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Huberized Multiclass Support Vector Machine for

Microarray Classification
LI Jun-Tao1 JIA Ying-Min1

Abstract This paper proposes a new multiclass support vector machine (SVM) for simultaneous gene selection and microarray
classification. Combining the huberized hinge loss function and the elastic net penalty, the proposed SVM can perform automatic
gene selection and encourages a grouping effect. The coefficient paths of the proposed SVM are shown to be piecewise linear with
respect to the single regularization parameter, based on which the solution path algorithm is developed with low computational
complexity. Experiments performed on the leukemia data set are provided to verify the obtained results.
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The DNA microarray technology[1−2] is a powerful tool
for biological and medical research. To classify microarray
gene expression data, support vector machine (SVM) has

attracted considerable attention[3−12]. It is well known that
SVM and its various extensions have been successfully ap-
plied to two-class classification of microarray data[3−6]. In
recent years, a few attempts have been made to generalize
the SVM to multiclass problems[7−12]. In particular, mul-
ticategory support vector machine (MSVM)[8] that consid-
ers all of the classes at once has been developed. However,
this method selects genes by using the marginal criterion[1],
which tends to yield redundant genes. To perform joint
classification and gene selection, L1-norm MSVM[9] and
sup-norm MSVM[10] have also been developed. Unfortu-
nately, they cannot reveal the mutual information among
genes.

The group lasso[13−14] has been developed to select rel-
evant variables in groups for two-class problems. However,
rare results on extending this method to multiclass prob-
lems have been reported since it is difficult to construct
gene clusters in advance. When used as two-class classi-
fiers, the elastic net penalized methods[4−5, 15] appear to
perform well on microarray data and encourage a group-
ing effect. The key feature of these methods is the use of
the elastic net penalty which not only retains the benefits
of the L1 norm penalty but also tends to generate similar
coefficients for highly correlated variables. Taking into ac-
count the advantages of the elastic net penalty, this paper
is devoted to extending it to multiclass problem and fur-
ther developing a new MSVM. This is still a challenging
problem due to the following two facts:

1) Gene selection of multiclass problems becomes more
complex than the binary case. This is because that the
MSVM requires to estimate multiple discriminating func-
tions, among which each function has its own subset of im-
portant predictors. Moreover, gene selection is a necessary
demand for microarray classification, especially grouped
gene selection. Hence, the grouping effect for multiclass
gene selection should be encouraged.

2) The normal solving algorithms for MSVM, such as

quadratic programming[7−8] and linear programming[9−10],
fail to work since multiple penalties are required simulta-
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neously. Furthermore, the piecewise linear regularization
path algorithms[16−17]used for parameter selection are not
suitable due to multiple classes and multiple tuning param-
eters. Hence, new solving algorithm and parameter tuning
method should be developed.

This paper attempts to deal with the aforementioned
difficulties by developing new statistical learning tool. To
this end, we first propose the huberized multiclass support
vector machine (HMSVM). Second, the grouping effect of
HMSVM described by using 2-norm is presented. Third,
we prove that the coefficients of the HMSVM are piecewise
linear with respect to the single regularization parameter
and give their concrete form. Next, an efficient regular-
ized solution algorithm is developed to compute the opti-
mal coefficients. Finally, we apply our method to leukemia
classification and achieve promising results.

1 Problem statement

Assume that the n training pairs {(xxxi, yi), i = 1, · · · , n}
are independently and identically distributed according to
an unknown probability distribution P (xxx, y). For microar-
ray gene expression data with multiple cancer types, xxxi rep-
resents the i-th sample and yi represents the tumor type,
which can be coded as {1, · · · , K}. Let fff = (f1, · · · , fK)
denote the decision function vector, where k = 1, · · · , K.
A popular multiclass classifier[10] can be defined as

φ(xxx) = arg max
k=1,··· ,K

fk(xxx) (1)

The K-class classification problem is to learn the decision
function vector and hence accurately predict the cancer
type of a new sample.

There are some popular machine learning methods for
the K-class classification problem, e.g., MSVM[8], 1-norm
MSVM[9], and sup-norm MSVM[10]. However, all these
methods cannot reveal the mutual information among
genes. This paper aims to deal with this problem by de-
veloping a new MSVM. In the following, we present our
notation. Similar to sup-norm MSVM[10], we use the lin-
ear decision functions fk(xxx) = bk + wwwT

k xxx, k = 1, 2, · · · , K
to build the classifier, and let bbb = (b1, · · · , bK)T denote
the bias vector, w denote the coefficient matrix, X =
(xxx1;xxx2; · · · ;xxxn) =

(
xxx(1),xxx(2), · · · ,xxx(p)

)
denote the model

matrix, where xxx(j) = (x1j , · · · , xnj)
T, j = 1, · · · , p. We

use wwwk = (wk1, · · · , wkp)T and www(j) = (w1j , · · · , wKj)
T to

represent the k-th row vector and the j-th column vector
of w, respectively.
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2 Main results

2.1 Huberized multiclass support vector machine

The elastic net penalty has been successfully applied to
binary classification problem[4−5,15]. Taking into account
the advantages of the elastic net penalty, we extend it to
K-class classification problem, i.e.,

J(bbb, w) = λ2

K∑

k=1

p∑
j=1

w2
kj + λ1

K∑

k=1

p∑
j=1

|wkj | (2)

Similar to binary hybrid huberized SVM[4], we substitute

Lki =





0, if bk + wwwT
k xxxi < −1

1 + bk + wwwT
k xxxi − δ

2
, if bk + wwwT

k xxxi ≥ −1 + δ

(1 + bk + wwwT
k xxxi)

2

2δ
, otherwise

for hinge loss function [bk + wwwT
k xxxi + 1]+, where Lki is the

abbreviation of Lki(bk,wwwk,xxxi). Combining the elastic net
penalty (2) with the huberized hinge loss function Lki, we
propose the following HMSVM

argmin
bbb,w

1

n

n∑
i=1

K∑

k=1

aikLki + λ2

K∑

k=1

p∑
j=1

w2
kj + λ1

K∑

k=1

p∑
j=1

|wkj |

(3)

subjected to the sum-to-zero constraint[4]

111Tbbb = 0, 111Twww(j) = 0 (4)

where λ1, λ2 are regularization parameters, aik = I (yi 6=
k), and I(·) represents the indicator function. Substituting
(4) into (3), we have the following unconstrained convex
optimization problem:

arg min
bbb−,w−

L̄(λ1, λ2, bbb−, w−) (5)

where bbb−, w− denote the vector and matrix formed by the
first K − 1 rows of bbb and w, and L̄ is defined as

L̄ =
1

n

(
n∑

i=1

aiKLK

(
−

K−1∑

k′=1

bk′ ,−
K−1∑

k′=1

wwwk′ ,xxxi

)
+

n∑
i=1

K−1∑

k=1

aikLk

)
+ λ2

(
K−1∑

k=1

p∑
j=1

w2
kj +

p∑
j=1

(

K−1∑

k′=1

wk′j)
2

)
+

λ1

(
K−1∑

k=1

p∑
j=1

|wkj |+
p∑

j=1

∣∣∣∣∣
K−1∑

k′=1

wk′j

∣∣∣∣∣

)

(6)
Define each region of the k-th classifier as Lk = {i :

bk+wwwT
k xxxi < −1}, Ek = {i : −1 ≤ bk+wwwT

k xxxi < −1+δ},Rk =
{i : bk+wwwT

k xxxi ≥ −1+δ} for k = 1, · · · , K, define the indices
for non-zero wkj as Ak = {j : wkj 6= 0, j = 1, 2, · · · , p}
for k = 1, · · · , K − 1, and define the indices for non-zero∑K−1

k′=1 wk′j as Ā = {j :
∑K−1

k′=1 wk′j 6= 0, j = 1, 2, · · · , p}.
If we continuously decrease λ1 or λ2 or both of them, some
of the sets of Lk, Ek, Rk, Ak

⋂ Ā will change. We call
this an event, and four types of events may occur: 1) A
training point reaches the boundary between Lk and Ek; 2)
A training point reaches the boundary between Rk and Ek;
3) An index j leaves Ak

⋂ Ā; 4) An index j joins Ak

⋂ Ā.

2.2 The grouping effect

Since the correlations between genes sharing the same bi-
ological “pathway” can be high, the correlated and relevant
genes should be selected or removed together. From the
statistical point of view, this can be described as a group-
ing effect. In the following, we prove that the HMSVM can
encourage a grouping effect described by using 2-norm.

Theorem 1. Let b̂bb and ŵ denote the optimal solution
of the huberized multiclass support machine. If xxx(m) and
xxx(l) are normalized, then

∥∥ŵww(m) − ŵww(l)

∥∥
2
≤

√
K√

nλ2

√
2(1− ρ) (7)

where ρ = xxxT
(m)xxx(l) =

∑n
i=1 ximxil.

Proof. From the sum-to-zero constraint, it is easy to

know that b̂bb− and ŵ− formed by the first K − 1 rows of b̂bb
and ŵ will be the optimal solution of unconstrained convex
optimization problem (5). For k = 1, 2, · · · , K − 1, j′ =
1, 2, · · · , p and any given 1 ≤ m, l ≤ p, we construct the
following vector and matrix

bbb∗− = b̂bb−

w∗kj′ =





1

2
(ŵkm + ŵkl), if j′ = m or j′ = l

ŵkj′ , otherwise

By the definition of b̂bb−, ŵ−, bbb∗−, and w∗−, we have

0 ≤ L̄(λ1, λ2, bbb
∗
−, w∗−)− L̄(λ1, λ2, b̂bb−, ŵ−) (8)

Note that |Lki(b
∗
k,www∗k,xxxi) − Lki(b̂k, ŵwwk,xxxi)| ≤ |(www∗k −

ŵwwk)Txxxi|, |∑K−1
k=1 (ŵkm − ŵkl)(xim − xil)| = |(ŵKm −

ŵKl)(xim − xil)|. Hence,

1

n

n∑
i=1

K−1∑

k=1

aik

[
Lki(b

∗
k,www∗k,xxxi)− Lki(b̂k, ŵ̂ŵwk,xxxi)

]
+

1

n

n∑
i=1

aiK

[
LKi

(
−

K−1∑

k′=1

b∗k′ ,−
K−1∑

k′=1

www∗k′ ,xxxi

)
−

LKi

(
−

K−1∑

k′=1

b̂k′ ,−
K−1∑

k′=1

ŵ̂ŵwk′ ,xxxi

)]
≤

1

n

n∑
i=1

K−1∑

k=1

∣∣∣(www∗k − ŵwwk)Txxxi

∣∣∣ +
1

n

n∑
i=1

∣∣∣∣∣
K−1∑

k=1

(www∗k − ŵwwk)Txxxi

∣∣∣∣∣ =

1

2n

n∑
i=1

K−1∑

k=1

|(ŵkm − ŵkl)(xim − xil)|+

1

2n

n∑
i=1

∣∣∣∣∣
K−1∑

k=1

(ŵkm − ŵkl)(xim − xil)

∣∣∣∣∣ =

1

2n

n∑
i=1

|xim − xil| ·
K∑

k=1

|ŵkm − ŵkl| =

1

2n

∥∥xxx(m) − xxx(l)

∥∥
1
· ∥∥ŵww(m) − ŵww(l)

∥∥
1

(9)
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K−1∑

k=1

p∑
j=1

(∣∣w∗kj | − |ŵkj

∣∣)+

p∑
j=1

(∣∣∣∣∣
K−1∑

k′=1

w∗k′j

∣∣∣∣∣−
∣∣∣∣∣
K−1∑

k′=1

ŵk′j

∣∣∣∣∣

)
=

K−1∑

k=1

(
2

∣∣∣∣
ŵk′m + ŵk′l

2

∣∣∣∣− |ŵkm| − |ŵkl|
)

+

2

∣∣∣∣∣
K−1∑

k′=1

ŵk′m + ŵk′l
2

∣∣∣∣∣−
∣∣∣∣∣
K−1∑

k′=1

ŵk′m

∣∣∣∣∣−
∣∣∣∣∣
K−1∑

k′=1

ŵk′l

∣∣∣∣∣ ≤ 0

(10)
K−1∑

k=1

p∑
j=1

(
w∗

2

kj − ŵ2
kj

)
+

p∑
j=1

[
(

K−1∑

k′=1

w∗k′j)
2 − (

K−1∑

k′=1

ŵk′j)
2

]
=

− 1

2

K−1∑

k=1

(ŵkm − ŵkl)
2 − 1

2

(
K−1∑

k=1

(ŵkm − ŵkl)

)2

=

− 1

2

∥∥ŵww(m) − ŵww(l)

∥∥2

2

(11)
From (8) ∼ (11), we have

0 ≤ 1

nλ2

∥∥xxx(m) − xxx(l)

∥∥
1
·
∥∥ŵww(m) − ŵww(l)

∥∥
1
−

∥∥ŵww(m) − ŵww(l)

∥∥2

2
≤
√

K

nλ2

∥∥xxx(m) − xxx(l)

∥∥
1
×

∥∥ŵww(m) − ŵww(l)

∥∥
2
−

∥∥ŵww(m) − ŵww(l)

∥∥2

2

(12)

which is equivalent to
∥∥ŵww(m) − ŵww(l)

∥∥
2
≤
√

K

nλ2

n∑
i=1

|xim − xil| (13)

If xxx(m) and xxx(l) are normalized, then we have
√

K

nλ2

∥∥∥xxxT
(m) − xxxT

(l)

∥∥∥
1
≤
√

K

nλ2
· √n

∥∥xxx(m) − xxx(l)

∥∥
2

=

√
K√

nλ2

√
2− 2xxxT

(m)xxx(l) =

√
K√

nλ2

√
2(1− ρ)

(14)

Substituting (14) into (13) yields (7). ¤
For the highly correlated predictors xxx(m) and xxx(l) (ρ =

1), HMSVM tends to assign the same coefficient vectors to
them. This means that the highly correlated genes tend
to be selected or removed together. According to the ter-
minology of statistical learning[15], we claim that HMSVM
exhibits a grouping effect. For K = 2, it can be easily
obtained that∣∣ŵ(1m) − ŵ(1l)

∣∣ ≤ 1√
nλ2

√
2(1− ρ)

This coincides with the known results of binary SVMs[4−5].

2.3 The piecewise linear regularization solution

Similar to the hybrid huberized SVM[4], we continuously
decrease λ1 and use the superscript l to index the sets im-
mediately after the l-th event has occurred. Let bl

k, wl
kj ,

λl
1, λl

2 be the values of these parameters at the point of en-
try, mk be the cardinality of set Al

k. For λl
1 ≥ λ1 > λl+1

1 ,
let

λl
2 = β − β − α

ln(e + λl
1)

(15)

where 0 < α < β are given constants.
Let 111K−1 denote the (K − 1)-th-order matrix whose

elements are all ones, and Ip denote the p-th-order identity

matrix. Let b̃bb− = (b̂1 − b̂l
1, b̂2 − b̂l

2, · · · , b̂K−1 − b̂l
K−1)

T,

w̃wwk = (ŵkj1 − ŵl
kj1 , ŵkj2 − ŵl

kj2 , · · · , ŵkjmk
−

ŵl
kjmk

)T, w̃ww− = (w̃wwT
1 , w̃wwT

2 , · · · , w̃wwT
K−1)

T, A11 =∑
i∈El

K
aiK111K−1 + diag{∑i∈El

1
ai1, · · · ,

∑
i∈El

K−1
aiK−1},

A221 = (Ãkk′)(m1+m2+···+mK−1)×(m1+m2+···+mK−1) +

diag{ ˜̃A11,
˜̃A22, · · · , ˜̃AK−1K−1},

Ā222 =




2Ip Ip · · · Ip

Ip 2Ip · · · Ip

...
...

. . .
...

Ip Ip · · · 2Ip




A12 =




X̄T
1 + ¯̄XT

1 X̄T
2 · · · X̄T

K−1

X̄T
1 X̄T

2 + ¯̄XT
2 · · · X̄T

K−1

...
...

. . .
...

X̄T
1 X̄T

2 · · · X̄T
K−1 + ¯̄XT

K−1




where ¯̄XXXT
k = (

∑
i∈El

k
aikxijk1 , · · · ,

∑
i∈El

k
aikxijkmk

), X̄XX
T
k =

(
∑

i∈El
K

aiKxijk1 , · · · ,
∑

i∈El
K

aiKxijkmk
), X̃XX

T
(j, k′) =

(
∑

i∈El
K

aiKxijxijk′1 , · · · ,
∑

i∈El
K

aiKxijxijk′m
k′

),

˜̃Akk =




∑
i∈El

k

aikxijk1xijk1 · · · ∑
i∈El

k

aikxijk1xijkmk

∑
i∈El

k

aikxijk2xijk1 · · · ∑
i∈El

k

aikxijk2xijkmk

...
. . .

...∑
i∈El

k

aikxijkmk
xijk1 · · · ∑

i∈El
k

aikxijkmk
xijkmk




and mk ×m′
k submatrix of Ã

Ãkk′ =




X̃XX
T
(j = jk1, k

′ = k′)

X̃XX
T
(j = jk2, k

′ = k′)
...

X̃XX
T
(j = jkmk , k′ = k′)




for k = 1, · · · , K−1, k′ = 1, · · · , K−1. Let A22 = 1
nδ

A221+
2λ2A222 , where A222 is constructed by orderly selecting the
jk1-th, jk2-th, · · · , jkmk -th rows and columns of the k-th p
rows and columns in Ā222 .

Theorem 2. If the regularization parameters satisfy
(15), then the coefficient paths of HMSVM are piecewise
linear with respect to the regularization parameter λ1, i.e.,





b̂k = b̂l
k + (λ1 − λl

1)āk0

ŵkj = ŵl
kj + (λ1 − λl

1)ākj , for j ∈ Al
k

⋂
Āl

(16)

hold for λl
1 ≥ λ1 > λl+1

1 , k = 1, · · · , K−1, and j = 1, · · · , p,
where āk0 and ā1j are respectively the k-th and (K + j)-th
elements of vector A−1

l 1α, ākj is the (K − 1 + m1 + · · · +
mk−1 + k + j)-th elements of vector A−1

l 1α for k ≥ 2, and
Al and 1α are defined as

Al =

[
A11 A12

AT
12 A22

]

1α =

[
0K−1

sgn((A222 − I) ˆ̃www
l

−) + sgn( ˆ̃www
l

−)

]
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Proof. Note that (5) is an unconstrained convex opti-

mization problem. Hence, for bk 6= 0, wkj 6= 0,
∑K−1

k=1 bk 6=
0, and

∑K−1
k=1 wkj 6= 0, we have





∂L̄(λ1, λ2, bbb−, w−)

∂bk

∣∣∣∣
bbb−=b̂bb−,w−=ŵ−

= 0

∂L̄(λ1, λ2, bbb−, w−)

∂wkj

∣∣∣∣
bbb−=b̂bb−,w−=ŵ−

= 0

(17)

where k = 1, · · · , K − 1, j = 1, · · · , p. Note that sets E l
k,

Rl
k, Ll

k, Al
k, Ā and the regularization parameter λ2 will

not change for λl
1 ≥ λ1 > λl+1

1 . Hence, we have

∑

i∈El
k

aik
1 + b̂k + ŵwwT

k xxxi

nδ
+

∑

i∈El
K

aiK

nδ

(
−1 +

K−1∑

k′=1

(b̂k′ + ŵwwT
k′xxxi)

)
+

1

n


 ∑

i∈Rl
k

aik −
∑

i∈Rl
K

aiK


 = 0

(18)

∑

i∈El
k

aikxij
1 + b̂k + ŵwwT

k xxxi

nδ
+ 2λl

2

(
ŵkj +

K−1∑

k′=1

ŵk′j

)
+

∑

i∈El
K

aiKxij

nδ

(
−1 +

K−1∑

k′=1

(b̂k′ + ŵwwT
k′xxxi)

)
+

1

n


 ∑

i∈Rl
k

aikxij −
∑

i∈Rl
K

aiKxij


 +

λ1

(
sgn(ŵkj) + sgn

(
K−1∑

k′=1

ŵk′j

))
= 0

(19)
where k = 1, · · · , K − 1, j ∈ Al

k

⋂ Āl. Analogously, for
λ1 = λl

1, we also have

∑

i∈El
k

aik
1 + b̂l

k + ŵwwlT

k xxxi

nδ
+

1

n


 ∑

i∈Rl
k

aik −
∑

i∈Rl
K

aiK


 +

∑

i∈El
K

aiK

nδ

(
−1 +

K−1∑

k′=1

(
b̂l
k′ + ŵwwlT

k′xxxi

))
= 0

(20)∑

i∈El
k

aikxij
1 + b̂l

k + ŵwwlT

k xxxi

nδ
+ 2λl

2

(
ŵl

kj +

K−1∑

k′=1

ŵl
k′j

)
+

∑

i∈El
K

aiKxij

nδ

(
−1 +

K−1∑

k′=1

(b̂l
k′ + ŵwwlT

k′xxxi)

)
+

1

n


 ∑

i∈Rl
k

aikxij −
∑

i∈Rl
K

aiKxij


 +

λl
1

(
sgn(ŵl

kj) + sgn

(
K−1∑

k′=1

ŵl
k′j

))
= 0

(21)

Subtracting (20) from (18) gives
∑

i∈El
k

aik(b̂k − b̂l
k + (ŵwwk − ŵwwl

k)Txxxi) +

∑

i∈El
K

aiK

K−1∑

k′=1

[b̂k′ − b̂l
k′ + (ŵwwk′ − ŵwwl

k′)
Txxxi] = 0

(22)

Note that sgn(ŵkj) = sgn(ŵl
kj) and sgn(

∑K−1
k′=1 ŵk′j) =

sgn(
∑K−1

k′=1 ŵl
k′j). Subtracting (21) from (19) gives

∑

i∈El
k

aikxij
b̂k − b̂l

k + (ŵwwk − ŵwwl
k)Txxxi

nδ
+

∑

i∈El
K

aiKxij

K−1∑

k′=1

b̂k′ − b̂l
k′ + (ŵwwk′ − ŵwwl

k′)
Txxxi

nδ
+

2λl
2(ŵkj − ŵl

kj +

K−1∑

k′=1

(ŵk′j − ŵl
k′j))+

(λ1 − λl
1)

(
sgn(ŵl

kj) + sgn

(
K−1∑

k′=1

ŵl
k′j

))
= 0

(23)
Note that

∑

i∈El
k

aik(b̂k − b̂l
k) +

∑

i∈El
K

aiK

K−1∑

k′=1

(b̂k′ − b̂l
k′) =

∑

i∈El
k

aik(b̂k − b̂l
k) +

K−1∑

k′=1

∑

i∈El
K

aiK(b̂k′ − b̂l
k′)

∑

i∈El
k

aik(ŵwwk−ŵwwl
k)Txxxi+

∑

i∈El
K

aiK

K−1∑

k′=1

(ŵwwk′−ŵwwl
k′)

Txxxi =

K−1∑

k′=1

∑

j′∈Al
k′

∑

i∈El
K

aiKxij′(ŵk′j′ − ŵl
k′j′)+

∑

j∈Al
k

∑

i∈El
k

aikxij(ŵkj − ŵl
kj)

Hence, system of linear equations in (22) can be rewritten
as

A11b̃bb− + A12w̃ww− = 0 (24)

Note also that

∑

i∈El
k

aikxij(b̂k − b̂l
k) +

∑

i∈El
K

aiKxij

K−1∑

k′=1

(b̂k′ − b̂l
k′) =

∑

i∈El
k

aikxij(b̂k − b̂l
k) +

K−1∑

k′=1

∑

i∈El
K

aiKxij(b̂k′ − b̂l
k′)

∑

i∈El
k

aikxij(ŵwwk− ŵwwl
k)Txxxi+

∑

i∈El
K

aiKxij

K−1∑

k′=1

(ŵwwk′− ŵwwl
k′)

Txxxi =

∑

j′′∈Al
k

∑

i∈El
k

aikxijxij′′(ŵkj′′ − ŵl
kj′′)+

K−1∑

k′=1

∑

j′∈Al
k′

∑

i∈El
K

aiKxijxij′(ŵk′j′ − ŵl
k′j′)
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A222w̃ww− =




ŵ1j11 − ŵl
1j11 +

K−1∑
k′=1

(ŵk′j11 − ŵl
k′j11)

...

ŵ2j21 − ŵl
2j21 +

K−1∑
k′=1

(ŵk′j21 − ŵk′j21)

...
A22α




where A22α =
∑K−1

k′=1(ŵk′jK−1mK−1
− ŵl

k′jK−1mK−1
) +

ŵK−1jK−1mK−1
− ŵl

K−1jK−1mK−1
. Hence, system of lin-

ear equations in (23) can be rewritten as

1

nδ
AT

12b̃bb−+2λ2A222w̃ww− =

(λ1 − λl
1)(sgn((A222 − I) ˆ̃wwwl

−) + sgn( ˆ̃wwwl
−))

(25)
If Al has full rank, then (16) can be obtained by solving
the combined systems of linear equations (24) and (25). ¤

It should be noted that if Al does not have full rank,
then the solution paths are not unique, and more care
has to be taken[16]. According to the sum-to-zero con-

straint, it can be easily obtained that b̂K = −∑K−1
k=1 b̂l

k −
(λ1 − λl

1)
∑K−1

k=1 āk0 and ŵKj = −∑K−1
k=1 ŵl

kj − (λ1 −
λl

1)
∑K−1

k=1 ākj . Substituting (16) into fk(xxx) = bk + wwwT
k xxx

gives fk(xxxi) = f l
k(xxxi) + (λ1 − λl

1)(āk0 +
∑

j∈Al
k

⋂ Āl xij ākj)

and fK(xxxi) = −∑K−1
k=1 f l

k(xxxi) − (λ1 − λl
1)

∑K−1
k=1 (āk0 +∑

j∈Al
k

⋂ Āl xij ākj), where k = 1, · · · , K − 1.

2.4 Algorithm

Similar to the binary solution path algorithms[4−6, 16],
our algorithm starts from λ1 → ∞ and we let ŵ0 =

0K×p, b̂bb
0

− = argminb−
1
n
(
∑n

i=1

∑K−1
k=1 aikLk(bk, 0, 0) +∑n

i=1 aikLk(−∑K−1
k′=1 bk′ , 0, 0)), b̂0

K = −∑K−1
k=1 b̂0

k. Ac-

cording to the obtained b̂0
k, we determine the sets E0

k ,
L0

k, and R0
k for k = 1, · · · , K. Furthermore, we let

λ0
1 = maxp

j=1 maxK−1
k=1 (|∑i∈E0

k

aikxij

nδ
(b̂0

k +
∑K−1

k′=1 b̂0
k′)|),

A0
k = arg maxj∈{1,··· ,p}(|

∑
i∈E0

k

aikxij

nδ
(b̂0

k +
∑K−1

k′=1 b̂0
k′)|),

λ0
2 = β− (β−α)/(ln(e+λ0

1)), and determine Ā0 according
to A0

k. This completes the initialization.
After the l-th event has occurred, the most important

problem of our algorithm is to determine the step size for
the event which will occur first. Note that the first event
will occur when fk(xxxi) reaches −1. Hence, the step size for
the first event can be determined by

d1 = min {d11, d12} (26)

where d11 = mink=1,··· ,k−1 mini∈El
k
∪Ll

k
|(−1−f l

k(xxxi)/(āk0+∑
j∈Al

k

⋂ Āl xij ākj)|, d12 = mini∈El
K
∪Ll

K
|(−1 +

∑K−1
k=1 f l

k(xxxi))/(
∑K−1

k=1 (āk0 +
∑

j∈Al
k

⋂ Āl xij ākj))|. Let

d21 = mink=1,··· ,k−1 mini∈El
k
∪Rl

k
|(−1+δ−f l

k(xxxi))|/|(āk0 +∑
j∈Al

k

⋂ Āl xij ākj)|, d22 = mini∈El
K
∪Rl

K
|(−1 + δ +

∑K−1
k=1 f l

k(xxxi))/(
∑K−1

k=1 (āk0 +
∑

j∈Al
k

⋂ Āl xij ākj))|. Analo-

gously, the step size for the second event can be determined
by

d2 = min {d21, d22} (27)

Note that the third event will occur when a non-zero pa-
rameter ŵkj reduces to zero or the sum of the first K − 1

parameters in ŵww(j) becomes zero. Hence, the step size for
the third event can be determined by

d3 = min
j∈Al

k

⋂ Āl
min

k∈{1 ··· , K}
| ŵ

l
kj

ākj
| (28)

where ŵl
Kj =

∑K−1
k′=1 ŵl

k′j and āKj =
∑K−1

k′=1 āk′j .
For k = 1, · · · , K − 1, j = 1, · · · , p, we define

Ckj =
∑

i=El
K

aiKxij(−1 +
∑K−1

k′=1(b̂k′ + ŵwwT
k′xxxi))/(nδ) +

∑
i∈El

k
aikxij(1 + b̂k + ŵwwT

k xxxi)/(nδ) + (
∑

i∈Rl
k

aikxij −
∑

i∈Rl
K

aiKxij)/n + 2λl
2(ŵkj +

∑K−1
k′=1 ŵk′j). Note that

|Ckj | ≤ 2λ1, for j /∈ Al
k

⋂ Āl; Ckj = 0 for j ∈ Al
k

⋂ Āl

and sgn(ŵkj) = −sgn(
∑K−1

k′=1 ŵk′j); Ckj = −2λ1sgn(ŵkj),

for j ∈ Al
k

⋂ Āl and sgn(ŵkj) = sgn(
∑K−1

k′=1 ŵk′j). Hence,

after |Ckj | (j /∈ Al
k

⋂ Āl) meets the decreasing 2λ1 or
reaches zero, the fourth event will occur if we keep moving
λ1 in the same direction. For j /∈ Al

k

⋂ Āl, there are
three cases: 1) j /∈ Al

k and j /∈ Āl; 2) j ∈ Al
k and

j /∈ Āl; 3) j /∈ Al
k and j ∈ Āl. Note that ŵkj = 0

and
∑K−1

k′=1 ŵk′j = 0 for j /∈ Al
k and j /∈ Āl. Hence,

for case 1), we have Ckj = Cl
kj + CEkj(λ1 − λl

1),

where CEkj =
∑

i∈El
k

aikxij

nδ
(āk0 +

∑
j′′∈Al

k
xij′′ ākj′′) +

∑
i∈El

K

aiKxij

nδ

∑K−1
k′=1(āk′0 +

∑
j′∈Al

k′
xij′ āk′j′). The step

size d411, which makes |Ckj | (j /∈ Al
k

⋂ Āl) reach zero, can
be calculated by

d411 =

∣∣∣∣∣
Cl

kj

CEkj

∣∣∣∣∣ (29)

The step size d412, which makes |Ckj | (j /∈ Al
k

⋂ Āl) meet
the 2λ1, can be calculated by

|Cl
kj − CEkjd412| = |Ckj | = 2λ1 = 2(λl

1 − d412) (30)

If sgn(Cl
kj) = sgn(CEkj) and d412 ≤ |Cl

kj |/|CEkj |, then

d412 =
2λl

1 − |Cl
kj |

2− |CEkj |

If sgn(Cl
kj) = sgn(CEkj) and d412 > |Cl

kj |/|CEkj |, then

d412 =
2λl

1 + |Cl
kj |

2 + |CEkj |
Otherwise, we have

d412 =
2λl

1 − |Cl
kj |

2 + |CEkj |

It should be noted that the inequality d412 ≤ |Cl
kj |/|CEkj |

(or d412 > |Cl
kj |/|CEkj |) is equivalent to the computable

inequality λl
1|CEkj | ≤ |Cl

kj | (or λl
1|CEkj | > |Cl

kj |). Hence,
the step size d41, which determines the fourth event for case
1), can be determined by

d41 = min
j /∈Al

k
,j /∈Āl

min
k=1,··· ,K−1

min{d411, d412} (31)

Analogously, we can get the step sizes d42 and d43, which
determine the fourth event for case 2) and 3), respec-
tively. It should be noted that the calculation proce-
dure is the same as the case 1) except the different value

of CEkj . Note that ŵkj 6= 0 and
∑K−1

k′=1 ŵk′j = 0 for
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j ∈ Al
k and j /∈ Āl. Hence, for case 2), we have

CEkj = 2λl
2ākj +

∑
i∈El

k

aikxij

nδ
(āk0 +

∑
j′′∈Al

k
xij′′ ākj′′) +

∑
i∈El

K

aiKxij

nδ

∑K−1
k′=1(āk′0 +

∑
j′∈Al

k′
xij′ āk′j′). Note also

that ŵkj = 0 and
∑K−1

k′=1 ŵk′j 6= 0 for j /∈ Al
k

and j ∈ Āl. Hence, for case 3), we have CEkj =

2λl
2

∑K−1
k′=1 āk′j +

∑
i∈El

k

aikxij

nδ
(āk0 +

∑
j′′∈Al

k
xij′′ ākj′′) +

∑
i∈El

K

aiKxij

nδ

∑K−1
k′=1(āk′0 +

∑
j′∈Al

k′
xij′ āk′j′). To sum up,

the step size for the fourth event can be determined by

d4 = min{d41, d42, d43} (32)

The algorithm that computes the whole solution path b̂bb, ŵ
proceeds as follows:

Step 1. Initialization: calculate ŵ0, b̂bb
l
, λ0

1, λ0
2, E0

k , L0
k,

R0
k, A0

k, and Ā0, where k = 1, · · · , K.
Step 2. Find λl+1

1 and λl+1
2 : let λl

2 = β − (β −
α)/(ln(e + λl

1)), calculate b̂bb, ŵ and fk(xxxi), and determine
the step size d = min {d1, d2, d3, d4}.

Step 3. If the generalized correlation reduces to zero or
a pre-specified maximum iteration number is reached, then
stop the algorithm.

Step 4. Otherwise, let l = l + 1, λl+1
1 = λl

1 − d, λl+1
2 =

β − (β − α)/(ln(e + λl+1
1 )) and update b̂bb

l
, ŵl, E l

k, Ll
k, Rl

k,

Al
k and Āl. Then goto the Step 2.

3 Experiments on leukemia data

The aim of the leukemia benchmark[2] is to form a deci-
sion rule capable of distinguishing between acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL).
This data set contains 38 samples for training and 34
samples for testing. The samples were assayed using
Affymetrix Hgu6800 chips and data on the expression of
7 129 genes (Affymetrix probes) are available. The origi-
nal data set is available at http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. The identification of the two can-
cer types was based on their origins, lymphoid (lymph or
lymphatic tissue related), and myeloid (bone marrow re-

lated), respectively. Similar to MSVM[8], we modify the
leukemia data set as a three-class problem by dividing ALL
into B-cell ALL and T-cell ALL. This study examines 72
samples from three types of acute leukemia with 38 samples
in B-cell ALL, 9 samples in T-cell ALL, and 25 samples in
AML.

In the first experiment, we train and test HMSVM using
the original separation for the training and testing data. In
the original training data set, there are 19 samples in B-cell
ALL, 8 samples in T-cell ALL, and 11 samples in AML.
The remaining 34 samples are used to test the prediction
accuracy. To make the computation more manageable, we
use the pre-processing steps proposed by Dudoit[1] and se-
lect the most significant 3 571 genes as the predictors. Let
β = 10, α = 0.5, δ = 0.05. We compute the entire regular-
ization solution paths according to the algorithm in Sub-
section 2.4. Fig. 1 shows the curve of correlation between
the two regularization parameters. It is shown that λ2 is
the piecewise constant function with respect to λ1. Fig. 2
shows the curve of prediction error. It is shown that the
prediction error is piecewise linear with respect to λ1 and
the optimal mode is given when the regularization param-
eter λ1 is selected in the interval [2.280905, 2.951294]. The
corresponding prediction error is 0.02941176, i.e., only one
sample in the test data set is misclassified.

In the second experiment, we compare HMSVM with

several competitors for multiclass classification, includ-
ing one-versus-all (OVA) classifier, L2-norm MSVM and
L1-norm MSVM. We test their averaged prediction ac-
curacy using a randomly splitting approach: the original
training and testing data are combined together and we
randomly split it into 38 and 34 samples for training and
testing, respectively. The entire process is repeated 50
times and Table 1 gives the averaged test error and the av-
eraged number of selected genes. In L2-norm MSVM, 100
most important genes are selected to build the classifier
by adopting the marginal criterion[1]. Although L2-norm
MSVM still works well by setting appropriate Gaussian ker-
nel parameter σ and regularization parameter λ2, it does
not select genes in a satisfactory way. L1-norm MSVM
seems to overcome this disadvantage and improve the pre-
diction accuracy. However, the number of the selected
genes is upper bounded by the sample size and the selected
genes vary largely with the randomly splitting training set.
The HMSVM gives the best averaged test error and selects
the moderate amount of genes. It is likely that the grouping
effect in the process of automatic gene selection contributes
much to the improved prediction accuracy.

Fig. 1 Correlation between λ2 and λ1

Fig. 2 Curve of the prediction error

4 Conclusions

The huberized multiclass SVM has been proposed in this
paper, and the corresponding properties have been studied.
It is shown that the HMSVM can encourage a grouping ef-
fect for multiclass gene selection. Based on a reasonable
correlation of the two regularization parameters, the opti-
mal coefficients are shown to be piecewise linear with re-
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spect to the single regularization parameter and an efficient
regularized path algorithm is developed. We have applied
HMSVM to the leukemia data and achieved promising re-
sults.

Table 1 Classification results for the leukemia data

Averaged number of
Method Averaged test error (%)

selected genes

OVA 6.24 26.73

2-norm MSVM 4.20 100

1-norm MSVM 3.76 20.92

HMSVM 2.94 62.37

References

1 Dudoit S, Fridlyand J, Speed T P. Comparison of discrim-
ination methods for the classification of tumors using gene
expression data. Journal of the American Statistical Associ-
ation, 2002, 97(457): 77−87

2 Golub T R, Slonim D K, Tamayo P, Huard C, Gaasenbeek
M, Mesirov J P. Molecular classification of cancer: class dis-
covery and class prediction by gene expression monitoring.
Science, 1999, 286(5439): 531−537

3 Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for
cancer classification using support vector machines. Machine
Learning, 2002, 46(1-3): 389−422

4 Wang L, Zhu J, Zou H. Hybrid huberized support vector ma-
chines for microarray classification and gene selection. Bioin-
formatics, 2008, 24(3): 412−419

5 Wang L, Zhu J, Zou H. The doubly regularized support vec-
tor machine. Statistica Sinica, 2006, 16(2): 589−615

6 Zhu J, Rosset S, Hastie T, Tibshirani R. 1-norm support
vector machines. Advances in Neural Information Processing
Systems. New York: MIT Press, 2004. 49−56

7 Lee Y, Cui Z. Characterizing the solution path of multicate-
gory support vector machines. Statistica Sinica, 2006, 16(2):
391−409

8 Lee Y, Lin Y, Wahba G. Multicategory support vector ma-
chines: theory, and application to the classification of mi-
croarray data and satellite radiance data. Journal of the
American Statistical Association, 2004, 99(465): 67−81

9 Wang L F, Shen X T. On l1-norm multi-class support vector
machines: methodology and theory. Journal of the American
Statistical Association, 2007, 102(478): 583−594

10 Zhang H H, Liu Y, Wu Y, Zhu J. Variable selection for the
multicategory SVM via adaptive sup-norm regularization.
Electronic Journal of Statistics, 2008, 2(1): 149−167

11 Crammer K, Singer Y. On the algorithmic implementation of
multiclass kernel-based vector machines. Journal of Machine
Learning Research, 2001, 2(3): 265−292

12 Li J, Jia Y, Du J, Yu F. Gene selection of multiple cancer
types via huberized multi-class support vector machine. In:
Proceedings of the 48th IEEE Conference on Decision and
Control and the 28th Chinese Control Conference. Shanghai,
China: IEEE, 2009. 1520−1525

13 Ma S, Song X, Huang J. Supervised group lasso with ap-
plications to microarray data analysis. BMC Bioinformatics
[Online], available: http://www.biomedcentral.com/1471-
2105/8/60, March 15, 2009

14 Yuan M, Lin Y. Model selection and estimation in regres-
sion with grouped variables. Journal of the Royal Statistical
Society, Series B, 2006, 68(1): 49−67

15 Zou H, Hastie T. Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society, Series
B, 2005, 67(2): 301−320

16 Hastie T, Rosset S, Tibshirani R, Zhu J. The entire regu-
larization path for the support vector machine. Journal of
Machine Learning Research, 2004, 5(12): 1391−1415

17 Rosset S, Zhu J. Piecewise linear regularized solution paths.
Annals of Statistics, 2007, 35(3): 1012−1030

LI Jun-Tao Ph.D. candidate at the
Seven Research Division, Beihang Univer-
sity. His research interest covers intelli-
gent control, statistical learning, data min-
ing, and machine-learning-based bioinfor-
matics. Corresponding author of this pa-
per. E-mail: juntaolimail@yahoo.com.cn

JIA Ying-Min Professor at Beihang
University. His research interest cov-
ers multivariable systems, robust control,
adaptive control, and intelligent control
and their applications in vehicle systems
and industrial processes.
E-mail: ymjia@buaa.edu.cn


