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Delay Margin for Predictive PI Control System1)
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Abstract The variation of plant dead-time deeply affects the stability of the predictive PI control
system. It is important for designing and applying the PPI controller to calculate the delay margin.
A criterion of stability for the PPI system and the quantitive relationship among the delay margin,
the time constant of the closed-loop system, and the dead-time of the model are given. A graphic
algorithm to compute the delay margin is also developed. The phenomenon that there exist more
than one stability delay zones is discussed. The algorithm is shown to be precise by some simulations.

Key words Predictive PI, stability analysis, stability delay margin

1 Introduction

Due to its simple structure, more than 95% of the control loops are of the PID type in process

control. Most loops are actual PI control[1]. In addition, the process control engineers accumulate

abundant knowledge of maintaining and applying the PID controllers. However, when controlling the

process with delay using the PID controller, the phase of the control loop is increased because of the

existence of delay. Then, the phase margin is decreased. In order to obtain enough stability margins,

the gain cross-over frequency must be decreased, which will reduce the bandwidth and performance of

the closed-loop system.

An additional dead-time compensator in controller will highly improve the performance of the

delay system. The Smith predictor and internal model control are always two adopted methods[2∼3].

Since both of them are model-based control methods and need a precise model of the plant, the closed-

loop stability is sensitive to the modeling error, especially the modeling error of dead-time. A little

modeling error of dead-time may destabilize the system. In addition, more tuning parameters are

needed in these kinds of controllers than those of the PID controller. All above factors restrict the

application of the controllers with dead-time compensator. On the other hand, owning to the fact

that the dead-time compensator will highly improve the performance of the closed-loop system, many

researchers are devoted to tuning controller parameters and analyzing the stability of the closed-loop

system.

Hagglund proposed a tuning method for the Smith predictive control, which was called predictor

PI (PPI) control[4]. The PPI controller had only three adjustable parameters: process gain, time

constant of the closed-loop system, and the dead-time. The first order plus dead-time model was used

to tune the PPI controller. The PPI control system was tuned to the first order plus dead-time process,

in which the dead-time and the time constant of the closed-loop system were chosen as the dead-time

and α times of the time constant of the model, respectively. The PPI controller is successfully applied

to actual process control. In [5], a low-pass filter was introduced to the PPI control systems, which

improved the robustness of the closed-loop systems. In [6], a new robust tuning method was proposed.

The first order plus dead-time model and the relative modeling error were obtained by the moment

identification method. When tuning the parameters of the PPI controller, a specified variation of dead-

time was considered. This tuning method is conservative to the estimation of the variation of the plant

dead-time.

PPI controller is a special case of Smith predictor control strategy. Therefore, the PPI system also

inherits the shortcoming of the Smith predictive control, i.e., it is sensitive to the dead-time variation.

So it is of great theoretical and practical significance for guiding design and application of the PPI

controller to research the effect of the variation of the plant dead-time.

In this paper, the stability analysis of the PPI system in frequency domain is proposed. A new

stability criterion for the PPI system is given. The relationship among the delay margin, dead-time
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of the plant, and the time constant of the closed-loop system are obtained. A graphic algorithm to

compute the delay margin is also given, which enables the designer to do better in comprehending and

applying the PPI controller.

The paper is arranged as follows: at first, the short review of the PPI controller is given in Section

2. Section 3 gives a new stability theorem for the PPI system and its proof. In Section 4, the quantitive

relationship among the delay margin, the time constant of the closed-loop system, and the dead-time of

plant are given. In addition, a graphic method of computing delay margin is proposed, whose accuracy

is also shown by some simulation examples. The phenomenon that more than one delay stability zones

exist in the PPI system is indicated and discussed. Finally, the paper ends with some concluding

remarks.

2 PPI controller

The control scheme of the PPI control system is shown in Fig. 1, where P (s) is the plant, Pm(s) =

P0(s)e
−τ0s is the model of the plant, P0(s) = K0

T0s + 1 is the delay-free part of the model, and C0(s) is a

PI controller. Therefore, the C(s) that is composed of C0(s), P0(s), and Pm(s) is called PPI controller.

The tuning rule for the PPI controller is to tune the transfer function of the closed-loop system to the

first order plus dead-time process:

Gyr(s) =
Y (s)

R(s)
=

1

λs + 1
e−τ0s (1)

where λ is the time constant of the closed-loop system. Then, the PPI controller has the following form:

C(s) =
T0s + 1

Kp(λs + 1 − e−τ0s)
(2)

In order to reduce the number of the adjustable parameters, Hagglund suggested that the time

constant of closed-loop system should be α times of the time constant of the controlled plant, i.e.,

λ = αT0. In this case, C0(s) has the following form:

C0(s) = Kp(1 +
1

Tis
) (3)

where Kp = α/(αK0), Ti = T0. If α is larger than 1, the step response of the closed-loop system is

slower than that of the plant, while if α is smaller than 1, the step response of closed-loop system is

faster than that of the plant. Hagglund suggested that α should be 1. The aim of the control method is

to reduce the tuning parameters by constructing a relationship of time constant between the closed-loop

system and the controlled plant. Since the PPI controller is a Smith predictor with the special tuning

rule, the stability of the closed-loop system is affected by the variation of the dead-time of the plant.

Fig. 1 The PPI control system

3 Stability analysis of the PPI control system

The stability analysis of the PPI control system was not proposed in [4]. Robust stability of the

PPI system was discussed in some literature when unstructured uncertainty existed in the controlled

plant. No method for computing the delay margin was given in time domain. In this section, we
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analyze the stability of the PPI system in frequency domain utilizing Nyquist stability criterion. When

the delay-free part of the model is matched with that of the plant, the loop transfer function of the PPI

control system is

L(s) =
e−τs

λs + 1 − e−τ0s
(4)

where λ, τ0, and τ are the time constant of the closed-loop system, the dead-time of the model, and the

dead-time of the controlled plant, respectively. Substituting s = jω and Euler formula into (4) yields

L(jω) =
cos(τω) − j sin(τω)

1 − cos(τ0ω) + j(λω + sin(τ0ω))
(5)

Simplify it and we obtain

Re(L(jω)) =
cos(τω) − cos(τω) cos(τ0ω) − sin(τω) sin(τ0ω) − λω sin(τω)

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2

(6)

Im(L(jω)) = −
sin(τω) + cos(τω) sin(τ0ω) − sin(τω) cos(τ0ω) + λω cos(τω)

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2

where Re(·) and Im(·) are the functions that get the real part and imaginary part of a complex number,

respectively. Let x = Re(L(jω)), y = Im(L(jω)), and

a(ω, τ, τ0, λ) =
− cos(τω) cos(τ0ω) − sin(τω) sin(τ0ω)

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2

b(ω, τ, τ0, λ) =
− cos(τω) sin(τ0ω) + sin(τω) cos(τ0ω)

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2
(7)

r(ω, τ, τ0, λ) =

√
1 + λ2ω2

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2

Then, the relationship among the x, y, a, and b is

(x − a)2 + (y − b)2 = r2 (8)

It can be found out obviously from (8) that the Nyquist curve of the PPI loop transfer function is a

cluster of circles in the complex plane, whose centers and radius of the cluster circles are (a, b) and r,

respectively. However, (a, b) and r are all related to ω, τ0, τ, λ. When τ0 equals τ , (7) can be rewritten

as

a(ω, τ0, λ) =
−1

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2

b(ω, τ0, λ) = 0 (9)

r(ω, τ0, λ) =

√
1 + λ2ω2

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2

It is concluded from (9) that the centers of the cluster circles are on the real axis in complex plane and

changed with the variation of ω. A theorem will be proved firstly before the stability criterion for the

PPI system is given.

Theorem 1. For all λ and τ0, the unity feedback system with the loop transfer function L1(s) =
1

λs + 1 − e−τ0s is always stable and the transfer function L1(s) has no pole on the right half complex

plane.

Proof. Substituting s = jω and Euler formula into L1(s) yields

L1(jω) =
1

1 − cos(τ0ω) + j(λω + sin(τ0ω))
(10)

It can be rewritten as

L1(jω) =
(1 − cos(τ0ω)) − j(λω + sin(τ0ω))

(1 − cos(τ0ω))2 + (λω + sin(τ0ω))2
(11)
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It can be seen that Re(L1(jω)) is not smaller than 0 if ω varies from 0 to +∞. In other words, for all λ

and τ0 the Nyquist curve will be on the first and fourth quadrant of the complex plane and the phase

angle is not larger than −90 degrees. On this condition, the unity feedback system must be stable.

Since the Nyquist curve of L1(jω) does not encircle the (−1, 0) and the Nyquist criterion is necessary

and sufficient condition, no pole of L1(s) is on the right half complex plane. �

Before the stability criterion for PPI control system is proposed, we define the distance from

(−1, 0) point to the circle center of the Nyquist curve of L(s) as

ϕ(ω, τ, τ0, λ)=

√

(−1+
cos(τω) cos(τ0ω)+sin(τω) sin(τ0ω)

2−2 cos(τ0ω)+2λω sin(τ0ω)+λ2ω2
)2+(

cos(τω) sin(τ0ω)−sin(τω) cos(τ0ω)

2−2 cos(τ0ω)+2λω sin(τ0ω)+λ2ω2
)2

Theorem 2. Given τ0, τ and λ, if

r(ω, τ, τ0, λ)

ϕ(ω, τ, τ0, λ)
< 1 (12)

for all ω, where 0 6 ω < +∞, then the PPI system is stable.

Proof. For all given τ0, τ and λ, if ω varies from 0 to +∞ and
r(ω, τ, τ0, λ)
ϕ(ω, τ, τ0, λ)

< 1 holds, the Nyquist

curve of L(s) does not encircle the (−1, 0) point, i.e., the number of counterclockwise encirclements of

the (−1, 0) point is equal to zero. On the other hand, the distribution of the poles of L(s) is the same

as that of L1(s). It can be concluded that L(s) has no pole on the right half complex plane. According

to Nyquist stability criterion, the PPI system is stable. �

4 Delay margin of the PPI control system

Definition. Delay margin of the PPI control system is the variation of the plant dead-time round

the dead-time of the model in which the closed-loop system is stable when no model mismatch exists

in the delay-free part of the plant. Although the stability of the PPI control system can be analyzed

by Theorem 2, it is difficult to obtain an analytical solution of the delay margin of the PPI system.

Thus, we propose a numeric method of computing the delay margin of the PPI system according to the

Nyquist curve of the PPI system. At first, the characteristic of the Nyquist curve of L0(s) is illustrated

when the model is precise, i.e., τ = τ0.

1) Asymptotic characteristic. For the real part and imaginary part of L0(jω), we have










lim
ω→0+

Re(L0(jω)) = −
τ 2
0 + 2λτ0

2(τ0 + λ)2

lim
ω→0+

Im(L0(jω)) = −∞

(13)

The initial position and the asymptotic line of the Nyquist curve of L0(s) are (− τ 2
0 + 2λτ0

2(τ0 + λ)2
,−∞) and

x = −
τ 2
0 + 2λτ0

2(τ0 + λ)2
, respectively.

2) Rotation characteristic. If ω is large enough, the Nyquist curve of L0(s) behaves towards

rotation characteristic. It is composed of a cluster of circles with the center and radius of the circle being

( −1
2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2 , 0) and

√

1 + λ2ω2

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2 , respectively.

3) Convergence characteristic. When ω tends to ∞, the Nyquist curve of L0(jω) tends to the

origin because

lim
ω→∞

a(ω) = lim
ω→∞

−1

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2
= 0

(14)

lim
ω→∞

r(ω) = lim
ω→∞

√
1 + λ2ω2

2 − 2 cos(τ0ω) + 2λω sin(τ0ω) + λ2ω2
= 0

In other words, the radius and the center of the cluster of the Nyquist circles tend to zero.

In order to illustrate the characteristic of the Nyquist curve of L0(s), a Nysuist curve is shown in

Fig. 2 when τ0 = τ = 10, λ = 1.2, where the real line and the dashed line are the Nyquist curve and

the unit circle, respectively. There are five points whose magnitudes are one. The five points are called

gain-crossover points. The corresponding frequencies are called gain-crossover frequencies.
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Fig. 2 The Nyquist curve of L0(s) when model

is precise and τ0 = τ = 10, λ = 1.2

Here, the proposed method of computing de-

lay margin is demonstrated through Fig. 2. The

five points in Fig. 2 are divided into two groups.

The first group has two points ω11 and ω12, which

are at the first quadrant and the second quad-

rant of the complex plane. The corresponding

phase angles of the two points are Φ11 and Φ12, re-

spectively. The other group has three points ω21,

ω22, and ω23, which are at the third quadrant and

the fourth quadrant of complex plane. The corre-

sponding phase angles of thse points are Φ21,Φ22,

and Φ23, respectively.

Suppose that the variation of the dead-time

of the controlled plant is ∆τ , i.e., τ = τ0 + ∆τ .

The loop transfer function of the PPI control sys-

tem is changed to

L′(s) =
e−τ0s

λs + 1 − e−τ0s
e−∆τs = L0(s)e

−∆τs (15)

This is equivalent to seriating a delay part whose dead-time is ∆τ to the transfer function L0(s) in

the case of no model mismatch. The magnitude and the phase angle of e−∆τs are 1 and −∆τω,

respectively. According to the operation rule of the complex number, when the dead-time of the plant

varies to τ0+∆τ , the magnitude of L′(jω) is the same as that of L0(jω) and the difference of phase angles

between L′(jω) and L(jω) is −∆τω. If ∆τ is positive, the Nyquist curve of L′(jω) can be obtained by

rotating Nyquist curve of L0(jω) by ∆τω clockwise. On the other hand, if ∆τ is negative, the Nyquist

curve of L′(jω) can be obtained by rotating Nyquist curve of L0(jω) by ∆τω counterclockwise. It

should be pointed out that the rotation degree of the point of Nyquist curve is relevant to the frequency

of the point. Observing the five points in Fig. 2, when ∆τ decreases gradually from zero, one point

of the first group will rotate firstly to (−1, 0) point because the angle to (−1, 0) point is small in the

counterclockwise direction, which is called lower boundary gain crossover point (LBGCP). Thus, the

system is critically stable and the step response in time domain is continuously oscillatory. We call

the now dead-time of the plant as the low boundary of delay margin (LBDM), i.e., τlow = τ0 + ∆τ

and call the frequency of LBGCP lower boundary gain cross over frequency (LBGCF). If ∆τ keeps on

decreasing, the point of intersection of the real axis and the Nyquist curve is on the left part of (−1, 0)

point. The closed-loop system is unstable. On the other hand, when ∆τ increases gradually from zero,

one point of the second group will rotate firstly to (−1, 0) point because the angle to (−1, 0) point is

small in the clockwise direction, which is called upper boundary gain crossover point (UBGCP). Thus,

the system is critically stable and the step response in time domain is continuous oscillatory. We call

the now dead-time of plant as the upper boundary of delay margin (UBDM), i.e., τup = τ0+∆τ and call

the frequency of UBGCP upper boundary gain cross over frequency (UBGCF). As above mentioned,

the LBDM and UBDM can be calculated by the following formulae:

τlow = τ0 − min
i=1,2,···,m

(
π − Φ1i

ω1i

) (16)

τup = τ0 + min
i=1,2,···,n

(
π + Φ2i

ω2i

) (17)

where m and n are the numbers of intersection points in the upper part and lower part of complex

plane, respectively.

Through extensive simulating, some conclusions about the distribution of the intersection points

of the Nyquist curve of L0(s) and unit circle can be drawn.

1) The number of the intersection points is only relative to τ0/λ. When τ0/λ < 2.9843, the number

of the intersection points is one. The intersection point is on the third quadrant of the complex plane.

In other words, the magnitude of the Nyquist curve will not be larger than one after the Nyquist curve

enters into the unit circle.
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2) When τ0/λ > 2.9843, the number of the intersection points is larger than one, i.e., the Nyquist

curve of L0(s) crosses over the unit circle as shown in Fig. 2. The larger τ0/λ is, the larger the number

of the intersection points is. If τ0/λ of two loop transfer functions that have different parameters τ0

and λ are the same, the numbers of intersection points of the two systems are also the same.

3) If two systems have the same τ0/λ and different λ, the gain cross-over frequencies of the same

gain cross-over points of the two systems are in inverse proportion to λ of the two systems, i.e.,

ω1

ω2
=

λ2

λ1
(18)

According to the above conclusions, all gain cross-over points can be obtained by the numeric method.

Based on the gain cross-over frequencies of these points and (16) and (17), the delay margin of a PPI

system can be calculated. It is known from the third conclusion that only the upper cross-over frequency

ωup and lower gain cross-over frequency ωlow need to be calculated with different τ0/λ when λ = 1.

ωup and ωlow for any τ0/λ can be calculated by (18). Then, the delay margin of the PPI system can

be obtained. ωup and ωlow are calculated and shown in Fig. 3 when λ = 1 and τ0/λ varies from 0.001

to 20 with step length 0.001. Since τ0/λ of the practical process is generally in this range, the results

in Fig. 3 can fit the most actual PPI systems. The procedure of calculating delay margin of the PPI

system with any τ0 and λ is summarized as follows.

1) Find ωup and ωlow according to τ0/λ of the given PPI system and Fig. 3.

2) Substitute ωup, ωlow, and λ to (18) and obtain ω′

up and ω′

low.

3) Substitute ω′

up and ω′

low to (5) and calculate the phase angles of the two points. Using (16)

and (17), the delay margin can be calculated.

The delay margins of the PPI system in which λ = 1 and τ0/λ varies from 0.001 to 20 are shown

in Fig. 4. Some remarkable notes about Fig. 3 and Fig. 4 are made as follows.

1) That ωlow equals zero in Fig. 3 means only one intersection point of the Nyquist curve and unit

circle. The lower boundary of delay margin is zero in this case.

2) ωup is smaller than ωlow at some τ0/λ. Two factors that make a gain cross-over point be

UBGCP or LBGCP are its frequency and phase angle. When the UBGCP and LBGCP are in different

circles of Nyquist curve, this phenomenon will occur.

3) There may be many stability delay zones on the PPI system. According to Theorem 1, the PPI

system is always stable for all τ0 and λ when the dead-time of the plant is zero. However, the lower

boundary of delay margin of the PPI system in which τ0/λ > 2.9843 is not zero. The reason is that the

delay margin of the PPI system is a stability delay range around the dead-time of the process model.

If we can solve the stability criterion proposed in Section 2, all stability delay zones can be obtained. It

should be pointed out that the other delay stability ranges are small. Although the closed-loop system

is stable when the dead-time is in the other delay stability range, the step response of the PPI system

is oscillatory or slow.

Fig. 3 UBGCF and LBGCF of the PPI system Fig. 4 The delay margin of the PPI system when λ = 1

Some simulation results will be given to show the precision of the proposed algorithm of computing

the delay margin. Suppose that the dead-time of the plant is 20. The delay margin, LBGCF, and
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UBGCF are shown in Table 1 when the closed-loop time constant is set to 2, 5, 10, 15, 20, 25, and

30. The step responses in time domain are shown in Fig. 5 when the time constant of the closed-loop

system is 5 and dead-time of the plant is set to be 27.4315 and 12.5102, respectively. It can be seen in

Fig. 5 that the PPI system is continuously oscillatory when the dead-time of the plant is set to be the

upper boundary and lower boundary of the delay margin. It is evident that the method of computing

the delay margin is precise.

Table 1 Delay margin, UBGCF, and LBGCF in different time constants, where τ0 = 20

λ 2 5 10 15 20 25 30 35

ωup 0.6165 0.2904 0.0342 0.0291 0.0253 0.0224 0.0202 0.0183

ωlow 0.5500 0.2365 0 0 0 0 0 0

τup 22.9746 27.4315 52.5442 59.6463 66.9692 74.4062 81.8969 89.4826

τlow 16.9528 12.5102 0 0 0 0 0 0

Fig. 5 Step response of the PPI system when the dead-time of plant varies

to 27.4315 and 12.5102 where λ = 5, τ0 = 20

5 Conclusion

A stability criterion for the PPI system is proposed. The quantitive relationship among the delay

margin, the time constant of closed-loop PPI system, and the model dead-time are given when the delay-

free part of model is matched by that of the plant. We also develop a graphic algorithm of computing

the stability delay margin and discuss the phenomenon that there exist more than one stability delay

zones. The algorithm is shown to be precise by simulations.
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