6= 0,

LfW (z,x) 6 −φ(z,x). From (22) and (23), we have φ(z,x) is continuous on S1, positive definite on
S.

On the other hand, from Assumption 1, when LgW (z,x) = 0,x = 0, z 6= 0, LfW (z,x) =
h(h+ 1)

(h+ 1 − U(z))2
∂U

∂z
Q(z, 0) 6 −

h

h+ 1
φ1(z). In conclusion, LfW (z,x) < 0, for LgW (z,x) = 0, (z,x) 6=

0. Thus W (z,x) is a CLF for system (1) on S.

4 Conclusion

The construction of control Lyapunov functions for a class of nonlinear systems is considered.
We develop a method by which a control Lyapunov function for the feedback linearizable part can be
constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the
feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function
for the overall nonlinear system is established.
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