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Developing Objective Sensitivity Analysis of Periodic

Systems: Case Studies of Biological Oscillators
LU Bao-Yun1, 2 YUE Hong1, 3

Abstract Sensitivity analysis is a powerful tool in investigating the impact of parameter variations on the change of system
behaviours quantitatively. For a periodic system, sensitivity analysis is a challenging problem since the standard sensitivity metrics
grow unbounded when time tends to infinity. Objective sensitivity analyses using various oscillation features such as period, phase,
amplitude, etc. are therefore needed to circumvent this problem. In this work, a new concept of basal state sensitivity is proposed
based on which a phase sensitivity calculation is derived. The improved period sensitivity calculation following an existing algorithm
using singular value decomposition (SVD) is also presented, which provides a simple calculation for the basal state sensitivity. These
new sensitivity calculations are developed with the purpose to analyse biological oscillators since there is an increasing interest in
understanding how oscillations occur and what the main controlling factors are following a growing experimental and computational
evidence of oscillations in biological systems. The improved calculation of period sensitivity is shown to be consistent with the
previous methods through a well studied circadian rhythm model. The calculation of new objective sensitivities are also testified by
the same circadian rhythm model as well as an oscillatory signal transduction pathway model, which further illustrates the efficiency
of this approach in handling complex biological oscillators in the presence of reaction conservations.
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Oscillation is one of the most important nonlinear be-
haviors which are widely observed in living cells such
as circadian rhythm, bacterial cell division cycle, mam-
malian cell cycle, glycolytic oscillations, calcium signalling
pathways[1−3], etc. Cellular oscillations are crucial for bi-
ological functions, for example, circadian rhythms are ob-
served at all cellular levels since oscillations in enzymes
and hormones affect cell function, cell division, and cell
growth[4]. The rhythm is determined by the regulation of
some key genes which produce endogenous oscillations of
the mRNA and protein levels with a period of nearly 24
hours. Given the importance of oscillatory phenomena in
biology, it is imperative to study the functioning of periodic
processes comprehensively in a system manner.

Model-based analysis of complex networks using systems
methods is a major topic of current systems biology[5−6].
Among the systematic methods, sensitivity analysis is a
powerful approach originated from engineering and has
been extensively applied in many areas including model-
ing and analysis of bio-chemical processes[7]. It investi-
gates the effect of parameter variations or changes in ini-
tial conditions on system behaviors, including the system
output and the derived functions (accordingly called out-
put sensitivity and objective sensitivity, respectively). For
a biological network that often involves a large number of
parameters and variables, sensitivity analysis can be used
to identify the most important interactions in the network,
and help to understand the core features as well as assess
the robustness of the system.

Due to the fact that the raw state sensitivity coefficients
of a periodic system are growing unbounded as time tends
to infinity[8−10], the sensitivity calculation for such a sys-
tem is much more complicated compared with that of gen-
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eral non-periodic systems with stable steady states. In a
quantitative study, period, phase and the limit cycles on the
state-plane are normally used to characterize the features
of oscillatory systems (we discuss limit cycle oscillations in
this paper). Objective sensitivities to period, frequency,
phase, extrema and amplitude, etc. are accordingly devel-
oped to understand the decisive mechanisms of oscillatory
biochemical systems[9−17]. Ingalls carried out general sen-
sitivity analysis which addressed period and extrema of os-
cillating biochemical systems[11]. Bagheri et al. introduced
a set of performance sensitivity metrics based on differ-
ent phase-measures[12]. Wilkins et al. developed methods
for sensitivity analysis of oscillatory systems by solving a
boundary value problem (BVP)[13]. Sensitivity and control
analysis for forced periodically reaction networks was de-
veloped using the general Greens function in [14]. For a
periodic system, the perturbations in the parameters will
generally lead to different limit cycles from the nominal or-
bit. In phase sensitivity analysis, small variations to nom-
inal parameters are given to obtain perturbed system fea-
tures measured by different indices such as the parametric
impulse phase response curve[15] and the isochron-based
phase response[16]. Owing to the complex nature of oscilla-
tory systems, many existing methods for phase sensitivity
analysis are computationally complicated in applications
especially to biological oscillators with high dimensions.
This motivates us to derive easy-to-implement and easy-
to-interpret methods on objective sensitivity calculation so
as to facilitate systematic investigation of biological oscil-
lators or other systems with limit-cycle oscillations.

For a periodic system, Fourier series can be employed
to represent the states and the raw state sensitivity can
then be decomposed into a combination of shape and pe-
riod sensitivity measures[8−10]. This group of methods use
state-based metrics involving calculation of ordinary differ-
ential equations (ODEs) for the raw state sensitivity, based
on which period sensitivity can be readily calculated. Zak
et al. proposed a method to calculate period sensitivity at
a large time employing the singular value decomposition
(SVD) technique[17]. This algorithm is easy to implement
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and has a good convergence property. While appreciating
the advantages of this method in calculating period sensi-
tivity, we aim to develop simple methods for phase sensitiv-
ity calculation employing the similar principle. To this end,
a new concept of basal state sensitivity is proposed and the
improvement of period sensitivity calculation is made to the
existing SVD-based algorithm[17]. The phase sensitivity is
formulated based on the basal state sensitivity, which can
be computed using the largest SVD term produced from
the improved period sensitivity calculation.

The rest of the paper is organized as follows. Develop-
ment of methods is presented in Section 1. We first outline
the state sensitivity for oscillatory systems in Subsection
1.1, and the new concept of basal state sensitivity is in-
troduced. We then present the improved period sensitivity
calculation in Subsection 1.2 and construct the basal state
sensitivity calculation using the SVD technique. The phase
sensitivity analysis algorithm is proposed next in Subsec-
tion 1.3. Case studies are undertaken on two important
biological oscillators in Section 2. One is the well stud-
ied circadian rhythm model on Drosophila period protein,
from which existing results on period sensitivities are avail-
able for comparison. The other is a simplified NF-κB sig-
nal pathway model, for which many previous studies have
revealed its importance in cell processes and also its com-
plexity nature in dynamic modeling. We use the second
model to show how to handle conservations in a biological
network for the purpose of sensitivity calculation. Conclu-
sions are given in Section 3. Differential equation models
of the two systems are presented in Appendixes A and B,
respectively, with nominal model parameters given.

1 Method development

Consider the general form of an ODE model that can be
used for many biological networks under certain conditions:

ẋxx = fff(xxx(t), ppp), xxx(t0) = xxx0 (1)

where xxx ∈ Rn is the state vector. Each component of xxx
is denoted as xi, which normally stands for molecule con-
centration. ppp ∈ Rm is the parameter vector, of which each
component is denoted as pi. fff is the column vector func-
tion corresponding to the state time derivative with its ith
component written as fi. xxx0 is the initial condition of xxx at
the initial point t0. The solutions of system (1), xxx(t), are
state time-series. For limit cycle oscillatory systems, xxx(t)
is periodic in time, i.e., xxx(t + τ) = xxx(t) and τ is the period
of the oscillation. Without loss of generality, it can be as-
sumed that fff 6= 000 for a periodic system, i.e., all components
of fff will never be zero simultaneously.

1.1 State sensitivity and basal state sensitivity

The effect of a parameter change, ∆ppp, on a state can be
approximated by a first-order Taylor series expression:

xi(t,ppp + ∆ppp) = xi(t,ppp) +

m∑
j=1

∂xi

∂pj
∆pj (2)

In (2), the partial derivatives ∂xi
∂pj

are called the first-order

local concentration sensitivity coefficients. All the partial
derivatives constitute the n × m state sensitivity matrix
S = ∂xxx

∂ppp
, which represents a linear approximation of the

dependence of the states on parameter changes[18].
Differentiation of (1) with respect to ppp yields the follow-

ing sensitivity differential equations:

Ṡ = AS + B (3)

where A = ∂fff
∂xxx

is the Jacobian matrix, B = ∂fff
∂ppp

is the param-

eter Jacobian matrix. Sensitivity matrix S can be calcu-
lated by solving (1) and (3) simultaneously, which involves
n × (m + 1) dimension ODEs. The initial conditions of
(3), S0 are typically zeros unless the system initial condi-
tions depend on parameters. This method is called direct
differential method[7]. For oscillatory systems, S is a full
information sensitivity matrix that contains the change in
system behaviours including message on limit cycle shape,
amplitude, period, phase, etc. Larter et al. derived a gen-
eral expression for the state sensitivity of periodic systems
using Fourier series expansions[9−10] of states. The periodic
xi(t) can be represented by a Fourier series as

xi(t) =

∞∑
n=0

(
ai

n cos
2nπt

τ
+ bi

n sin
2nπt

τ

)
(4)

where ai
n and bi

n are Fourier coefficients for the i-th state,
and they are functions of the system parameters ppp. Ac-
cordingly,

ẋi(t) =
2π

τ

∞∑
n=0

(
−nai

n sin
2nπt

τ
+ nbi

n cos
2nπt

τ

)
= fi

(5)
Differentiating xi with respect to parameter pj yields an
expression for the state sensitivity:

sij = − t

τ

∂τ

∂pj
fi +

(
∂xi

∂pj

)

τ

(6)

As a result, the state sensitivity for oscillatory systems can
be decomposed into two terms[8]:

S = − t

τ
fffsssτ + Sc (7)

where sssτ is the period sensitivity vector defined as

sssτ =
∂τ

∂ppp
=

[
∂τ
∂p1

∂τ
∂p2

· · · ∂τ
∂pm

]
(8)

and Sc =
(

∂xxx
∂ppp

)
τ

is called the cleaned-out sensitivity or

shape sensitivity, which is periodic in time[8]. The first
term in the right-hand side of (7) contains the information
of period change caused by parameter variations, and the
second term Sc captures how variation in parameters af-
fects the shape of state trajectory at the constant nominal
period.

It is a valid assumption that sssτ 6= 0 for biophysical os-
cillatory systems, which means the period will be sensitive
to at least one parameter of the system[10]. For a nonzero
oscillatory system, the raw state sensitivity obtained by
solving (3) will grow unbounded in time when sssτ 6= 000. It
can be observed from (7) that the incremental rate of the
state sensitivity in time is determined by the period sensi-
tivity and the system function. The state sensitivity will
increase an amount of −fffsssτ after each period. With this
in mind, we can also decompose the raw state sensitivity
matrix into two terms:

S = S∗ − l · fffsssτ (9)

where S∗ is referred to as the basal state sensitivity and l
is a truncated integer of t/τ representing l periods after the
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basal period of time. Here, the basal period can be taken as
the first period in calculation or any period that starts to
show a stable oscillation. Without loss of generality, denote
the basal period as [0, τ). At each time t ∈ [0, τ), the basal
state sensitivity is uniquely determined by the position on
the limit cycle orbit. Comparing (7) with (9), the basal
term is constructed as

S∗ = −φ

τ
fffsssτ + Sc (10)

where φ = mod (t, τ) is defined as phase. It is obvious that
the new concept S∗ is also periodic in time. The definition
of the basal state sensitivity not only provides an alterna-
tive state-based sensitivity metric, but also forms the basis
for formulating the phase sensitivity to be discussed in Sub-
section 1.3.

1.2 Modified period sensitivity calculation using
SVD

Period is an important feature to characterize oscilla-
tory systems and calculation of period sensitivity receives
frequent attention[9−11, 13, 17], among them an algorithm
based on singular value decomposition developed by Zak et
al. determines all the period sensitivities at once with no
need to consider numerical stability as a separate issue[17].
Their work is based on the observation that at a large time
t (t À τ), the first term in the right-hand side of (7) will
dominate the periodic and bounded cleaned-out sensitivity
term Sc, therefore

S ≈ − t

τ
fffsssτ (11)

Using matrix theory, the state sensitivity matrix can be
decomposed into singular value terms as S = UΣV T =∑r

i=1 σiuuuivvv
T
i , where Σ is a n × m diagonal matrix with

rank r of non-negative singular value σi, U and V are uni-
tary matrices containing the eigenvectors of SST and STS,
respectively (i.e., uuui and vvvi). Period sensitivity is approxi-

mated by[17]

sssτ ≈ ± σ1τ

t
√

fffTfff
vvvT

1 (12)

In this algorithm, the sign of the period sensitivity in
(12) needs to be calibrated for each parameter individually
by introducing a small perturbation to the parameter and
determine if it increases or decreases the period. To circum-
vent this problem, we provided an alternative formulation
and also justified the use of the largest SVD term of S in
approximating sssτ at a large time t.

Denote the SVD terms of S as

S̃i = σiuuuivvv
T
i , i = 1, · · · , r (13)

From the SVD theory, S̃i are matrices of rank 1. Denoting
Sp = −(t/τ)fffsssτ , we argue that at a large time t, Sp can
be described by the first SVD term of the state sensitivity
matrix S, i.e.,

Sp = − t

τ
fffsssτ ≈ S̃1 (14)

The detailed proof can be found in [19] and we briefly de-
scribe the main idea as follows. Sp is a rank-1 matrix with
its singular value linearly increasing with time by multi-
ples of period. Sc is periodic in time with the period of
τ . Furthermore, Sp and Sc are orthogonal in composing
S. From the matrix knowledge that all the SVD terms,

S̃i = σiuuuivvv
T
i (i = 1, · · · , r) , are orthogonal and this de-

composition is unique, it can then be concluded that Sp is

one composing term among S̃i. At a large t, only Sp will
be the most important rank-1 SVD component of S. As a
result, the cleaned-out sensitivity is given by

Sc ≈
r∑

i=2

σiuuuivvv
T
i (15)

Since fff 6= 000, from (14), at a large time t, we can calculate
the period sensitivity by the modified formulation

sssτ = − τ

tfffTfff
fffTS̃1 = − σ1τ

tfffTfff
fffTuuu1vvv

T
1 (16)

By comparing the new calculation in (16) with the orig-
inal one in (12), it can be seen that the new formulation
maintains the advantages of easy calculation and good con-
vergence property. The improved method does not need
to introduce perturbations to determine the sign of period
sensitivity for each parameter.

Substituting sssτ in (16) into (10), we can get the basal
state sensitivity S∗ as

S∗ =
φ

t
S̃1 + Sc = S −

(
I − φffffffT

tfffTfff

)
S̃1 (17)

where I is the identity matrix. Equation (17) can be used
to calculate the basal state sensitivity S∗. An alternative

calculation is to substitute fffsssτ = −(τ/t)S̃1 into (10), and
S∗ can then be obtained by

S∗ = S −
(

1− φ

t

)
S̃1 (18)

Using the special formulation of S̃1 as given in this paper,
(17) and (18) are equivalent, but this may not always apply
to general matrices. The computing costs of (18) is less
than that of (17). The basal state sensitivity S∗ plays an
important role in deriving phase sensitivity as discussed in
the next section.

1.3 Parametric phase sensitivity

The phase in a limit cycle refers to the relative position
on the orbit as illustrated in Fig. 1, which is measured by
the remainder of the elapsed time going from a reference
point to the current position on the limit cycle modulo pe-
riod, i.e., φ = mod (t, τ). The curve in Fig. 1 is obtained

from the circadian rhythm model[1] (see Appendix A). The
phase is bounded in each period and is periodic in time
as shown in Fig. 2, where the reference point is the initial
time.

The cumulative phase sensitivity to parameters is de-
rived as follows. Firstly, the roles of state xxx and time t as
dependent and independent variables, respectively, must be
reversed. Along any phase-space trajectory, a point may be
described either by its coordinates xxx, or time t at which the
point is reached. There is, in fact, a one-to-one mapping
between xxx and t along a given path[20]. The time t is usually
treated as a variable of xxx for oscillatory systems described
in (1). Correspondingly, time can be written as a function
of position, i.e., t = t(xxx(ppp)), along a given path and the
variation of parameters will affect t as well. It should be
noted that time t here can be regarded as the cumulative
phase for a phase-space trajectory. The parametric sensi-
tivity of this function can then be developed.

Differentiating (1) with respect to time gives
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ẍxx =
dfff

dt
=

∂fff

∂xxx

dxxx

dt
= Afff (19)

The differential of fff can be obtained as

dfff = Afffdt (20)

Remember that local dfff can also be calculated by

dfff = A∆xxx + B∆ppp (21)

Therefore, the differential of dfff can be obtained as

Afffdt = A∆xxx + B∆ppp (22)

Fig. 1 A limit cycle on state plane with the circadian rhythm
model in [1]

Fig. 2 Phase versus the elapsed time using the example of the
circadian rhythm model in [1]

Taking derivative of (22) with respect to ∆ppp, we have

d(Afffdt)

d∆ppp
=

d(A∆xxx + B∆ppp)

d∆ppp
(23)

that is

Afff
∂t

∂ppp
= AS + B (24)

For a periodic system, the Jacobian matrix A is not singular
and fff 6= 000. Thus,

∂t

∂ppp
=

1

fffTfff
fffT(S + A−1B) (25)

The cumulative phase sensitivity is also unbounded with
time increasing since it has a one-to-one mapping to the
raw state sensitivity. It should be pointed out that the cu-
mulative phase is also evaluated by the nominal system[20].

Since phase is limited in the basal period [0, τ), we can
define the phase sensitivity in this period as

∂φ

∂ppp
=

1

fffTfff
fffT(S∗ + A−1B) (26)

Equation (26) will be used in calculating phase sensitiv-
ity following the phase definition of φ = mod (t, τ). The
basal state sensitivity S∗ is employed to calculate the phase
sensitivity. Both S∗ and the phase sensitivity are uniquely
determined by the position on the limit cycle.

In addition to the phase definition of φ = mod (t, τ),
phase can also be described by the time difference between
two featured positions on the limit cycle orbit. For exam-
ple, the time difference between two neighboring peaks of a
state variable, or the time difference between the maximum
and minimum values of a state variable. These alternative
phases are called relative phase. In fact, period can be
regarded as a relative phase since it describes the time dif-
ference between two nearby peaks of a state, that is

sssτ =
∂τ

∂ppp
=

∂t

∂ppp
− ∂(t + τ)

∂ppp
(27)

If the relative phase is defined as the time difference be-
tween the maximum and the minimum values of a state
within a period, i.e., ψ = φ(tmin)−φ(tmax), where tmin and
tmax are the time points at which the local minimum and
maximum of the specified state occur, then the so-defined
relative phase will characterize the shape of the limit cycle
orbit using the amplitude of the state. Accordingly, the
sensitivity can be calculated by

sssψ =
∂ψ

∂ppp
=

∂φ(tmin)

∂ppp
− φ(tmax)

∂ppp
(28)

It should be noted that the initial conditions for the sen-
sitivity ODEs are not zeros for periodic systems though the
initial value is on the nominal limit cycle orbit as argued
in [13, 20]. The state sensitivity can be expressed in (7)
and the basal state sensitivity is periodic, thus the initial
condition is in general nonzero. However, in practice, the
initial conditions of (3) are taken to be zeros because of the
attraction property of a limit cycle, that is, at a large time
t, the calculation of sensitivity matrix will converge to the
true value.

Compared with the previous methods in computing
the phase sensitivity that need to calculate the Green′s
function[16, 20] or involve a boundary value problem[13], this
approach is simple for implementation as it can be obtained
from the basal state sensitivity S∗, and S∗ can be calcu-
lated using the SVD technique. This is the main advantage
of this algorithm.

2 Case studies

2.1 Sensitivity analysis of a circadian rhythm
model

The proposed approach on phase sensitivity analysis is
applied to Goldbeter′s model of Drosophila (fruit fly) cir-

cadian rhythm gene network[1]. The oscillator model is a
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five-state system with 18 parameters (See Appendix A).
The circadian period is 23.7 hours under nominal parame-
ters. The sustained oscillation phenomenon is induced by
the negative feedback of the transcriptional inhibition and
the delay of the feedback by multiple phosphorylation. This
model provides a molecular basis for circadian oscillations
of the limit cycle type and was used in sensitivity analysis
of periodic systems in previous works[11, 17].

The phase (φ) and relative phase (ψ) are depicted in
Fig. 3. The phase is defined by taking the initial time as the
reference point. The relative phase is defined as the time
difference between the maximum and minimum of Mp (per
mRNA)within a period. In the discussion, we take period
(τ) as a relative phase.

Fig. 3 The phase and relative phase of a limit cycle

The time profile for each component of state sensitiv-
ity in S is obtained by solving the sensitivity ODEs in (3)
in parallel with the state ODEs in (1). As discussed in
Subsection 1.1, the raw state sensitivities are unbounded
(see Fig. 4). The proposed methods are used to compute
the period sensitivity and the basal state sensitivity. Then
the phase sensitivity is accordingly obtained. The basal
state sensitivities are periodic in time as seen in Figs. 4 and
5. Period sensitivities are gradually converged to the true
values as illustrated in Fig. 6. Using the same biological os-
cillator model, the calculation of period sensitivity provides
the consistent results as those given in [17].

Fig. 4 State sensitivity (divergent) and basal state
sensitivity (convergent)

Fig. 5 Bounded basal state sensitivity

Fig. 6 Period sensitivities

If the phase as φ = mod (t, τ), then the phase sensitivity
is periodic in time as shown in Fig. 7.

Fig. 7 A phase sensitivity time profile

Fig. 8 reflects the correlation between the relative phase
sensitivity and period sensitivity which are given in nor-
malized values (i.e., s̄ssψ = ∂ ln ψ

∂ lnppp
, s̄ssτ = ∂ ln τ

∂ lnppp
). The relative

phase used here is defined by the elapsed time between the
maximum and minimum values of Mp within a period.
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Fig. 8 Correlation between the relative phase sensitivity and
period sensitivity

It is interesting to see that some parameters have similar
effects on both phase ψ and period τ (see those parameters
distributed alongside the diagonal in Fig. 8), but some do
not. For example, vs has a large effect on ψ but has a small
effect on τ . The increase of ks near the nominal value will
lead to an increase in ψ but a decrease in τ . The numeri-
cal result indicates that different sensitivity metrics reflect
different features of an oscillatory system. The relative
phase and amplitude together will completely characterize
the limit cycle orbit. It can be seen from Fig. 8 that V1,
K1, ks and vs are the most sensitive parameters measured
by both metrics. For this circadian rhythm system, V1 and
K1 are associated with the reversible phosphorylation of
PER; ks and vs characterize the rates of transcription and
translation of per mRNA, respectively. They are within the
category of global parameters according to the biochemical
classification of model parameters suggested by Stelling et
al.[21] and therefore have more impacts on the oscillator as
expected.

2.2 Sensitivity analysis of a signal pathway model

2.2.1 Handling model singularity

It is common that conservation laws exist in biological
systems. For such a system, if all ODEs are included in
calculation without separating the independent and depen-
dent ones, the Jacobian matrix A will be singular. To avoid
this problem, the components of the state vector xxx in (1)
are divided into independent dynamic state variables and
dependent algebraic (state) variables. Rewrite the ODEs
in the form of differential-algebraic equations (DAEs) as

{
ẋxxs = fffs(xxxs,xxxa, ppp)
0 = fffa(xxxs,xxxa, ppp)

(29)

where xxxs ∈ Rns is the independent state vector and xxxa ∈
Rna is the dependent state vector, obviously, ns + na = n,
i.e., xxx = [ xxxT

s xxxT
a ]T. fffs is the column vector function

corresponding to the independent state time derivative and
fffa is the column vector function that describes the con-
servation laws. If ∂fffa

∂xxxa
is not singular, then the algebraic

constraint manifold is regular and there is a locally defined
function xxxa = ggg(xxxs, ppp) which leads to fffa(xxxs, ggg(xxxs, ppp)) = 0.
Then the system described by differential equations may be
locally expressed by ẋxxs = fffs(xxxs, ggg(xxxs, ppp), ppp). The Jacobian
matrix is accordingly represented as

Ā =
∂fffs

∂xxxs
− ∂fffs

∂xxxa

[
∂fffa

∂xxxa

]−1
∂fffa

∂xxxs
(30)

and the parameter Jacobian matrix is

B̄ =
∂fffs

∂ppp
− ∂fffs

∂xxxa

[
∂fffa

∂xxxa

]−1
∂fffa

∂ppp
(31)

With this reformulation, the Jacobian matrix Ā will not
be singular and the phase sensitivity defined earlier can be
calculated using the proposed algorithm.

2.2.2 Implementation to a signal pathway model

The transcription factor NF-κB is a regulator of ex-
pression of numerous genes and a large number of stim-
uli activate NF-κB, which makes NF-κB the subject of
research[22]. Damped oscillations in the temporal response
of NF-κB activity were firstly observed by electromobility
shift assay (EMSA) in the studies of IκBβ and IκBε knock-
out mouse embryonic fibroblast cell populations and were
simulated by a computational model[23]. Persistent oscilla-
tions of NF-κB and IκBα fluorescent fusion proteins were
observed respectively in single living cells after continu-
ous TNFα stimulation though the amplitude was slowly
damping[24]. In our earlier bifurcation analysis of this
model, it was found that limit cycle oscillations may exist
under some conditions[25]. Sensitivity analysis of this sys-
tem under conditions of non-periodic stable steady states
was carried out in our previous studies[26]. In this work, we
perform sensitivity analysis of this system under the condi-
tions of limit cycle oscillations. The simplified IκBα-NF-κB
model with IκBβ and IκBε knockout comes from the NF-
κB full model with three IκB isoforms (IκBα, −β, −ε) de-

veloped by Hoffmann′s group[23, 27]. The model equations
and nominal parameters are given in Appendix B. There
are two conservation laws in the model, giving

d

dt
NF -κB +

d

dt
IκBα-NF -κB +

d

dt
NF -κBn+

d

dt
IκBαn-NF -κBn +

d

dt
IKKIκBα-NF -κB = 0 (32)

d

dt
IKKIκBα +

d

dt
IKKIκBα-NF -κB +

d

dt
IKK = 0

(33)

This leads to

NF -κB + IκBα-NF -κB + NF -κBn+

IκBαn-NF -κBn + IKKIκBα-NF -κB = c1 (34)

being the concentration of total cellular NF-κB contained
proteins, and

IKKIκBα + IKKIκBα-NF -κB + IKK = c2 (35)

being the concentration of total cellular IKK contained
proteins. c1 and c2 are determined by initial conditions
of ODEs. Based on the above discussions and our previ-
ous bifurcation analysis of this model[25], c1, c2 and the
stimulus-related multiplier γ are identified to be critical in
producing limit cycles under certain ranges. In the fol-
lowing simulation, γ = 0.3, c1 = 0.3 and c2 = 0.3 and
all the other parameters take their nominal values given
in the literature. Considering the two conservation con-
ditions, IKKIκBα and IκBαn-NF -κBn are taken as the
algebraic variables.

A basal state sensitivity curve (concentration of NF-
κB with respect to parameter k4) is shown in Fig. 9, in
which only the stable part is used for illustration since the
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transient process in calculation is quite long. The period
sensitivities of several crucial parameters are displayed in
Fig. 10. It can be seen from Figs. 9 and 10 that the basal
state sensitivity is periodic and bounded, and the period
sensitivities gradually converge to fixed values. In this ex-
ample, period sensitivities take a long time to converge to
the vicinity of the final values. This is because the inaccu-
rate initial conditions cause a transient process. Zero initial
conditions are taken in solving the sensitivity ODEs, which
is not exact for oscillatory systems. Wilkins et al. stud-
ied this problem by solving a boundary value problem[13].
However, considering the ability of attraction of a limit cy-
cle, the computed values of sensitivity matrix will converge
to the true values after a transient process. The length of
the transient process is subject to the attraction ability of
the oscillator.

Fig. 9 A bounded basal state sensitivity

Fig. 10 Convergent period sensitivities

Fig. 11 reflects the correlation between the relative phase
sensitivity (sssψ) and period sensitivity (sssτ ). Similar to Case
study 1 in Subsection 2.1, the normalized values are used
for comparison. The relative phase is taken as the time dif-
ference between the maximum and the minimum values of
NF -κBn. Correlation analysis between the relative phase
sensitivities and period sensitivities indicates the different
impacts of parameters when measured by different features
of the oscillator. From those consistent results of the two
metrics in Fig. 11, it can be seen that parameters γ, k26, k15

and c1 are the most sensitive parameters, whose variations
cause larger changes in both period and phase. In this sig-
nal pathway, c1 is the total concentration of NF-κB that is

involved in most processes; k26 is associated with the IKK-
mediated bound IκBα degradation; k15 is associated with
IκBα nuclear import; γ is IKK multiplier relating to ex-
ternal stimulus, which is directly relevant to transcription.
Following the parameter classifications in [21], k26, γ and
c1 are within the group of global parameters, k15 belongs
to the mixed group. This result is in agreement with the
general opinion that oscillatory systems are more sensitive
to global parameters than local parameters[21].

(a) Parameters with relatively large sensitivities

(b) Parameters with relatively small sensitivities

Fig. 11 Correlation between the relative phase sensitivity and
period sensitivity (Sensitivities with relatively large values are
shown in (a), those with smaller values are shown in (b) with a

zoomed set to illustrate the details.)

3 Conclusions

In this paper, new methods of objective sensitivity analy-
sis are proposed to explore parametric sensitivities to state,
period and phase of biological oscillatory systems. In the
modified period sensitivity analysis based on SVD, the cal-
culation is straightforward with no need to calibrate the
direction of parametric impact. A systematic phase sensi-
tivity analysis method is established by analyzing the re-
lationship between the phase sensitivity and the state sen-
sitivity. To derive the phase sensitivity, a new concept of
basal state sensitivity is proposed. These algorithms are
applied to two carefully selected biological oscillatory net-
works. One is a Drosophila circadian rhythms model based
on which we compared our calculation of period sensitiv-
ities with other methods, and obtained the same results.
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The other is an IκBα-NF-κB signal transduction pathway
model, which is more complicated than contains conserva-
tion laws in its original ODEs. The proposed objective sen-
sitivity calculation is convenient for this model and those
parameters that are sensitive to both period and phase are
identified from the analysis.

The main contribution of this work is the simple formula-
tion of phase sensitivity based on the new concept of basal
state sensitivity. Numerical studies on the two biological
oscillators demonstrate the main features of this algorithm.
Both the basal state sensitivity and the derived phase sen-
sitivity are bounded, periodic and uniquely determined by
the position in a limit cycle orbit. Compared with some
other methods for objective sensitivity calculation, the key
advantage of this algorithm is that it has intuitive formu-
lation and is easy for computation. We also checked the
correlations between relative phase sensitivities and period
sensitivities of the two biological oscillators, and found in-
consistency in some cases. It is perhaps fair to say that for
oscillatory systems, each objective sensitivity metric pro-
vides a unique perspective on the effect of parameters on
system properties. This is different from the sensitivity
analysis of general non-periodic systems with stable steady
states. In the latter case, state sensitivity is normally ade-
quate to evaluate the parameter contribution to the system
output.

Appendix A

The model of circadian rhythm[1] is as follows:

dMp

dt
= vs

Kn
I

Kn
I + P n

N

− vm
Mp

Km + Mp

dP0

dt
= ksMp − V1

P0

K1 + P0
+ V2

P1

K2 + P1

dP1

dt
= V1

P0

K1 + P0
− V2

P1

K2 + P1
− V3

P1

K3 + P1
+ V4

P2

K4 + P2

dP2

dt
= V3

P1

K3 + P1
− V4

P2

K4 + P2
− k1P2 + k2PN − vd

P2

Kd + P2

dPN

dt
= k1P2 − k2PN

where the nominal model parameters are: k1 = 1.9h−1, k2 =
1.3h−1, V1 = 3.2µMh−1, V2 = 1.58µMh−1, V3 = 5µMh−1, V4 =
2.5µMh−1, vs = 0.76µMh−1, vm = 0.65µMh−1, Km = 0.5µM,
ks = 0.38h−1, vd = 0.95µMh−1, Kd = 0.2µM, n = 4, K1 =
2µM, K2 = 2µM, K3 = 2µM, K4 = 2µM, KI = 1µM.

Appendix B
The IκBα-NF-κB signal transduction pathway model is a sim-

plified version of the NF-κB model in [23, 27], in which only the
IκBα isoform is maintained. Related reactions and kinetic pa-
rameters are illustrated in Table A1, and the nominal model
parameters are also given. The complete reaction list includ-
ing three IκB isoforms can be found in [25]. The time unit is
minute and the concentration unit is µM. In the corresponding
ODE model, uppercase letters denote concentrations of molec-
ular species. All are proteins, except those subscripted with
“−t”, which are relevant messenger RNA transcripts. Subscript
n indicates proteins inside nucleus.

The IκBα-NF-κB ODE model is as follows:

d

dt
IκBα = −(k15 + k21)× IκBα + k7 × IκBα-NF -κB +

k10 × IKKIκBα + k16 × IκBαn + k4 × IκBα−t −
k5 × IκBα×NF -κB − k9 × IκBα× IKK

d

dt
NF -κB = −k19 ×NF -κB + (k7 + k23)× IκBα-NF -κB +

k20 ×NF -κBn − k5 × IκBα×NF -κB +

(k14 + γk26)× IKKIκBα-NF -κB −
k13 ×NF -κB × IKKIκBα

d

dt
IKKIκBα = −(k10 + γk25)× IKKIκBα + k9 × IKK ×

IκBα− k13×NF -κB × IKKIκBα +

k14 × IKKIκBα-NF -κB

d

dt
IκBα-NF -κB = −(k7 + k17 + k23)× IκBα-NF -κB +

k12 × IKKIκBα-NF -κB +

k18 × IκBαn-NF -κBn + k5 × IκBα×
NF -κB − k11 × IκBα-NF -κB × IKK

Table A1 List of reactions, kinetic parameters, and the
nominal values

Reactions Parameters Values

source → IκBα−t k1 1.848E−4

NF-κBn + NF-κBn → IκBα−t+ k2 7.92

NF-κBn + NF-κBn

IκBα−t → sink k3 0.0168

IκBα−t → IκBα + IκBα−t k4 0.2448

IκBα + NF-κB → IκBα-NF-κB k5 30.0

IκBαn + NF-κBn → IκBαn-NF-κBn k6 30.0

IκBα-NF-κB → IκBα + NF-κB k7 6E−5

IκBαn-NF-κBn → IκBαn + NF-κBn k8 6E−5

IKK + IκBα → IKKIκBα k9 1.35

IKKIκBα → IKK + IκBα k10 0.075

IKK + IκBα-NF-κB → k11 11.1

IKKIκBα-NF-κB

IKKIκBα-NF-κB → IKK + k12 0.075

IκBα-NF-κB

IKKIκBα + NF-κB → k13 30.0

IKKIκBα-NF-κB

IKKIκBα-NF-κB → IKKIκBα + k14 6E−5

NF-κB

IκBα → IκBαn k15 0.09

IκBαn → IκBα k16 0.012

IκBα-NF-κB → IκBαn-NF-κBn k17 0.276

IκBαn-NF-κBn → IκBα-NF-κB k18 0.828

NF-κB → NF-κBn k19 5.4

NF-κBn → NF-κB k20 0.0048

IκBα → sink k21 0.12

IκBαn → sink k22 0.12

IκBα-NF-κB → NF-κB k23 6E−5

IκBαn-NF-κBn → NF-κBn k24 6E−5

IKKIκBα → IKK k25 1.8E−3γ

IKKIκBα-NF-κB → IKK + NF-κB k26 0.36γ

d

dt
IKKIκBα-NF -κB=−(k12+k14+γk26)×IKKIκBα-NF -κB +

k13 ×NF -κB × IKKIκBα +

k11 × IκBα-NF -κB × IKK

d

dt
IKK = −k9 × IKK × IκBα− k11 × IκBα-NF -κB × IKK +

(k12 + γk26)× IKKIκBα-NF -κB +

(k10 + γk25)× IKKIκBα

d

dt
NF -κBn = k19 ×NF -κB + (k8 + k24)× IκBαn-NF -κBn −

k20 ×NF -κBn − k6 ×NF -κBn × IκBαn

d

dt
IκBαn = k15 × IκBα− k6 ×NF -κBn × IκBαn +

k8 × IκBαn-NF -κBn − (k16 + k22)× IκBαn
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d

dt
IκBαn-NF -κBn = k17 × IκBα-NF -κB +

k6 ×NF -κBn × IκBαn −
(k8 + k18 + k24)× IκBαn-NF -κBn

d

dt
IκBα−t = k1 + k2 × (NF -κBn)

H − k3 × IκBα−t

where γ is a stimulus-related multiplier whose value varies ac-
cording to different stimulus. The Hill coefficient is taken to be
H = 3.0.
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