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Abstract Considering the independent optimization requirement for each demander of modern
manufacture, we explore the application of noncooperative game in production scheduling research,
and model scheduling problem as competition of machine resources among a group of selfish jobs.
Each job has its own performance objective. For the single machine, multi-jobs and non-preemptive
scheduling problem, a noncooperative game model is established. Based on the model, many prob-
lems about Nash equilibrium solution, such as the existence, quantity, properties of solution space,
performance of solution and algorithm are discussed. The results are tested by numerical example.
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1 Introduction

With the globalization of production and economics, modern manufacturers face much more com-

petitive pressure. In a competitive market, more attention should be paid to different objectives from

various demanders, sometimes other than the benefits of the manufacturer. The idea of serving deman-

ders, especially the heterogeneous objectives of different demanders, should be emphasized in production

scheduling. Therefore, production scheduling problem can be modeled as a multi-objective optimization

problem, where jobs with independent objectives compete for scarce machine resource.

In traditional scheduling research, including single objective and multi-objective, the global objec-

tive combining all the jobs′ homogeneous objectives is studied[1,2]. Such simple coordinating method

ignores the independent objectives of different jobs. Moreover, only few global objectives can be conside-

red at the same time. Hence, some important problems about calculation and pertinence in traditional

scheduling need to be solved.

Recently, by referring to the idea in economics, some researchers[3,4] decomposed the original prob-

lem according to the characters of scheduling. Then, the resource assignments could be implemented

by the individuals′ autonomous behaviors, where each individual had its own performance objective.

The market-like and negotiation method based on the market-like behaviors of jobs and machines was

adapted in [5] to organize the scheduling. The collision and bottleneck were commendably solved by

the introduction of price to negotiation. However, the necessary mathematic model and performance

analysis were lacking. The auction method was introduced in [6] and [7] to study the competition for

machine resource among jobs in single machine and multi-machine environments, respectively. The

above researches mainly focused on solving the complexity of scheduling problem by simulative market

mechanism, but failed to consider the individual performance objectives of demanders, and thus, could

not accommodate to the flexibility and variety of market′s requirements. Hence, it is necessary to

investigate new methodology to describe and solve the production scheduling problem.

A lot of successful applications of noncooperative game(NG) theory[8] have been reported in many

complex optimization and decision problems. NG emphasizes individual rational in which the equi-

librium solutions of competition satisfying individual rational are defined by Nash equilibrium(NE)

solution. By designing a rational competitive mechanism according to some global objective, a satis-

factory solution concurrently guaranteeing the individual and collective requirements can be induced.

[9] modeled the routing control problem as the NG problem in which users competed for the scarce

communication route according to their independent objectives. [10] studied the application of NG

in motion planning problem of multi-robot, where each robot would compete for the scarce time and

path resource in order to optimize its own independent performance objective. It can be concluded

that NG is a useful tool for studying the global optimization based on individual competition. It also
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provides a new and interesting idea for production scheduling. Works studying scheduling problem from

the viewpoint of NG have been seldom reported. [11] introduced the idea of “coopetition” to study

multi-machine scheduling problem, and built a theoretic game model, in which each job and machine

had its own objective. However, no theoretic analysis and instance simulation were reported. The

approach used in [12] was based on evolutionary game theory and NE concept, where operations of job

were modeled as decision makers and the machines as strategies. NE schedule could be found through

searching in payoff matrix. With the increasing of problem scale, the construction of payoff matrix be-

came much more difficult, which resulted in the complexity in theoretic analysis and solving. Although

the NG concept was adopted in above papers, they still failed to give strict mathematical description

and necessary theoretic analysis. And the jobs′ heterogeneous objectives were never considered. All

these are difficulties in the research area. Altogether, the production scheduling researches based on

NG, even the basic model, theoretic analysis and algorithm, are lacking.

Influenced by the work of [10] in some variable definitions in NG description for multi-robot motion

planning, the paper develops the NG model for single machine, multi-job and non-preemptive schedu-

ling, where each job, as an independent decision maker, competes for different interval machine resource

according to its own performance objective. Jobs′ strategies are mutually influenced. The relationship

between the scheduling based on NG and traditional scheduling is studied. Then, the theoretic and

algorithm problems of NE solution are investigated. Instance simulations are given at last.

2 Problem formulation

2.1 Decision variables and strategy set of jobs

In Fig. 1, the basic parameters for job i include release date ri, execution time pi, due date di,

waiting time wi and completion time Ci, where Ci − ri −wi = pi. Given ri, pi and di, wi is selected as

decision variable and the feasible strategy of job i is

wvalid
i ∈ [0, +∞] (1)

Fig. 1 The basic variables and strategy of job i
′s

The feasible strategic choices of all the jobs forms an n dimensional space:

W = wvalid
1 × wvalid

2 × · · · × wvalid
n (2)

Obviously, W is a non-empty, closed and convex subset in Euclidean space. Given each job′s strategic

choice, a schedule is formed by

w = (w1, w2, · · · , wn), w ∈ W (3)

As shown in Fig. 2, since machine resources are scarce, there is collision between the strategies of job i

and job j while ∆wij = |(wj + rj + 1
2pj) − (wi + ri + 1

2pi)| < 1
2(pi + pj). Define

wcoll
ij = {w ∈ W |∆wij <

1

2
(pi + pj)} (4)

Considering the collision between two arbitrary jobs, we can give the infeasible subset in W as

W coll =
⋃

i6=j

wcoll
ij (5)

Then, the feasible strategic space of all jobs is given by

W valid = W − W coll (6)
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Fig. 2 Collision and feasible set between two job′s strategies

The above definitions are based on job′s strategy, i.e., the waiting time. We can also build the

job′s sequencing space, denoted by S(W valid), which is a mapping of W valid. The element in S(W valid)

is

s(w) = (s1(w), · · · , sn(w)) (7)

where w ∈ W valid, si(w) ∈ (1, · · · , n) and si(w) 6= sj(w). Given a feasible scheduling strategy w, there

exists a fixed feasible process sequence s1(w), · · · , sn(w).

Obviously, S(W valid) is a discrete space. For the single machine scheduling problem with n jobs,

there are n! elements in S(W valid). However, there are infinite elements in the continuous space W valid.

Hence, W valid → S is a multi-valued mapping.

2.2 Job′s performance objective

The performance objective in traditional scheduling is the combination of homogenous job′s ob-

jectives. Here, considering the practical requirements of production scheduling problem, each job has

its independent optimization requirement. For a non-preemptive scheduling problem with n jobs, the

performance objective of job i(1 6 i 6 n) can be defined as

Ji(r, p, d, w) = fi(ri, pi, di, wi) +
∑

j 6=i

Wij(w) (8)

where fi(wi) is continuous and monotonically increasing over wi,

Wij(w) =

{

0, w ∈ W valid

+∞, otherwise
(9)

From (8), the performance objective of job i has two terms. The former is the function of job i′s

own variables ri, pi, di and strategy wi. The latter reflects the mutual influence among the jobs′ strategy

choices. Any job′s strategy choice influences the others′ feasible strategy sets, and then influences the

others′ optimal strategy choices. Focusing on the multi-person multi-objective optimization problem

(8) and (9), we want to find a strategy w∗ = (w∗
1 , w∗

2 , · · · , w∗
n) (w∗ ∈ W ), such that the following holds

for each i:

Ji(w
∗
1 , · · · , w∗

i−1, w
∗
i , w∗

i+1, · · · , w
∗
n) 6 Ji(w

∗
1 , · · · , w∗

i−1, wi, w
∗
i+1, · · · , w

∗
n) (10)

It means that there is no other strategy for job i which can further improve its own performance

objective. w∗ is called the Nash equilibrium (NE) schedule of (8) and (9). NE is the equilibrium result

that satisfies each job′s independent objective. Denote the set of all w∗ by W ∗. Since r, p and d are

all given, they will be omitted in the following.

Ji(w
∗) must be finite, or equation (10) is meaningless. Combining (8) and (9), we get w ∈ W valid.

Hence, NE schedule must be feasible, and W ∗ ⊂ W valid.

2.3 The Relationship between scheduling based NG and traditional scheduling

The global performance objective in traditional scheduling research usually consists of the former

terms of all the jobs′ objectives (8). Since NE schedules are always feasible, (9) equals zero for NE

schedule. Therefore, the global performance objective in traditional scheduling research can be written

as the combination of the homogenous (8), i.e.,

L(w, ω) =
n

∑

i=1

ωiJi(w) (11)
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where ω = (ω1, ω2, · · · , ωn) ∈ Rn
+. Or,

L(w, ω) = max
16i6n

Ji(W ) (12)

Formulas (11) and (12) can be expressed as L =
∑n

i=1 ωiCi and L = maxi Ci which just corre-

spond to the traditional problems 1|rj |
∑

ωjCj and 1|rj |Cmax, respectively. Most traditional scheduling

problems can be described in the similar way. Therefore, our work enlarges the implication and the

scope of traditional scheduling research. Furthermore, the NE schedule described by (10) emphasizes

the satisfaction of jobs′ independent performance objectives, which agrees with the new scheduling idea

of serving demanders.

3 Analysis of NE schedule′s characters

3.1 Existence of NE schedule

The existence of NE schedule is an important issue of NG application research. It is not easy

to discuss the problem in scheduling problem[7]. Most researches studied it based on Kakutani fixed

point theorem[8], etc. However, from the game problem (8) and (9), the existence of penalty term in

(8) makes it difficult to guarantee the function continuous and concave-convex. Here, we prove it by

utilizing the inherent character of scheduling problem as follows.

Theorem 1. The global optimal scheduling w∗ = (w∗
1 , w∗

2 , · · · , w∗
i , · · · , w∗

n) of 1|rj |
∑n

j=1 ωjfj(wj)

is an NE schedule of NG problem (8) and (9).

Proof. If w∗ = (w∗
1 , w∗

2 , · · · , w∗
i , · · · , w∗

n) is not the NE schedule of NG problem (8) and (9),

there must exist a job i whose strategy w∗
i does not satisfy condition (10). Constitute a new strategy

w = (w∗
1 , · · · , w∗

i−1, w̄i, w
∗
i+1, · · · , w

∗
n), where w̄i satisfies Ji(w

∗
i , · · · , w∗

i−1, w̄i, w
∗
i+1, · · · , w

∗
n) 6 Ji(w

∗
1 , · · ·,

w∗
i−1, w

∗
i , w∗

i+1, · · · , w
∗
n).

Obviously,
∑

j 6=i
Wij(w) = 0. Since all the strategies of other jobs are unchanged,

∑

j 6=k
Wkj(w) =

0, j, k 6= i. Hence, Ji(w) 6 Ji(w
∗) and Jk(w) = Jk(w∗), k 6= i. It follows that

∑n

i=1 ωifi(w) 6
∑n

i=1 ωifi(w
∗), which indicates w is the optimal schedule for 1|rj |

∑n

j=1 ωjfj(wj) problem. It is contrary

to the above proposition. The theorem is thus proved. �

For the discrete optimization problem 1|rj |
∑n

j=1 ωjfj(wj), the global optimal schedule always

exists, so there must be NE schedule of NG problem (8) and (9).

3.2 The Characters and number of NE schedules

Consider a single machine scheduling example with two jobs: r1 = 0, p1 = 8; r2 = 5, p2 = 12. The

objective of each job is to minimize C1 and C2
2 , respectively. From (10), w = (0, 3) (i.e., s(w) = (1, 2))

and w = (17, 0) (i.e., s(w) = (2, 1)) are all NE schedules. However, when r2 equals 8, w = (0, 0) (i.e.,

s(w) = (1, 2)) is still an NE schedule, while w = (20, 0) (i.e., s(w) = (2, 1)) is not. From the above

example, we know that NE schedule is not always unique. The reason resulting in this phenomenon

is the collision among jobs′ objectives, which is influenced by r and p of jobs. In order to investigate

the inward relationship between the number of NE schedules and the basic variables of jobs, we at first

give Theorem 2.

Theorem 2. For each w ∈ W ∗, there exists a unique s(w) ∈ S(W valid); for each s(w) ∈

S(W valid), there exists at most one w ∈ W ∗.

Proof. Given an arbitrary feasible schedule, there is only one process sequence. Hence, for each

w ∈ W ∗, there exists a unique s(w) ∈ S(W valid).

Given an arbitrary s(w) ∈ S(W valid), i.e., a process sequence, the corresponding feasible schedu-

ling strategy w may be NE, or not (see above example). If w is an NE schedule, i.e., w = (w1, · · · , wn) ∈

W ∗ since fi(wi) is monotonically increasing over the waiting time wi, for each i(1 6 i 6 n), wi = w∗
i =

arg min
wi∈wvalid

i

Ki(w1, · · · , wn) = arg min
wi∈wvalid

i

fi(wi) is unique. So w is a unique NE corresponding to

s(w). �

Theorem 2 builds the relationship between NE set and the sequencing space. Under the assumption

that fi(wi) is monotonically increasing over wi, the machine resource that each job competes for is

the interval beginning from its release date till it could be completed without interruption. Define

w0 = (0, 0, · · · , 0) as the zero waiting strategy. Under the choice of zero waiting strategy, along with

the increasing direction of time slot, we can find the first job set I1 from the whole job set I , where
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two arbitrary jobs in I1 collides mutually. Furthermore, we denote the set of the jobs which may be

the i-th processed job in W ∗ by Si(W
∗). The following theorem gives the relationship between set I1

and S1(W
∗).

Theorem 3. I1 = S1(W
∗).

Proof. Obviously, I1 ⊆ I , S1(W
∗) ⊆ I .

For any i ∈ I , i /∈ I1, there must exist a job j in I1 that does not collide with job i. It follows

that rj + pj 6 ri. Since fi(wi) is continuous and monotonically increasing over wi and rj + pj 6 ri,

all the schedules with job i being firstly processed are not NE schedules, because job j could reduce its

waiting time to occupy the machine resources before job i arrives without collision. Hence, i /∈ S1(W
∗),

i.e., for any i ∈ I , if i ∈ S1(W
∗), then i ∈ I .

Similarly, for any i ∈ I , if i /∈ S1(W
∗), then i /∈ I1, i.e., for any i ∈ I , if i ∈ I1, then i ∈ S1(W

∗).

Thus, the proof is completed. �

Denote the number of jobs in I1 by |I1|. Theorem 2 indicates that NE schedules of model (8) and

(9) are no more than n!. Theorem 3 further explains that the job firstly processed in NE schedules

could and only could be selected from I1. So, we know that the number of NE schedules is no more

than |I1|(n − 1)!. However, |I1|(n − 1)! is just an upper bound of the number of NE schedules. It is

difficult to obtain the exact number of NE schedules.

3.3 Performance analysis of NE schedule

The above NE schedule satisfies the independent performance requirements of jobs. Assume the

global performance objective is given by

L(w) =
n

∑

i=1

Ci(w) (13)

which is corresponding to the strongly NP-hard problem 1|rj |
∑

Cj . We evaluate the performance of

NE schedules w∗(w∗ ∈ W ∗) of problem (8) and (9) by the optimal schedule of (13). Assume the global

optimal schedule of 1|rj |
∑

Cj is wopt, and in wopt, jobs are processed in the order of 1, 2, · · · , n. Job

k is the last release job, i.e., rk = max
16i6n

ri. At first, we have

L(wopt) 6 L(w∗) (14)

Furthermore,

C1 > r1 + p1, C2 > r1 + p1 + p2, · · · , Cn > r1 + p1 + p2 + · · · + pn (15)

Hence,

L(wopt) = C1 + C2 + · · · + Cn > nr1 + np1 + (n − 1)p2 + · · · + pn (16)

By the definition of NE schedule and the monotony of fi(wi), if other jobs′ strategies are given,

each job would reduce its waiting time as minimum as possible to optimize its performance objective.

Since job k arrives finally, the performance objective of each job i satisfies

Ji(w
∗) 6 (p1 + p2 + · · · + pn) + rk (17)

in which, if all the jobs′ release dates are rk and job i is finally processed, equality holds. We have

L(w∗) =

n
∑

i=1

Ji(w
∗) < n(p1 + p2 + · · · + pn) + nrk (18)

Combining (14), (16), and (18), we build the relationship of performance ratio between NE sche-

dules of single machine scheduling with independent job′s objective and optimal schedule of traditional

scheduling in the followings.

Theorem 4. The performance ratio between NE schedule w∗ ∈ W ∗ of problem (8) and (9) and

the optimal schedule wopt of global performance objective (13) satisfies

1 6
L(w∗)

L(wopt)
<

nrk + n(p1 + p2 + p3 · · · + pn)

nr1 + np1 + (n − 1)p2 + · · · + pn
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For Ck > rk + pk, formula (16) could be redescribed as

L(wopt) = C1 + C2 + · · · + Cn > p1 + p2 + · · · + pn + rk (19)

Combining (18), we get

Corollary 1. The performance ratio between NE schedule w∗ ∈ W ∗ of problem (8) and (9) and

the optimal schedule wopt of global performance objective (13) satisfies 1 6
L(w∗)

L(wopt)
< n.

Table 1 provides an instance, which obtains the upper bound of Corollary 1, where M is an

arbitrarily large positive number, and ε is an arbitrarily small positive number.

Table 1 A worst-case example for NE

Job 1 2 3 · · · n

ri 0 ε ε · · · ε

pi M 0 0 · · · 0

In optimal schedule of (13), the machine would wait ε time units until 2, 3, · · · , n arrive, then executes

them followed by 1. Hence,

L(wopt) =
n

∑

i=1

Ci = ε + · · · + ε + (ε + M) = nε + M (20)

In NE schedule, the machine can execute 1, 2, · · · , n without idle. By the definition of NE, this processing

order is NE. Therefore,

L(w∗) =
n

∑

i=1

Ci = M + (M + ε) · · · + (M + (n − 1)ε) = nM +
n(n − 1)

2
ε (21)

So, we have

L(w∗)

L(wopt)
= lim

M→∞

nM +
n(n − 1)

2 ε

nε + M
= n (22)

The above result indicates that the NE schedules that satisfy the jobs′ independent performance

objectives may have poor global performance. This conclusion means that individual rational and

collective rational in NG are usually inconsistent. Therefore, based on the above model and results, the

design of game mechanism to induce an NE schedule close to some global objective, such as (13) etc.

is an important research issue.

4 Algorithm and simulation analysis

Theorem 2 indicates that each sequence is corresponding to no more than one NE schedule.

Theorem 3 further explains that the job firstly processed in NE schedules could and only could be

selected from collision job set I1. So, a simple algorithm to solve NE schedules space W ∗ of (8) and (9)

is given as follows:

Step 0. All the jobs choose zero waiting strategy, then find I1;

Step 1. Find a new sequence s(w) ∈ S(W valid), where s1(w) ∈ I ;

Step 2. s(w) → w;

Step 3. Judge whether the w is an NE schedule or not according to (10). If yes, store it in W ∗;

otherwise, go on;

Step 4. Judge whether all the eligible elements in S(W valid) are searched or not. If yes, go on;

otherwise, go to Step 1;

Step 5. End.

Find I1 requires O(n); the eligible s(w) has |I1|(n − 1)! at most; the operation judging whether

a w is an NE schedule or not costs 1
2n(n − 1). Hence, the complexity of above algorithm in the worst

case is O(|I1| × (n − 1) × n!). For its high computational cost, the algorithm has poor practical value.

Here, we merely use it to calculate an instance to explain the theoretic analysis results.

Consider a single machine scheduling problem with 5 jobs. Table 2 gives the jobs′ basic variables.

Each job′s performance objective is to minimize (8). Obviously, jobs 1, 2 and 3 compose the collision
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set I1 (i.e., S1(W
∗)). From the analysis about the upper bound of NE number in Section 3.2, we know

that NE schedules are no more than |I1|(n−1)! = 3×4! = 72. The above algorithm can generate 52 NE

schedules. Measured by the optimal schedule of (13), the globally optimal NE sequence is (2, 3, 4, 5, 1)

with L = 54, and the globally worst sequences are (3, 1, 5, 2, 4) and (3, 1, 2, 5, 4) with L = 76. The

results accord with Theorem 4 and Corollary 1.

Table 2 Jobs′ release date and processing time

Job 1 2 3 4 5

ri 0 1 3 5 10

pi 6 3 4 2 3

5 Conclusion

With the globalization of economics and the increasing competition of modern market, the charac-

ters implicated in production scheduling that different demanders with heterogeneous requirements com-

pete for scarce production resource become much more clear. For such a multi-person multi-objective

optimization problem, it is necessary to study production scheduling problem from the viewpoint of

NG. Therefore, single machine, multi-job and non-preemptive scheduling model based on NG is formu-

lated. The paper proves the existence of NE schedule, analyzes the relationship between NE schedule

space and sequencing space, and gives an upper bound of the number of NE schedules. Then, the

global performance of NE schedules is quantificationally studied under the measurement of global op-

timal solution in traditional scheduling research. At last, an algorithm solving the whole NE schedules

space is developed. Computational simulation validates the above conclusion. The work in this paper

establishes an important foundation for the future research that objective of machine, i.e., the global

objective would be included.
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