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Abstract For a class of systems with unmodeled dynamics, robust adaptive stabilization problem
is considered in this paper. Firstly, by a series of coordinate changes, the original system is re-
parameterized. Then, by introducing a reduced-order observer, an error system is obtained. Based
on the system, a reduced-order adaptive backstepping controller design scheme is given. It is proved
that all the signals in the adaptive control system are globally uniformly bounded, and the regulation
error converges to zero asymptotically. Due to the order deduction of the controller, the design scheme
in this paper has more practical values. A simulation example further demonstrates the efficiency of
the control scheme.
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1 Introduction

Recently, more attention has been paid to backstepping design technique because of its systematic

design method and the excellent transient performance of the closed-loop system[1]. Since the stability

analysis of adaptive system in [1] was only limited to the ideal case, it is of practical and theoretical

interest to study the design and performance of this kind of controller for systems in the presence of un-

modeled dynamics. It is [2] that firstly studied this problem, however, the control law and the adaptive

law were designed separately, and the implementation of the controller required a priori knowledge of

unmodeled dynamics and disturbance. The work of [2] was improved by [3] and [4], with the adaptive

law and control law being designed simultaneously. However, the introduction of a modification or a

projection operator in the parameter adaptive laws resulted in more complicated controllers and might

affect the system performance. To overcome the shortcomings an adaptive backstepping controller

design based on K-filters was presented by [5] and it was proved that this kind of adaptive controller

without modification still have certain robustness.

Under the same conditions, the asymptotic stabilization problem is further considered in this paper

for uncertain systems with different unmodeled dynamics given by [5]. Compared with [5], our main

work consists of the following aspects: 1) The original system is re-parameterized by introducing a novel

coordinate change. 2) By using a reduced-order observer, and introducing an uncertain parameter in

observer error, we obtain an error system based on which an adaptive backstepping controller design

and its stability analysis are given. 3) The introduction of reduced-order observer and one dimension

adaptive law can effectively reduce the dynamic order of the controller.

2 Problem formulation

Consider the following linear system with input and output unmodeled dynamics[5]

y =
B(s)

A(s)
(1 + µ1∆1(s))u + (1 + µ2∆2(s))y (1)

where A(s) = sn + an−1s
n−1 + · · ·+ a1s + a0, B(s) = bmsm + · · ·+ b1s + b0, ai, bj(i = 0, · · · , n− 1, j =

0, · · · , m) are unknown parameters, ∆k(s)(k = 1, 2) denote unmodeled dynamics, µk > 0 denotes the

amplitude of the unmodeled dynamics. Control objective: Design an adaptive backstepping controller

to bound all signals in closed-loop system and to regulate the output asymptotically to zero. For system

(1), the following assumptions are required.
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A1. B(s) is Hurwitz polynomial, and the relative degree ρ = n−m and the sign of bm are known.

For simplicity and without lose of generality, bm = 1 is assumed.

A2. ∆k(s)(k = 1, 2) is stable and strictly proper.

3 Controller design

The state-space realization of system (1) is presented as follows.

χ̇ = Apχ + Bu, y = χ1 + ℵ

ξ̇1 = A1ξ1 + B1χ1, ξ̇2 = A2ξ2 + B2y

where Ap =





In−1

−a

01×(n−1)



 , B = (0, bT)T, a = (an−1, · · · , a0)
T, b = (1, bm−1, · · · , b0)

T, ℵ = µ1ξ11 +

µ2ξ21, e
T
1 (sI−A1)

−1B1 =∆1(s), e
T
1 (sI−A2)

−1B2 =∆2(s). Introduce a similarity transformation[1,Chap.8]

(

χ̄ρ

ζ

)

=

(

Iρ×ρ 0ρ×m

Tm×n

)

χ, ζ ∈ Rm (3)

where χ̄ρ = (χ1, · · · , χρ)
T, T = (Aρ

3e1, · · · , A3e1, Im), A3 =















−bm−1

Im−1

...

01×(m−1)

−b0















. Form (10.132) in

[1], it is easy to verify that (3) satisfies the following property:

TB = 0, TA = A2T + TAρBeT
1 (4)

where Ap =

(

0(n−1)×1 In−1

0 01×(n−1)

)

. From (2)∼(4) and the definition of A, Ap we have

ζ̇ = A3ζ + B3χ1 (5)

where B3 = T (AρB − a). By (3) and (5), χ̄ρ-subsystem in (2) is rewritten as

χ̇i = χi+1 − an−iχ1, i = 1, · · · , ρ − 1, χ̇ρ = u − amχ1 + χρ+1 (6)

From (3) and the definition of T , one gets χρ+1 = c1χ1 + · · · + cρχρ + ζ1, where ck = −eT
1 Aρ−k+1

3 e1.

Substituting this equality into (6) results in

˙̄χρ = Āχ̄ρ + eρu + eρζ1 (7)

where Ā =











−an−1

... Iρ−1

−am+1 c2 · · · cρ

−am + c1











. Performing the following similarity transformation

x = Sχ̄ρ, x ∈ Rρ (8)

which satisfies SĀ = AaS, Seρ = eρ, where S =













1 0 · · · 0

−cρ

. . .
. . .

...
...

. . .
. . . 0

−c2 · · · −cρ 1













, Aa =















−ā1

Iρ−1

...

01×(ρ−1)

−āρ















,

ā1 = an−1 − cρ, āi = an−1 − cρan−i+1 − · · · − cρ−i+2an−1 − cρ−i+1(2 6 i 6 ρ). Combining (7) with (8)

gives

ẋ = Aαx + eρu + eρζ1 (9)
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From (8), χ1 = x1 is known. Noting (9), system (2) equals

ẋi = xi+1 − āix1, i = 1, · · · , ρ − 1, ẋρ = u − āρx1 + ζ1, y = x1 + ℵ

ξ̇1 = A1ξ1 + B1x1, ξ̇2 = A2ξ2 + B2y, ζ̇ = A3ζ + B3x1 (10)

The following reduced-order observer is introduced

˙̂xi = x̂i+1 + ki+1 + ki+1y − ki(x̂1 + k1y), i = 1, · · · , ρ − 2, ˙̂xρ−1 = u − kρ−1(x̂1 + k1y) (11)

where k = (k1, · · · kρ−1)
T is chosen such that A0 =





Iρ−2

−k

01×(ρ−2)



 is stable. For 1 6 i 6 ρ − 1 the

observer error εi = (xi+1− x̂i−kix1)/p, with p = max{1,

ρ−1
∑

i=1

|qi1|,

ρ−1
∑

i=1

|qi2|, |P3B3|}, qi1 = −āi+1 +kiā1,

qi2 = −qi1 + kik1 − ki+1, kρ = 0, satisfies

ε̇ = A0ε + (∆ + eρ−1ζ1)/p (12)

where ε = (ε1, · · · , ερ−1)
T, ∆ = (∆1, · · · , ∆ρ−1)

T, ∆i = qi1y + qi2ℵ. From (10) and the definition of

observer error, the derivative of output is represented as

ẏ = x̂1 + pε1 + qx1ℵ̇ (13)

where q = k1 − ā1. Next we will develop the adaptive controller using backstepping techniques.

Step 1. Define

z1 = y, z2 = x̂1 − α1 (14)

From the stability of Ai(i = 0, · · · , 3), there exists Pi such that PiAi + AT
i Pi = −I . Let us consider the

Lyapunov-like function candidate:

V1 =
1

2
y2 +

1

2r
θ̃2 + r0ε

TP0ε + r1ξ
T
1 P1ξ1 + r2ξ

T
2 P2ξ2 + r3ζ

TP2ζ (15)

where r, r0, r1, r2, r3 > 0 will be chosen later, θ̂ is the estimate of θ = max{p2, q2}. From (14), the

derivative of (15) satisfies

V̇1 =z1(z2 + α1 + pε1 + qx1 + ℵ̇) − r0|ε|
2 +

2

p
r0ε

TP0(∆ + eρ−1ζ1) − r1|ξ1|
2+

2r1ξ
T
1 P1B1x1 − r2|ξ2|

2 + 2r2ξ
T
2 P2B2y − r3|ζ|

2 + 2r3ζ
TP3B3x1 + r−1θ̃

˙̂
θ (16)

With the choice of r0 = d1d2/12‖P0‖
2, rk = d1/|PkBk|

2(k = 1, 2, 3) for any parameters d1 > 0,
1
2 > d2 > 0 and by simple calculations we have

z1(pε1 + qx1 + ℵ̇) 6 φ̄1θ̂z1 + φ1z1 +
r0

4ρ
|ε|2 + d0(y + ℵ2 + ℵ̇2) − φ̄1θ̃z1

2

p
r0ε

TP0(∆ + eρ−1ζ1) 6
1

4
r0|ε|

2 + d2r3|ζ|
2 + d1d2(z

2
1 + ℵ2) (17)

2r1ξ
T
1 P1B1x1 + 2r2ξ

T
2 P2B2y + 2r3ζ

TP3B3x1 6
1

2
r1|ξ1|

2 +
1

2
r2|ξ2|

2 +
1

2
r3|ζ|

2 + 10d1z
2
1 + 8d1ℵ

2

where φ1 = z1/4d0, φ̄1 = (ρ/r0 + 1/2d0)z1. Substituting (17) in (16) leads to

V̇1 = −
3

4
r0|ε|

2 −
1

2
r1|ξ1|

2 −
1

2
r2|ξ2|

2 − (
1

2
− d2)r3|ζ|

2 +
r0

4ρ
|ε|2 + d0(z

2
1 + ℵ2 + ℵ̇2)+

d1(d2 + 8)ℵ2 + z1(z2 + α1 + d1(d2 + 10)z1 + φ̄1θ̂ + φ1) − φ̄1θ̃ + r−1θ̃
˙̂
θ (18)

By the following tuning function and stabilizing function

τ1 = rφ̄1z1, α1(y, θ̂) = −c1z1 − d0ρz1 − d1(d2 + 10)z1 − φ̄1θ̂ − φ1 (19)
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and (18), we have

V̇1 =z1z2 − c1z
2
1 − d0ρz2

1 −
3

4
r0|ε|

2 −
1

2
r1|ξ1|

2 −
1

2
r2|ξ2|

2 − (
1

2
− d2)r3|ζ|

2+

r0

4ρ
|ε|2 + d0(z

2
1 + ℵ2 + ℵ̇2) + d1(d2 + 8)ℵ2 + r−1θ̃(

˙̂
θ − τ1) (20)

Step i(i= 2, · · · ,ρ), Define

zi+1 = x̂i − αi(y, x̂1, · · · , x̂i−1, θ̂) (21)

with zρ+1 = 0, x̂ρ = u. For Lyapunov-like function Vi = V1 =
i

∑

j=2

1

2
z2

j , by the same argument as Step

1, with the following choice of tuning function and stabilizing function

τi = τi−1 + rφ̄izi, αi = − zi−1 − cizi − kiz1 + ki−1k1z1 + ki−1x̂1 +
∂αi−1

∂y
x̂1+

i−2
∑

j=1

∂αi−1

∂x̂j

˙̂xj − φi − φ̄iθ̂ +
∂αi−1

∂θ̂
τi + r

i−1
∑

j=1

∂αj−1

∂θ̂
zjφizi (22)

where kρ = 0, φi = zi|∂αi−1/∂y|2/4d0, φ̄1 = zi(ρ/r0 + 1/2d0)|∂αi−1/∂y|2/4d0, we can obtain

V̇i =zizi+1 −

i
∑

j=1

cjz
2
j − d0ρz2

1 −
3

4
r0|ε|

2 −
1

2
r1|ξ1|

2 −
1

2
r2|ξ2|

2 − (
1

2
− d2)r3|ζ|

2+

i(
r0

4ρ
|ε|2 + d0(y + ℵ2 + ℵ̇2)) + d1(d2 + 8)ℵ2 + (r−1θ̃ −

i
∑

j=1

∂αj−1

∂θ̂
zj)(

˙̂
θ − τi) (23)

Thus the control law and adaptive law are obtained as follows.

u = αρ,
˙̂
θ = τρ (24)

which gives

V̇ρ = −

ρ
∑

j=1

cjz
2
j −

1

2
r0|ε|

2 −
1

2
r1|ξ1|

2 −
1

2
r2|ξ2|

2 − (
1

2
− d2)r3|ζ|

2 + d0ρ(ℵ2 + ℵ̇2) + d1(d2 + 8)ℵ2 (25)

Remark 1. The dynamic order of our controller is less 2(m + n) than that of [1, Chapter 10],

which means that our control scheme possesses more practical values.

4 Main result

Our main result depends on a useful lemma[6] as follows.

Lemma 1. If ∆(s) is stable and strictly proper, then there exists a constant µ0 > 0 such that for

all µ ∈ [0, µ0), 1/(1 + µ∆(s)) is stable and strictly proper.

Theorem 1. For an adaptive feedback system consisting of (1), (11), and (24), if assumptions

A1 and A2 hold, then there exists a constant µ̄ > 0 such that for any µ1, µ2 ∈ [0, µ) and any initial

condition χ(0), 1) all signals in the closed-loop system are globally uniformly bounded; 2) all signals

except for parameter estimate tend to zero asymptotically.

Proof. Setting µ = max{µ1, µ2}, together with x1 = y − ℵ, gives

ℵ2
6 2µ2(|ξ1|

2 + |ξ2|
2), ℵ̇2

6 (16|B1|
2µ4+4max{‖A1‖

2, ‖A2‖
2}µ2)(|ξ1|

2+ |ξ2|
2)+(8|B1|

2+4|B2|
2)µ2y2

(26)

Substituting (26) in (25) leads to

V̇ρ = −

ρ
∑

j=1

cjz
2
j −

1

2
r0|ε|

2−
1

2
r1|ξ1|

2−
1

2
r2|ξ2|

2−(
1

2
−d2)r3|ζ|

2+(l1µ
4+l2µ

2)(|ξ1|
2+|ξ2|

2)+l3µ
2z2

1 (27)
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where l1 = 16ρd0|B1|
2, l2 = 2ρd0 +2d1(d2 +8)+4ρd0 max{‖A1‖

2, ‖A2‖
2}, l3 = 4ρd0(2|B1|

2 + |B2|
2). It

is clear that there exists a parameter µ∗ = min{µ∗

1, µ
∗

2}, µ∗

1 = (−l2 + (l22 + l1 min{r1, r2})
1/2/(2l1))

1/2,

µ∗

2 = (c1/(2l3))
1/2, such that for any µ ∈ [0, µ∗), l1µ

4 + l2µ
2 6 r1/2, l1µ

4 + l2µ
2 6 r2/2, l3µ

2 6 c1/2

hold. Substituting the above inequalities into (27) gives

V̇ρ 6 −α|Ψ |2 (28)

where α = min{c1/2, c2, · · · , cρ, r0/2, r1/4, r2/4, (1/2 − d2)r3}, Ψ = (z1, · · · , zρ, εT, ξT
1 , ξT

2 , ζT)T. Thus

z1, · · · , zρ, ε, ξ1, ξ2, ζ, θ̂ are globally uniformly bounded. From (1) and (11), one gets

x̂1 =
L(s)

K(s)
y +

1

K(s)

A(s)

B(s)

1 − µ2∆2(s)

µ1∆1(s)
y (29)

where K(s) = sρ−1+k1s
ρ−2+ · · ·+kρ, L(s) = (k2−k2

1)s
ρ−2+(k3−k1k2)s

ρ−3+ · · ·+(kρ−1−k1kρ−2)s−

k1kρ−1. From assumption A2 and Lemma 1, there exists a parameter µ1 ∈ [0, µ), (1 − µ2∆2(s))/(1 +

µ1∆1(s)) such that for any, is stable and strictly proper also. Thanks to the stability of strict property

of, and the global uniform boundedness of y and (29), there exists a parameter µ̄ = min{µ0, µ
∗}, such

that for any µ ∈ [0, m̄u), x̂1 is globally uniformly bounded. From (19), it is known that τ1, α1(y, θ̂)

are globally uniformly bounded also. From (21) and (22), one gets that α2(y, x̂1, θ̂), τ2, x̂2 are globally

uniformly bounded. Recursively, the global uniform boundedness of x̂i, αi(i = 3, · · · , ρ−1), u is proved.

From (3) and (8), it is obtained that x, χ are globally uniformly bounded, which concludes the first

result in this theorem. From (28) and the definition of Ψ , according to Lasalle-Yoshizaway Lemma[1],

we have that z1, · · · , zρ, ε, ξ1, ξ2, ζ tend to zero asymptotically. By the same argument as above, the

second result holds.

5 Simulation

For system (1), let A(s) = s2 + a1s + a0, B(s) = 1, ∆1(s) = ∆2(s) = 0.5/(s + 0.1). By using the

coordinate change (14), from (19), (22) and (24) one gets ˙̂x = u − k(x̂ + ky),
˙̂
θ = τ2, u = α2. Given

a1 = −1, a0 = 1, χ = (0.4,−1)T, choose design parameters d0 = 0.5, d1 = 0.2, d2 = 0.25, c1 = 3.2,

c2 = 1, k = 2, r = 10−4, x̂(0) = −2, θ̂(0) = 0. Using Matlab project, one gets µ̄ = 0.7304. Fig. 1

shows the system responses of the closed-loop system with the choice of µ1 = µ2 = 0.7. The result of

simulation verifies the effectiveness of our reduced-order controller design.

Fig.1 Responses of the closed-loop system
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6 Conclusion

Compared with [5], by the designing reduced-order controller, the problem of robust adaptive

stabilization is considered in this paper. It is proved that all signals in the closed-loop system are

globally uniformly bounded, and the regulation error tends to zero asymptotically. The reduction of

dynamic order of controller makes our controller design possess more practical values. To the authors′

knowledge this is a new result.
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