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A Distributed Algorithm for Parallel Multi-task

Allocation Based on Profit Sharing Learning
SU Zhao-Pin1, 2 JIANG Jian-Guo1 LIANG Chang-Yong2 ZHANG Guo-Fu1, 3

Abstract Task allocation via coalition formation is a fundamental research challenge in several application domains of multi-agent
systems (MAS), such as resource allocation, disaster response management, and so on. It mainly deals with how to allocate many
unresolved tasks to groups of agents in a distributed manner. In this paper, we propose a distributed parallel multi-task allocation
algorithm among self-organizing and self-learning agents. To tackle the situation, we disperse agents and tasks geographically in
two-dimensional cells, and then introduce profit sharing learning (PSL) for a single agent to search its tasks by continual self-learning.
We also present strategies for communication and negotiation among agents to allocate real workload to every tasked agent. Finally,
to evaluate the effectiveness of the proposed algorithm, we compare it with Shehory and Kraus′ distributed task allocation algorithm
which were discussed by many researchers in recent years. Experimental results show that the proposed algorithm can quickly form
a solving coalition for every task. Moreover, the proposed algorithm can specifically tell us the real workload of every tasked agent,
and thus can provide a specific and significant reference for practical control tasks.
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Several application domains, such as resource
allocation[1−2] and disaster response management[3−4],
require teamwork. For example, in Fig. 1, when a disaster
takes place in an area, many relief tasks need to be
accomplished at once by rescue teams. Here a rescue
team, which is composed of robots, persons, wrecking
cars, rescue materials, can be viewed as a mobile agent.
However, an agent with its insufficient resources may not
complete a difficult task by itself, so it has to interact and
cooperate with other agents by forming a coalition where
each team is given a relief assignment.

Fig. 1 An example of disaster response management

Coalition formation is a fundamental and important
form of interaction in the field of multi-agent systems
(MAS). Coalitions can improve the performance of indi-
vidual agents and accomplish tasks more efficiently. Thus,
task allocation via forming effective coalitions is a major
research challenge, and has received a considerable amount
of attention. However, on the one hand, most of current
researches can not tell us whether each member in its coali-
tion has really taken on tasks or not.

On the other hand, we do not know how much workload
each member should perform at least. Therefore, exist-
ing work cannot provide a specific and significant reference
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for practical tasks. Especially, in a number of practical sce-
narios, an agent may have to exeaute several different tasks
simultaneously, so it is needed to distribute resources and
capabilities among several different coalitions at the same
time, and the system needs to know an agent′s real con-
tribution to its several different tasks and judge whether
there is any resource conflict or not.

Against this background, this paper is absorbed in par-
allel multi-task allocation via coalition formation in dis-
tributed computing environments. In such a situation, an
agent may be a member of more than one coalition at the
same time. Obviously, this property can improve the uti-
lization of agents′ resources, and thus increase the efficiency
of task execution. To achieve the goal, we mainly focus on
how to make an agent reach an efficient and optimal out-
come through its self-learning and advance the state of the
art in the following ways:

1) We address the problem of parallel multi-task alloca-
tion via coalition formation in distributed computing envi-
ronments, where task execution is parallel, given that an
agent may join in several different coalitions at the same
time.

2) We develop a novel distributed algorithm to make
agents compete against each other for tasks, and give the
real workload of every tasked agent in its corresponding
coalitions without any resource conflict.

The remainder of this paper is organized as follows. Sec-
tion 1 gives a brief description of task allocation based on
coalition formation. In Section 2, we discuss the related
work. In Section 3, we show the proposed algorithm, given
that an agent may join in more than a coalition agilely and
vigorously without any resource conflict, and in Section 4
we evaluate its performance by contrast experiments. Fi-
nally, Section 5 concludes the paper and points out some
future work.

1 Problem description

We consider a grid with x × y cells just as shown in
Fig. 2, where a set of n capabilities-bounded mobile agents,
A = {A1, A2, · · · , An}, has to cooperate to execute a finite
set of stationary tasks, T = {T1, T2, · · · , Tm}.

In general, task, agent and coalition can be described as
follows[5]:
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Fig. 2 Parallel multi-task allocation via coalition formation

1) Each task Tk ∈ T has an r-dimensional capabilities
required vector, DDDk =

[
dk
1 , dk

2 , · · · , dk
r

]
, dk

j ≥ 0, 1 ≤ k ≤ m,
1 ≤ j ≤ r, r ∈ N. Moreover, each task Tk has a two-value
function Flag(Tk) with 1 ≤ k ≤ m, F lag(Tk) = 0 in the
initial stage.

Flag(Tk) =

{
1, Tk has been allocated
0, otherwise

(1)

2) Each agent Ai ∈ A has an original vector of real non-
negative r-dimensional capabilities, BBBi =

[
bi
1, b

i
2, · · · , bi

r

]
,

br
j ≥ 0, 1 ≤ i ≤ n, where each capability is a property

of an agent that quantifies its ability to perform a spe-
cific action. Ai has a vector of real workload for ∀Tk ∈ T ,

WWW i,k =
[
wi,k

1 , · · · , wi,k
r

]
, 0 ≤ wi,k

j ≤ bi
j , which is a real

contribution of Ai to executing Tk. Moreover, Ai can see
the location of other agents and tasks only when they are
in its sight, and Ai

′s “visibility range” is often restricted
by boundaries, as shown in Fig. 3. In addition, in Fig. 4,
Ai has a “communication range”, which is also restricted
by boundaries, and any agent in its communication range
is called a neighbor of Ai.

Fig. 3 A′is visibility range

Fig. 4 A′is communication range

3) A coalition Ck, Ck ⊂ A and Ck 6= ∅, with respon-
sibility for Tk, is a set of member agents. Ck has a vec-

tor of r-dimensional capabilities, BBBCk =
[
b
Ck
1 , · · · , b

Ck
r

]
,

which is the sum of the capabilities that the members con-
tribute to this specific coalition. Note that in the case of
parallel multi-task allocation, this sum is not the sum of
all the original capabilities of the members, because the
agents may be members of more than one coalition, and
can contribute part of their capabilities to one coalition and
part to others. Thus, here BBBCk satisfies that ∀1 ≤ j ≤ r,

b
Ck
j =

∑
Ai∈Ck

wi,k
j .

A coalition Ck can perform its task Tk only if the vector
of capabilities necessary for its fulfillment DDDk satisfies

∀1 ≤ j ≤ r, dk
j ≤ b

Ck
j (2)

In addition, the value of coalition Ck with responsibility
for Tk is assigned by a characteristic function

V (Ck) = Φ (Tk)−Θ(Ck)−Π(Ck) (3)

where Φ (Tk) is the guerdon paid for finishing Tk and
usually is a given constant number; Θ (Ck) is the to-
tal cost of all members′ contribution, namely, Θ (Ck) =∑

Ai∈Ck

∑
j wi,k

j ; Π (Ck) is the total cost of communi-

cation between members, for example, the communica-
tion cost between Ai1 and Ai2 is πi1i2 , which is a given
constant number, satisfying πi1i2 = 0, πi1i2 = πi2i1 , if
Ck = {Ai1 , Ai2 , Ai3}, Π (Ck) = πi1i2 + πi1i3 + πi2i3 .

V (Ck) ≥ 0 is just the gain distributed among agents in
Ck and each member in Ck can be distributed a reward

Ri =
WWW i,k

DDDk
· V (Ck) (4)

Given this, in the process of A′is moving, if Tk is in A′is
visibility range, Ai checks whether it can perform Tk by
itself. If it can, it receives a reward R (see (4)) for per-
forming Tk. Otherwise, it starts to communicate and nego-
tiate with other agents in its communication range to co-
operate to perform Tk. If Ai succeeds in negotiating with
its neighbors, a coalition Ck is formed, and every member
in Ck obtains reward R according to their real workload,
and set Flag(Tk) = 1. if Ai fails in any negotiation, it
continues moving until another unsolved task is found, or
∀1 ≤ k ≤ m, F lag(Tk) = 1.

Thus, parallel multi-task allocation via coalition for-
mation is just simultaneously forming m coalitions,
C1, C2, · · · , Cm, for solving tasks T1, T2, · · · , Tm by agents′

moving under the condition

∀1 ≤ j ≤ r,
∑

Ai∈A

bi
j ≥

∑
Tk∈T

dk
j (5)

The objective is to maximize the income VMAS of the
whole system

VMAS =

m∑

k=1

V (Ck) (6)

2 Related work

To date, task allocation via coalition formation has been
successfully and widely used in e-business[6], combinatorial
optimization problems[7], multi-robot cooperation[8], and
resource allocation[1−2]. Much of the existing research has
focused on disjoint coalitions, where it is usually assumed
that an agent that has joined a coalition is no longer avail-
able to other coalitions at any time. In this context, many
centralized solutions and distributed algorithms have been
proposed to form feasible coalitions.

2.1 Centralized algorithms

Centralized solutions[5, 9−10] are concentrated on finding
the optimal coalitions in the whole set of possible coali-
tion structures, which is computationally complex due to
the size of the set which is exponential of the number of
agents.

To reduce the complexity of algorithms, Sen et al.[11]

adopted the genetic algorithm and used one-dimensional
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integral encoding to identify the optimal coalition struc-
ture. In addition, Yang et al.[12] improved Sen and Dutta′s
algorithm and designed a two-dimensional binary chromo-
some encoding and corresponding crossover and mutation
operators to search the coalition structure space.

However, all of them suffered from two important draw-
backs. On the one hand, it is assumed that each agent
can exactly take part in only one coalition, producing a big
waste of capabilities and limiting the scope of their appli-
cations in real-world scenarios. In fact, an agent may be
involved in executing more than one task, and distribut-
ing its resources between several (not necessarily disjoint)

coalitions. Although Zhang et al.[13] developed a discrete
particle swarm optimization based algorithm to solve the
overlapping coalition formation problem in complex virtual
enterprises environments. But their algorithm was central-
ized, and did not take into consideration the resource con-
straints of the computational environment, such as commu-
nication bandwidth and limited computation time.

2.2 Distributed algorithms

Shehory et al.[14] firstly considered that an agent might
join several different coalitions at the same time in their
seminal work on coalition formation for task allocation,
and developed anytime distributed algorithms for leading
agents to be a member of more than one coalition. The lim-
itation of coalitional size cannot guarantee the algorithm to
search all possible coalitions, and thus certain feasible solu-
tions may be lost. Although this algorithm was presented
over ten years ago, in recent years, many researchers, such
as Vig[8], Mataric[15], Thomas[16], Rahwan[17], and so on,
discussed and applied Shehory and Kraus′s work. Vig[8]

improved the algorithm and applied it to multi-robot coali-
tion formation to autonomously form coalitions to complete
assigned missions in the multi-robot domain. Similarly,
Mataric et al.[15] described an empirical study to seek gen-
eral guidelines for task allocation strategies in multi-robot
systems, and pointed out that there is no single strategy
which may produce the best performance in all cases, and
the best task allocation strategy may be influenced by a
function of noise in systems. Thomas[16] proposed a com-
pletely distributed architecture where robots dynamically
allocate their tasks, and they were involved in an incremen-
tal task allocation algorithm based on the contract-net pro-
tocol by introducing a parameter called equity coefficient to
equilibrate the workload between the different robots and
to control the triggering of the auction process. Rahwan
et al.[17] presented a novel decentralized algorithm for dis-
tributing coalition value calculation among agents in the
process of coalition formation, and compared with Shehory
and Kraus′ work to evaluate the effectiveness of their algo-
rithm.

Dash[18] designed a task allocation mechanism in en-
vironments where sellers had finite production capacities,
and introduced a novel continuous double auction proto-
col based on decentralized mechanism, achieving a level of
efficiency that was reasonably close to the optimal solu-
tion given by centralized mechanism. Sander[19] presented
a distributed algorithm for task allocation in environments
where agents and tasks were geographically dispersed in
a two-dimensional space, and described a method which
can enable agents to determine individually how to move
so that they can efficiently be assigned tasks. Viguria[20]

presented a decentralized market-based approach based on
contract net protocol to solve the initial formation prob-
lem, and tried to determine which mobile sensor should go

to each position of a desired formation to minimize the ob-
jective. But one mobile sensor can only be allocated to one
task.

Generally speaking, however, all works cited above can
only tell the system that a task may be allocated to a
coalition, and moreover, it is not clear that whether every
member in this coalition has really taken on given tasks,
or how much workload every member should at least per-
form. Therefore, their algorithms cannot provide a specific
and significant reference which is always very important
for some practical control tasks, such as disaster response
management, resource allocation, and so on.

To address these shortcomings, we do a thorough lit-
erature review of existing algorithms, and evaluate them
theoretically and empirically. Based on our findings, we
develop a fast and efficient algorithm for the problem pro-
posed in Section 1. Like Shehory and Kraus′ algorithm[14],
our algorithm mainly focuses on how to encourage an agent
to join several different coalitions and execute its tasks
without any resource conflict. Therefore, when it comes
to evaluating performance, we also compare our algorithm
with Shehory and Kraus′ work just as Vig[8], Mataric[15],
Thomas[16], Rahwan[17], and so on.

3 Distributed algorithm for parallel
multi-task allocation based on PSL

From Section 1, since randomicity and complexity of task
allocation and sensory limitation of agents, agents cannot
identify and sense all states in their moving. Moreover, the
model of state transitional probabilities of each agent envi-
ronment cannot be obtained either. These characteristics
make the problem not agree with Markov decision process.
Therefore, profit sharing learning is a suitable approach to
solve the problem. Thus, we first introduce profit sharing
learning, then illustrate how agents move towards tasks by
learning, and how they form coalitions.

3.1 Profit sharing learning

Profit sharing learning (PSL) was proposed to utilize ef-
fective reinforcement rules to seek optimal solutions in un-
certain and dynamic environments, which has been proved
to be an excellent reinforcement learning approach in
literature[21−24].

In PSL, the weight of each rule is reinforced accord-
ing to its distance from the goal. In Fig. 5, at time t,
an agent enters state st and selects action at from its ac-
tion set, which contains all its available actions, and con-
tinues this cycle until it receives a reward R at time tR.
At this point, the episode consists of the state-action pair
(SAP) ((st, at), (st+1, at+1), · · · , (stR , atR)), and then each
SAP (st, at) is assigned some credit according to the credit
assignment function f(R, t), which denotes an assignment
value for the SAP which is fired at time t. For example,
the last SAP (stR , atR) is assigned credit R, the penulti-
mate (stR−1, atR−1) is assigned credit f(R, tR − 1), and so
on. The weight of each SAP in the episode is modified by

ω(st, at) ← ω(st, at) + f(RtR , t) (7)

where RtR denotes the credit given at time tR after reach-
ing the goal. f(RtR , t) is commonly denoted as

f(RtR , t) = RtR · βtR−t (8)

where β ∈ (0, 1) is a discount rate, and moreover, Hasegawa
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et al.[23] have pointed out that if f(RtR , t) satisfies

∀t = 1, 2, · · · , tR,

t−1∑
i=1

f(RtR , i) < f(RtR , t) (9)

then the agent may at least find an approximately optimal
solution within finite loops.

Fig. 5 An episode in PSL

3.2 The rules of moving towards tasks

In order to illustrate the process of each agent moving
towards tasks, we first introduce definitions of state and
action of agents.

Definition 1. State. When an agent is in a cell (x, y)
(see Fig. 1), we denote its state as s = (x, y).

Definition 2. Action. An agent can move to its any
adjacent cell by selecting an action from a set Action =
{right, left, down, up}.

Assuming Ai
′s initial state is si

0 = (xi
0, y

i
0), the details

that Ai moves towards tasks can be described as follows:
1) At the first iteration, each agent Ai randomly selects

an action ai
t from Action = {right, left, down, up} until it

finds a task Tk at time tR. Ai obtains a reward Ri after
performing Tk according to (4), then it updates ω(si

t, a
i
t)

for every (si
t, a

i
t) in its episode according to (7).

2) At the I-th iteration, 1 ≤ I ≤ Imax, each agent Ai

selects an action ai
t from Action = {right, left, down, up}

until it finds a task Tk at time tR according to

ai
t = arg max

aq∈Action
ω(si

t, aq) (10)

Ai obtains a reward Ri after performing Tk according to
(4), then it updates ω(si

t, a
i
t) for every (si

t, a
i
t) in its episode

according to (7).

3.3 The rules of forming a coalition

As mentioned in Section 2, if Ai cannot perform Tk with
its finite capabilities, it communicates and negotiates with
its neighbors within its communication range to form a
coalition for Tk. Assuming Al is a neighbor of Ai, the
communication and negotiation between them is listed in
the following steps:

Step 1. Ai sends a proposal 〈Tk,WWW ′
lk〉 to Al for form-

ing a coalition with responsibility for Tk, where WWW ′
lk is the

expected workload that Ai requests Al to perform for Tk.
Step 2. After Al receives 〈Tk,WWW ′

lk〉 sent by Ai, it sends
a responsive message 〈ϕ,WWW ′′

lk〉, where WWW ′′
lk is the real

workload that Al is available for Tk, and ϕ satisfies

ϕ =





1, if Al accepts Ai
′s proposal

0, if WWW ′′
lk < WWW ′

lk

−1, if Al refuses Ai
′s proposal

(11)

Apparently, when ϕ = 1, WWW ′′
lk = WWW ′

lk; and when ϕ = −1,
WWW ′′

lk = 0. Specifically, if Al receives proposals from Ai

and Aj at the same time, it estimates its possible rewards
respectively, then accepts the proposal with more rewards,
and refuses the other.

Step 3. When Ai receives a responsive message
〈ϕ,WWW ′′

lk〉 from Al, it analyzes the message.
If ϕ = 1, then Ai forms a coalition with Al, the real work-

loads of Ai and Al are DDDk −WWW ′
lk and WWW ′

lk, respectively,
and their rewards are distributed according to (4).

If ϕ = −1, then Ai negotiates again with other neigh-
bors.

If ϕ = 0, then Ai sends again a proposal
〈Tk,WWW ′

lk −WWW ′′
lk〉 to another neighbor, and negotiates ac-

cording to Step 2 until Tk can be performed. But if there is
no another neighbor that excepts Al in A′is communication
range, then Ai sends a message null to Al, telling Al that
the negotiation between them fails, and here Ri is set to
0, and Ai continues executing its moving until it can find
an unresolved task, or tasks in T = {T1, T2, · · · , Tm} have
been assigned.

Step 4. If Tk has been assigned to a coalition, set
Flag(Tk) = 1.

3.4 The algorithm

Having given the details relevant to our works, we now
describe our distributed algorithm for parallel multi-task
allocation as follows:

Step 1. Place all agents and tasks randomly in a grid
with x× y cells just as shown in Fig. 1; set ω(s, a) = 0 and
I = 0.

Step 2. Do the followings:
1) If I > Imax, goto Step 3, otherwise, goto Step 2).
2) Set t = 0, and ∀1 ≤ k ≤ m, set Flag(Tk) = 0; clear

all state-action pairs from agent A′is episode.
3) Each agent Ai should perform the following:
a) Ai, which is at state si

t, selects an action ai
t according

to (10), and stores the SAP (si
t, a

i
t) in its episode;

b) Ai executes ai
t and moves to the next state si

t+1;
c) If Ai cannot find any unsolved task, t = t + 1, goto

Step a), otherwise, an unsolved Tk is found by Ai;
d) If Ai can perform Tk by itself, set tR = t, update the

weight of all SAPs in A′is episode according to (7), and set
Flag(Tk) = 1. Then Tk is allocated and Ai stops mov-
ing. Otherwise, Ai needs to cooperate with other agents.
If there is no neighbor or Ai fails in negotiation with its
neighbors, t = t + 1, and goto Step a), else set tR = t,
update the weight of all SAPs in A′is episode according to
(7), and set Flag(Tk) = 1. Then Tk is allocated and Ai

stops moving.
4) If ∀1 ≤ k ≤ m, then Flag(Tk) = 1, I = I + 1, and

goto Step 1.
Step 3. Output the best solution and end the algorithm.
The idea of the algorithm is that if at a given state an

agent has to choose among different actions, those which
were heavily chosen by preceding iterations (that is, those
with a high weight of state-action pairs) are chosen with
higher probability. Furthermore, high weight of state-
action pairs is synonymous with more rewards given by
coalitions. This causes the quantity of weight of state-
action pairs with more rewards to grow faster than of state-
action pairs with fewer rewards, and therefore the proba-
bility with which an agent chooses a task to perform is
quickly biased towards the task with more income. The
final result is that very quickly every teamed agent chooses
a task which can bring more rewards to it. Obviously, the
process is thus characterized by a positive feedback based
reinforcement learning mechanism, which ensures that a
tasked agent may at least find an approximately optimal
solution within finite loops[23].
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Table 1 Vectors of agents capabilities

Agent A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

BBBi [2, 3] [3, 4] [4, 2] [3, 2] [4, 1] [4, 3] [5, 2] [2, 5] [3, 4] [4, 3] [1, 1] [2, 5] [2, 2] [3, 3] [4, 4]

3.5 Computational complexity

The efficiency of our algorithm can be judged from com-
putations as follows:

1) In Step 1, we need to place n agents and m tasks in
a grid with x × y cells and initialize ω(s, a) for x × y × 4
times, so the complexity of Step 1 is O(n + x× y × 4).

2) In Step 2, first, we should do the iteration for Imax

times; second, considering the worst case, an agent may
travel at most x × y cells to find a task, and moreover, in
its every current cell, it may check for 9 times in its vis-
ibility range (see Fig. 2) to find a task. Similarly, it may
communicate for 3 times with at most 9 neighbors to form
a final coalition, and in every negotiation, an agent needs
to calculate its workload for each dimension capability. So,
the complexity of Step 2 is O(Imax×n×x×y×(9+9×3×r)).

Therefore, the complexity of our algorithm for parallel
multi-task allocation is O(Imax×n×x×y×(9 + 9 ×3×r))
which is close to O(n5), while the complexity of the algo-
rithm in [11] is O(nk ×m5), where k is the highest coali-
tional size allowed.

4 Experimental results and discussion

In order to evaluate the performance of our algorithm,
we compare our algorithm with Shehory and Kraus′[14]

(henceforth called SK) for the reasons outlined in Section
2. The partial parameters are shown in Tables 1 and 2.
∀1 ≤ i1 < i2 ≤ n, πi1i2 = 2, and Imax = 200. The rel-
ative experimental details in our algorithm are shown in
Figs. 2∼ 4. The initial states of agents and tasks are shown
in Fig. 6. We make 4 independent trails of the two algo-
rithms.

Table 2 Demand capability vectors and reward of tasks

Tk T1 T2 T3 T4 T5

DDDk [5, 6] [4, 7] [6, 7] [8, 4] [7, 6]

P (Tk) 50 50 40 55 60

Fig. 6 Initial states of agents and tasks

We take agent A7 for an example to show how an agent
moves to tasks and negotiates with other agents.

1) In Fig. 7, when A7 is in its initial state s0 = (1, 3), it
observes the weight of SAP related with s0: ω(s0, right) =
8.6541, ω(s0, left) = 4.4281, ω(s0, up) = 0, ω(s0, down) =
0.3969. Since ω(s0, right) > ω(s0, left) > ω(s0, down) >
ω(s0, up), A7 selects right as its action according to (10),
executes right, and enters next state s1 = (1, 4). Since
there is no unresolved task in its visibility range (see Fig. 3),
it stores the SAP (s0, right) in its episode. A7 continues the
circle until it finds task T2 in state s6 = (2, 8). The episode
of A7 consists of ((1, 3), right), ((1, 4), right), ((1, 5), right),
((1, 6), down), ((2, 6), right), and ((2, 7), right).

2) A7 finds that it can not perform T2 by itself, so it has
to cooperate with other agents. Suppose there are A6 and
A11 in A′7s communication range (see Fig. 4), A7 negotiates
with A6 and A11 to perform T2.

Fig. 7 State s6 = (2, 8) of A7

3) First, A7 sends a proposal 〈T2, [0, 5]〉 to A6, and waits
for A′6s response. Then A6 sends 〈−1, [0, 0]〉 to A7 to refuse
the proposal according to (11). The negotiation between
A7 and A6 is over.

4) Then, A7 negotiates with A11 and sends a proposal
〈T2, [0, 5]〉 to A11. Here, A11 sends 〈0, [0, 1]〉 to accept the
proposal according to (11). A7 continues to negotiate with
other agents in its communication range. Since there is no
other agent and A7 and A11 can not perform T2, A7 sends a
message null to A11, and continues moving towards another
unresolved task.

5) Suppose A7 finds task T4 in its state s7 = (2, 9) as
shown in Fig. 8. The episode of A7 consists of ((1, 3), right),
((1, 4), right), ((1, 5), right), ((1, 6), down), ((2, 6), right),
((2, 7), right), and ((2, 8), right).

6) Since A7 can not perform T4 by itself, it has to coop-
erate with A5 and A11 in its communication range.

7) A7 sends a proposal 〈T4, [3, 2]〉 to A5, and waits for
A′5s response. Here, A5 accepts the proposal and sends
〈0, [3, 1]〉 to A7. Since A7 can not perform T4 with A5,
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Table 3 The optimal solutions of the two algorithms

Tk T1 T2 T3 T4 T5

Coalition {A5, A12} {A6, A7, A8} {A2, A10} {A1, A7, A11} {A4, A15}
Our Workload of members [4, 1][1, 5] [4, 3][0, 1][0, 3] [3, 4][3, 3] [2, 3][5, 1][1, 0] [3, 2][4, 4]

algorithm Income 37 33 25 37 45

Agents′ reward 16.8,20.2 21,3,9 13.5, 11.5 15.4,18.5, 3.1 17.3, 27.7

SK
Coalition {A2, A13} {A8, A12} ∅ {A5, A10} {A4, A15}
Income 37 34 0 41 45

it continues to negotiate with A11, and sends 〈T4, [0, 1]〉 to
A11. A11 sends its responsive message 〈0, [0, 1]〉.

8) After A7 receives A′11s responsive message, it finds
that it can perform T4 with A5 and A11. So, the coalition
for T4 is C4 = {A7, A5, A11}, and the flag Flag(T4) = 1.

9) The workload vectors of each member in C4 are:
WWW 7,4 = [5, 2], WWW 5,4 = [3, 1], WWW 11,4 = [0, 1].

10) A7 calculates the value of C4: V (C4) = Φ (T4) −
Θ(C4) − Π(C4) = 55 − 12 − 2 × 3 = 37. The member′s
rewards are: R7 =

WWW7,4
DDD7

· V (C4) = (7/12) × 37 = 21.57,

R5 = (4/12)× 37 = 12.33, R11 = (1/12)× 37 = 3.1.
11) A7 updates the weight of SAPs in its episode accord-

ing to 7) and 8) where β = 0.3.

Fig. 8 State s7 = (2, 9) of A7

As shown above, the whole process is a positive feedback
which ensures every agent can obtain an optimal results
though its learning. Fig. 9 shows the final states by agents′

learning for 200 times. In Fig. 9, each task is surrounded
and performed by agents.

Table 3 shows performance comparison of our algorithm
with SK′s work. As shown in the table, our algorithm can
exactly form a coalition for every task, and allows an agent
to join in several different coalitions without any resource
conflict, such as A7. In addition, our algorithm puts out
more total income, and gives the real workload and rewards
of each tasked agent.

In contrast, the SK algorithm forms coalitions for T1, T2,
T4, and T5 except T3. The reason is that T3 has a big capa-
bility demand but owns little reward, but each agent in SK
algorithm is inclined to join coalitions which have more re-
ward. Therefore, all tasks except T3 were allocated earlier
but no any coalition is left in each agent′s coalition list, and
there is no available coalition to be selected to perform T3.

Moreover, the SK algorithm has a limitation of coalitional
size and does not consider all possible coalitions, it is pos-
sible that coalitions left in each agent′s coalition list can
not perform T3 with insufficient resources. Furthermore,
SK algorithm can only tell the system that a task may be
solved by a coalition, for example, it is easily known that
{A8, A12} can perform T2, but it is not clear that how much
workload every member should perform at least for T2.

Fig. 9 Final states of agents and tasks

However, from the results we can see that T3 was not
allocated based on the SK algorithm and the income of the
proposed algorithm is smaller than the results of the SK
algorithm except T3. First, the reason for T3 not to be
allocated based on SK algorithm is that T3 has a big capa-
bility demand but owns little reward, and each agent in SK
algorithm is inclined to join coalitions which have more re-
ward. Therefore, all tasks except T3 were allocated earlier
but no any coalition is left in each agent′s coalition list, and
there is no any available coalition to be selected to perform
T3. Moreover, the SK algorithm has a limitation of coali-
tional size and does not consider all possible coalitions, it is
possible that coalitions left in each agent′s coalition list can
not perform T3 with insufficient resources. Second, the rea-
son for the income of the proposed algorithm to be smaller
than the results of the SK algorithm except T3 is that the
SK algorithm is addressed in obtaining the most income for
each single given task but does not consider whether the
given tasks are performed really or not. Therefore, some
tasks obtaining big income may make other tasks with little
reward not be allocated at last. In contrast, the proposed
algorithm in this paper mainly aims to allocate all given
tasks successfully. The proposed algorithm is addressed in
maximizing the whole income of all tasks but not the in-
come for each single task. Therefore, although some tasks′

incomes in the proposed algorithm are slightly lower than
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the SK algorithm′s, the whole income of all tasks in the pro-
posed algorithm are much larger than the SK algorithm′s.

The reason which makes comparison of the two algo-
rithms is that although Shehory and Kraus presented dis-
tributed algorithm to form a coalition for a task, any com-
munication and negotiation among agents was not involved,
while our algorithm designs detailed steps of communica-
tion and negotiation to determine each agent′s workload
for its tasks in the process of coalition formation.

Furthermore, we also give curves of number of steps, re-
quired time and total income as shown in Figs. 10∼ 12, re-
spectively. The computational environments include the
Intel Core 2 Duo P7370 (2.00GHz) and 2 GB RAM.

Intuitively, Fig. 10 shows that in our algorithm all tasks
can be found and performed by teamed agents within fi-
nite loops, and the time of 50 independent trails shown in
Fig. 11 is about 0.5 seconds. In addition, from Fig. 12, our
algorithm can find a better coalition for each task via learn-
ing for a period of time insured by profit sharing learning.

Fig. 10 Curves of numbers of steps

Fig. 11 Curve of required time

5 Conclusions and future work

In this paper, we develop a distributed algorithm for par-
allel multi-task allocation in fields of multi-agent systems,
and evaluate the performance of the proposed algorithm
against Shehory and Kraus′ algorithm. The comparison
shows that the proposed algorithm is significantly more ef-
fective and robust for mobile agent in application domains
of MAS such as disaster response management. These im-

provements stem from the fact that the proposed algorithm
can exactly find a coalition for every task and give the
real workload of every tasked agent without any resource
conflict, and thus provide a specific and significant refer-
ence for practical control tasks. Moreover, the proposed
distributed algorithm can be used in resource allocation,
disaster response management, and so on, where there are
many mobile agents.

For future work, we will concentrate on decreasing com-
munication and negotiation cost in environments with a
mass of agents.

Fig. 12 Curves of total income
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