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Adaptive Stabilization for Uncertain
Nonholonomic Dynamic Mobile Robots

Based on Visual Servoing Feedback
YANG Fang1, 2 WANG Chao-Li1

Abstract The stabilization problem of nonholonomic dynamic mobile robots with a fixed (ceiling-mounted) camera is addressed
in this paper. First, a camera-object visual servoing kinematic model is introduced by utilizing the pin-hole camera model and a
kinematic stabilizing controller is given for the kinematic model. Then, an adaptive sliding mode controller is designed to stabilize
uncertain dynamic mobile robot in the presence of parametric uncertainties associated with the camera system. The proposed
controller is robust not only to structured uncertainty such as mass variation but also to unstructured one such as disturbances. The
stability of the proposed control system and the boundedness of estimated parameters are rigorously proved by Lyapunov method.
Simulation results are presented to illustrate the performance of the control law.
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Over the past ten years, the control of nonholonomic
systems have formed an active area within the nonlin-
ear control community. By the theorem of Brockett[1],
a nonholonomic system cannot be stabilized at a single
equilibrium point by any continuous, time-invariant, state-
feedback controller. To solve this problem, lots of meth-
ods have been considered[2−7]. In the control of nonholo-
nomic mobile robots, it is usually assumed that the robot
states are available and exactly reconstructed using propri-
oceptive and exteroceptive sensor measurements. Unfortu-
nately, in real-world applications involving mobile robots,
these assumptions often do not hold due to uncertainties in
the kinematic and dynamic models, mechanical limitations
and measurement noise. As a consequence, the estimation
of the robot states from sensor measurements can be af-
fected by these perturbations. An interesting approach to
overcome this position measurement problem is to utilize
a vision system to directly obtain the Cartesian position
information required by the controller.

Since the late 1980 s, much effort has been made into
visual servoing and vision-based manipulations[8−11]. A
significant issue with camera-based vision systems is the
lack of depth information. From a review of literature, var-
ious approaches have been developed to address the lack
of depth information inherent in vision systems. Chen et
al.[12] developed a mobile robot visual servoing tracking
controller when a monocular camera was onboard. In [13],
asymptotic regulation of the position/orientation of a mo-
bile robot with a monocular camera was achieved by ex-
ploiting homography-based visual servoing control strate-
gies. However, the homography estimation and decom-
position process were not a trivial issue. Wang et al.[14]

investigated the dynamic feedback robust stabilization of
nonholonomic mobile robots with uncalibrated monocular
camera based on visual servoing feedback.

The methods mentioned above are based on kinematics
only and the nonlinear forces in robot dynamics are ne-
glected. However, in practice, it is more realistic to formu-
late the nonholonomic system control problem at dynamic
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level, where the torque and force are taken as the control
inputs. Liu et al.[15] presented a new adaptive controller
for image-based dynamic control of a robot manipulator us-
ing a fixed camera whose intrinsic and extrinsic parameters
were not known. [16] proposed a new adaptive controller for
image-based visual servoing of both point and line features
using an uncalibrated eye-in-hand camera system. Dixon
et al.[17] used feedback from an uncalibrated, fixed (ceiling-
mounted) camera to present an adaptive tracking controller
for a mobile robot that compensated for the parametric un-
certainties in the camera and the mobile robot dynamics.
However, the development in [17] cannot be applied to the
mobile robot stabilization problem due to restrictions on
the mobile robot reference velocity (i.e., the reference lin-
ear velocity does not converge to zero).

In this paper, the stabilization problem of a nonholo-
nomic mobile robot (NMR) with uncertain dynamics and
uncertain visual parameters is considered. Specifically, an
adaptive sliding mode controller is proposed for the NMR,
in which adaptive control techniques are used to compen-
sate for the parametric uncertainties and sliding mode con-
trol is used to suppress the bounded disturbances. The
controller guarantees the output of the dynamic subsys-
tem (the input of the kinematic subsystem) to track some
bounded auxiliary signals which subsequently drive the
kinematic subsystem to achieve global asymptotic stabi-
lization. The most interesting feature of this paper is that
the problem is discussed in the image frame and the inertial
frame, which make the problem easy and useful.

This paper is organized as follows. In Section 1, based
on the pin-hole camera model, the camera-object visual
servo kinematic and dynamic models of an NMR are in-
troduced. In Section 2, a kinematic stabilizing controller
and a torque controller for the NMR are developed. In Sec-
tion 3, the dynamic stability of the proposed controller is
rigorously proved by the Lyapunov method. In Section 4,
the controller′s performance is illustrated through the sim-
ulation results. The last section presents a conclusion and
outlines the future work.

1 Problem formulation

1.1 Kinematic and dynamic models

A typical example of a nonholonomic mobile robot is
shown in Fig.1. The two rear wheels of the robot are con-
trolled independently by motors, and a front castor wheel
prevents the robot from tipping over as it moves on a plane.
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Assume that the geometric center point and the mass cen-
ter point of the robot are the same. The nonholonomic
constraint is defined by

ẋ sin θ − ẏ cos θ = 0

where (x, y) denotes the position P of the center of mass,
θ is the angle between X axis and X1 axis with a positive
anticlockwise direction. By this formula, the kinematics
of the robot can be modeled by the following differential
equations





ẋ = ν1 cos θ
ẏ = ν1 sin θ

θ̇ = ω
(1)

where ν1 is the forward velocity, while ω is the angular
velocity of the robot.

Fig. 1 Tricycle-type mobile robot

The system (1) can be written in matrix as follows:

q̇qq = S(qqq)vvv(t) (2)

where vvv(t) = [ν1, ω]T and S(qqq) is expressed as

S(qqq) =




cos θ 0
sin θ 0

0 1


 (3)

with qqq = (x, y, θ)T.
According to the Euler-Lagrangian formulation, the non-

holonomic dynamic model of the mobile robot can be de-
scribed as

M(qqq)q̈qq + C(qqq, q̇qq)q̇qq + τττd = B(qqq)τττ + AT(qqq)λ (4)

where M(qqq) ∈ R3×3 is a positive definite symmetric inertial
matrix, λ is a Lagrange multiplier which expresses the con-
straint force, C(qqq, q̇qq) ∈ R3×3 represents of centripetal and
Coriolis torque, B(qqq) ∈ R3×2 is an input transformation
matrix, τττd ∈ R2 denotes bounded unknown disturbances
including unstructured unmodelled dynamics, τττ ∈ R2 is
the torque applied to the right and left wheels.

Differentiating both sides of (2) and substituting it into
(4), pre-multiplying both sides by ST(qqq), one obtains

M1(qqq)v̇vv + C1(qqq, q̇qq)vvv + τ̄ττd = B1(qqq)τττ (5)

where M1(qqq) = ST(qqq)M(qqq)S(qqq), C1(qqq, q̇qq) = ST(MṠ +CS),
τ̄ττd = ST(qqq)τττd, B1(qqq) = ST(qqq)B(qqq). System (5) is more
appropriate for controller design as the constraint λ has
been eliminated from dynamic equation (4). In order to
completely actuate the nonholonomic system, B1(qqq) is as-
sumed to be a full rank matrix.

Assumption 1. ‖ τ̄ττd ‖ is bounded by a known scalar,
i.e., ‖ τ̄ττd ‖≤ dB , where ‖ · ‖ is usually called Euclid norm,
and dB is a known constant.

1.2 Kinematic and dynamic models with monoc-
ular camera

Generally, (x, y) can be obtained from the encoders of
motors and other sensors such as ultrasonic sensors, in-
frared sensors, etc. However, for complex environments,
it is difficult to implement this strategy. Instead, we will
take advantage of the vision information to deal with this
challenge.

In this paper, a camera is used to measure the position
(x, y) and determine the desired target. A key strategy is
that the error between the mass center point of the robot
and its desired point in the image frame can be used in
the closed-loop feedback control of the robot. As for the
angle θ, it can be obtained easily from the angle sensor.
Therefore, θ is still included in the error model.

Firstly, we consider that the movement of the mobile
robot can be measured by using a fixed camera.

In Fig. 2, it is assumed that a pinhole camera is fixed
to the ceiling, the mobile robot mentioned in Fig. 1 is un-
der the camera, the camera plane and the robot plane are
parallel. There are three coordinate frames, namely the
inertial frame X-Y -Z, the camera frame x - y - z and the
image frame u - o1 - v. Assume that the x - y plane of the
camera frame is parallel with the plane of the image coor-
dinate plane. C is the crossing point between the optical
axis of the camera and X-Y plane. Its coordinate relative
to X-Y plane is (cx, cy). The coordinate of the intersec-
tion of the optical axis with the image plane is denoted by
(Oc1, Oc2). (x, y) is the coordinate of the mass center P
of the robot with respective to X-Y plane. Suppose that
(xm, ym) is the coordinate of (x, y) relative to the image
frame. In this work, the perspective camera model is used
to obtain that[17]

[
xm

ym

]
=

[
α1 0
0 α2

]
R(θ)

[[
x
y

]
−

[
cx

cy

]]
+

[
Oc1

Oc2

]

(6)
where α1 and α2 are constants, which are dependent on the
depth information, focal length, scalar factors along u axis
and v axis respectively. In (6)

R(θ) =

[
cos θ0 sin θ0

− sin θ0 cos θ0

]

where θ0 denotes the angle between y axis and X axis with
a positive anticlockwise orientation.

Differentiating (6) with respect to time and using (1), we
obtain the camera-object visual servoing kinematic model




ẋm

ẏm

θ̇


 =




ν1α1 cos(θ − θ0)
ν1α2 sin(θ − θ0)

ω


 (7)

If α1, α2 and θ0 are all known, (7) can be reduced to a
common nonholonomic chained form by using coordinate
transformation. Its stabilizing problem can be addressed
by lots of methods[2−4]. But, in practice, α1, α2, and θ0

need to be measured. As usual, these parameters can be
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obtained by using calibrating methods, at the expense of
considerable calculation on calibration. To overcome this
computational burden, we propose a novel solution to adap-
tive stabilization of system (7) without calibration.

Fig. 2 Wheeled mobile robot below monocular camera

2 Adaptive controller design

2.1 Stabilizing controller design of the kinematic
model

Assumption 2. θ0 is known, α1 = α2 = α are unknown,
α ≤ α ≤ α, α and α are positive known constants.

Remark 1. α1 = α2 = α means that the scalar factor
along u axis is the same as that one along v axis. Some CCD
cameras are made like this. The assumption α ≤ α ≤ α
is not strong. Commonly, the upper and lower bounds of
the scalar factor, the depth and the focal length can be
estimated in advance.

Based on Assumption 2 and replacing θ − θ0 by θ in
system (7), we have




ẋm

ẏm

θ̇


 =




ν1α cos θ
ν1α sin θ

ω


 (8)

According to the transformation (6), the dynamic sub-
system (5) is written as

M2(qqqm)v̇vv + C2(qqqm, q̇qqm)vvv + τ̄ττd = B2(qqqm)τττ (9)

with qqqm = (xm, ym, θ)T.
According to [18], we know that the coefficients

M1, C1, B1 of dynamic equation (5) are only dependent on
angle θ and have nothing to do with x and y. However, the
transformation (6) is independent of angle θ. So, we have

M2(qqqm) = M1(qqq)

C2(qqqm, q̇qqm) = C1(qqq, q̇qq)

B2(qqqm) = B1(qqq)

Set

hhh =




z1

z2

θ


 =




cos θ sin θ 0
sin θ − cos θ 0

0 0 1







xm

ym

θ




then (8) yields




ż1 = −ωz2 + αν1

ż2 = ωz1

θ̇ = ω
(10)

The dynamic subsystem (9) correspondingly becomes

M3(hhh)v̇vv + C3(hhh, ḣhh)vvv + τ̄ττd = B3(hhh)τττ (11)

where
M3(hhh) = M2(qqqm)|qqqm=T−1hhh

C3(hhh, ḣhh) = C2(qqqm, q̇qqm)|qqqm=T−1hhh

B3(hhh) = B2(qqqm)|qqqm=T−1hhh

and

T =




cos θ sin θ 0
sin θ − cos θ 0

0 0 1




Due to the nonsingularity of S and T , the transformed
dynamic system (11) has the same properties as (4) or (5).
Some interesting properties of the dynamic model (11) are
listed below:

Property 1. M3(hhh) is a positive definite symmetric
matrix.

Property 2. Ṁ3 − 2C3 is skew-symmetric.
Property 3. For any differentiable vector ξξξ,

M3(hhh)ξ̇ξξ + C3(hhh, ḣhh)ξξξ = Y (hhh, ḣhh,ξξξ, ξ̇ξξ)ppp (12)

where the regressor matrix Y (hhh, ḣhh,ξξξ, ξ̇ξξ) is a known matrix

of hhh, ḣhh, ξξξ, and ξ̇ξξ, while ppp is an inertia parameter vector of
the system.

As a basis of the full dynamic system study, let us first
neglect the part of dynamics and consider the kinematic
stabilization problem of system (10) only. From [13], the
robot kinematic stabilizing control law vvvd = (ν1d, ωd)T for
system (10) is given below:

ν1d = −k2η + ϕ̂z2(cos t + ωd), ωd = −k1(θ + χ) (13)

where k1 and k2 denote the positive constant control gains,
and η and χ are auxiliary signals defined as follows:

η = z1 − z2 sin t, χ = (η + z2 sin t)(z2 − η sin t) (14)

In (13), ϕ̂(t) denotes a dynamic estimated value of ϕ =
1
α
, the parameter error signal ϕ̃ is defined by ϕ̃ = ϕ − ϕ̂,

the parameter adaptive law will be given later.
To design the torque input τττ for the complete dynamic

systems (10) and (11), which will make the output vvv(t) of
the dynamic system tend to the desired velocity vvvd, the
auxiliary velocity tracking error signal denoted by eee(t) ∈
R2 is defined as follows:

eee = [e1, e2]
T = vvv − vvvd (15)

After substituting (13), (15) into (10), the following
closed-loop error system for z1, z2, θ is obtained.
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ϕż1 = −k2η + ϕ̂z2(cos t + ωd)− ϕz2(ωd + e2) + e1

ż2 = −k1z1(θ + χ) + e2z1

θ̇ = −k1(θ + χ) + e2

(16)

2.2 Stabilizing controller design of the dynamic
system

In this subsection, we utilize the dynamic model given by
(11) to design a control torque input τττ to stabilize systems
(10) and (11) when the inertia parameter vector ppp, the cam-
era parameter α are unknown and unknown disturbance τττd

exists.
Differentiating (15) and using the result in (11), the

robot dynamics using the velocity tracking error can be
rewritten as

M3(hhh)ėee + C3(hhh, ḣhh)eee + Ycppp + τ̄ττd = B3(hhh)τττ (17)

where Ycppp is defined as

Ycppp = M3v̇vvd + C3vvvd (18)

where Yc(·) ∈ R2×s denotes the known desired regression
matrix, and ppp is defined in (12).

Based on the subsequent stability proof and the regu-
lation of eee(t), we design the control torque input τττ(t) as
follows:

τττ(t) = B−1
3 τ̄ττ (19)

where τ̄ττ ∈ R2 is an auxiliary control signal designed as
shown in the following:





τ̄ττ = Ycp̂pp− uuus1 −
[

kd1e1 + η
kd2e2 + ϕ̂((θ + χ)− z2η)

]

uuus1 = dB · sgn(eee) = dB · [sgn(e1), sgn(e2)]
T

(20)

where kd1 and kd2 are positive constant control gains, the
parameter update laws for p̂pp and ϕ̂ are designed as follows:

˙̂ppp = −ΓY T
c eee (21)

˙̂ϕ = Λ[e2(θ + χ)− ηz2(cos t + ωd + e2)] (22)

where Γ and Λ are positive definite gain matrices. After
substituting (19) and (20) into (17), the closed loop error
dynamics for eee(t) can be expressed as

M3ėee = −C3eee− Ycp̃pp− τ̄ττd − dB · sgn(eee) −
[

kd1e1 + η
kd2e2 + ϕ̂((θ + χ)− z2η)

]
(23)

where the parameter error signal denoted by p̃pp is defined
as:

p̃pp = ppp− p̂pp

3 Stability analysis

Theorem 1. Under Assumptions 1 and 2, the control
inputs given in (13) ∼ (15), (19) ∼ (22) for systems (10)
and (11) ensure that system (10) can be uniformly globally
asymptotically stabilized to zero in the sense that

lim
t→∞

z1(t), z2(t), θ(t), e1(t), e2(t) = 0 (24)

Proof. To prove Theorem 1, we consider a Lyapunov
function candidate

V =
1

2α
(η2+z2

2+θ2)+
1

2
Λ−1ϕ̃2+

1

2
eeeTM3eee+

1

2
p̃ppTΓ−1p̃pp (25)

We notice that, utilizing (13) and the first equation of
(16), we have

ϕη̇ = [−k2η − ϕ̃ωdz2 − ϕz2e2 − ϕz1 sin t(ωd + e2) + e1]−
ϕ̃z2 cos t

(26)
After taking the time derivative of (25) and making

the appropriate substitutions from (16), (23), (26) and by
Property 2, we have

V̇ = ϕ(ηη̇ + z2ż2 + θθ̇) + 1
2
eeeTṀ3eee + eeeTM3ėee + p̃ppTΓ−1 ˙̃ppp +

Λ−1ϕ̃ ˙̃ϕ

= −k2η
2 − ϕk1(θ + χ)(θ + z1z2 − z1η sin t) +

ϕ[−ηz2e2 − ηz1e2 sin t + z1z2e2 + θe2] −
ϕ̃z2η(cos t + ωd) + e1η + 1

2
eeeTṀ3eee +

eeeTM3ėee + p̃ppTΓ−1 ˙̃ppp + Λ−1ϕ̃ ˙̃ϕ

= −k2η
2 − ϕk1(θ + χ)2 + ϕ[−ηz2e2 + (θ + χ)e2] +

e1η − ϕ̃ηz2(cos t + ωd) + Λ−1ϕ̃ ˙̃ϕ + p̃ppTΓ−1 ˙̃ppp −
eeeTYcp̃pp− eeeTτ̄d − eeeTdB · sgn(eee) −

eeeT

[
kd1e1 + η

kd2e2 + ϕ̂((θ + χ)− z2η)

]

= −k2η
2 − ϕk1(θ + χ)2 − kd1e

2
1 − kd2e

2
2−

eeeTτ̄ττd − eeeTdB · sgn(eee)
(27)

Since

−eeeTτ̄ττd − eeeTdB · sgn(eee) =− [dBeeeTsgn(eee) + eeeTτ̄ττd] ≤
− [dB‖eee‖− ‖ τ̄ττd ‖ ‖eee‖] ≤ 0

(28)
we have

V̇ ≤ −k2η
2 − ϕk1(θ + χ)2 − kd1e

2
1 − kd2e

2
2 ≤ 0 (29)

From the expression of (29), we know that the func-
tion V (t) never increases its value so that it converges to a
nonnegative number, thus, V (t) is bounded. According to
the definition (25), bounded V (t) directly implies that the
e1(t), e2(t), η(t), p̃pp, ϕ̃, θ, and z2 are all bounded. Thus, p̂pp
and ϕ̂ are bounded as well. Furthermore, e1, e2, η, and
(θ +χ) ∈ L2 can be obtained due to (29) and the bounded-
ness of V (t). From (14), (16), (23) and the boundedness of

α, we have θ̇, ż1, ż2, ė1, ė2, and (θ̇ + χ̇) are all bounded,
thus, e1, e2, η, and (θ + χ) are uniformly continuous. Due

to the Barbalat Lemma[19], we have

lim
t→∞

e1(t), e2(t), η(t), (θ + χ)(t) = 0 (30)

The result in (30) can be used in conjunction with the
closed-loop dynamics for θ(t) and z2(t) given in (16) and
the control input of (13) to determine that



No. 7 YANG Fang and WANG Chao-Li: Adaptive Stabilization for Uncertain Dynamic Nonholonomic · · · 861

lim
t→∞

θ̇(t), ωd(t), ż2(t) = 0 (31)

The results in (30) and (31) can be used to determine
that the bracketed term of (26) goes to zero as t → ∞;
therefore, since ϕ̃ and z2 are uniformly continuous and η(t)
has a finite limit as t → ∞, the extended Barbalat lemma
can be invoked to prove that

lim
t→∞

η̇(t) = 0 (32)

After taking the time derivative of θ + χ, according to
(14) and (16), the following resulting expression can be
obtained:

d

dt
[θ + χ] = [−k1(θ + χ) + e2 + φ(t)] + z2

2 cos t (33)

where the auxiliary signal φ(t) is defined as follows:

φ(t) = (η + z2 sin t)(ż2 − η̇ sin t− η cos t) +
z2(η̇ + ż2 sin t)− η sin t(η̇ + ż2 sin t + z2 cos t)

(34)
Based on (30)∼(32), we have

lim
t→∞

φ(t) = 0 (35)

From (30) and (35), the bracketed term of (33) also goes
to zero as t → ∞. Since z2 is uniformly continuous and
θ + χ has a finite limit as t → ∞, the extended Barbalat
lemma can be utilized to conclude that limt→∞ z2

2 cos t = 0,
thus,

lim
t→∞

z2
2 cos2 t = 0 (36)

We notice that

(z2
2 cos t)′ = 2z2ż2 cos t− z2

2 sin t (37)

By using the extended Barbalat lemma again, we ob-
tained that limt→∞ z2

2 sin t = 0, thus

lim
t→∞

z2
2 sin2 t = 0 (38)

Considering (36), we obtain that

lim
t→∞

z2
2(sin2 t + cos2 t) = lim

t→∞
z2
2(t) = 0 (39)

Hence,

lim
t→∞

z2(t) = 0 (40)

Based on the previous facts (14) and (30), we can obtain

lim
t→∞

z1(t) = 0 (41)

By utilizing (30), (40), (41), and the definitions intro-
duced in (14), the following result can be obtained

lim
t→∞

z1(t), z2(t), θ(t), e1(t), e2(t) = 0 (42)

¤
Remark 2. The proposed adaptive robust algorithm

can guarantee the asymptotical stability of the system.
The bounded disturbance can be completely suppressed by
−dB · sgn(eee). However, this may bring chattering into the
system since the discontinuous surfaces exist. To overcome

the chattering problem, a smoothly sliding mode control
law taking into account the boundary is introduced:

uuus1 =

{
dB · sgn(eee), if ‖eee‖ > δ(t)
dB

eee
δ
, if ‖eee‖ ≤ δ(t)

(43)

where δ(t) is a positive integration function on [0, +∞) such
that

∫ +∞

0

δ(σ)dσ ≤ µ

with µ being a nonnegative constant.
If ‖eee‖ > δ(t), then

V̇ ≤ −k2η
2 − ϕk1(θ + χ)2 − kd1e

2
1 − kd2e

2
2 ≤ 0 (44)

If ‖eee‖ ≤ δ(t), then

−eeeTτ̄ττd − eeeTuuus1 = − eeeTτ̄ττd − dBeeeTeee
δ

≤ dB‖eee‖ − dB‖eee‖2
δ

≤
dB‖eee‖+ dB‖eee‖ ≤ 2dBδ

(45)
Thus, we have

V̇ ≤ −k2η
2 − ϕk1(θ + χ)2 − kd1e

2
1 − kd2e

2
2 + 2dBδ (46)

So, when we choose the smoothly variable structure con-
trol law uuus1 in (43), formula (46) is always valid.

Now, we can prove that the control inputs (13) and (20)
with uuus1 as defined in (43) can guarantee that the conclu-
sion of Theorem 1 can be obtained. By integrating both
sides of (46), it is seen that V (t) ≤ V (0)+2dB

∫ t

0
δ(σ)dσ ≤

V (0)+µ. Thus, η, z2, θ, e1, e2, ϕ̃ and p̃pp are all bounded,
and (θ + χ), ϕ̂ and p̂pp are all bounded as well. In view of

(14), (16) and (23), we obtain that (θ̇ + χ̇), η̇, ė1, and ė2

are all bounded. Hence, (θ+χ), η, e1, and e2 are uniformly
continuous. Notice that

k1ϕ(θ+χ)2+k2η
2+kd1e

2
1+kd2e

2
2 ≤ −V̇ (t)+2dBδ(t) (47)

By integrating both sides of (47), we can see that (θ +
χ), η, e1, and e2 ∈ L2. By using Barbalat lemma, we can
obtain

lim
t→∞

η, θ + χ, e1, e2 = 0

Same process to the proof of Theorem 1, we can prove
that limt→∞ z1(t), z2(t), θ(t), e1(t), e2(t) = 0. Here omitted
due to the limited space.

Remark 3. The examples of time-varying boundary

layer δ(t) are required to satisfy
∫ +∞
0

δ(σ)dσ ≤ µ, for in-

stance, exponential function e−t, e−(1+t); power function
1

tn , 1
(1+t)n , n > 1.

4 Simulation results

For the mobile robot system considered here, according
to [20], the dynamic equation parameters of (4) can be
given as

M(qqq) =




m 0 0
0 m 0
0 0 I


 , C(qqq, q̇qq) =




0 0 0
0 0 0
0 0 0




B(qqq) =
1

r




cos θ cos θ
sin θ sin θ
R −R
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where 2R is the width of the mobile robot and r is the
radius of the wheel, m is the mass of the mobile robot and
I is its inertia moment around the vertical axis at point P .

According to the transformations of Sections 1 and 2, we
have

M3(hhh) =

[
m 0
0 I

]
, C3(hhh, ḣhh) =

[
0 0
0 0

]

B3(hhh) =
1

r

[
1 1
R −R

]

The robot regressor Yc and the inertia parameter vector
ppp can be selected as Yc = diag{ν̇1d, ω̇d}, ppp = (m, I)T.

Case 1. The simulation is implemented for the con-
trollers defined in (13) and (20) with uuus1 = dB ·sgn(eee) being
used. The corresponding closed loop systems are written by
(16) and (23). Take α = 0.5, α = 2, 1

ϕ
= α = 1, m = 5 kg,

I = 5kg ·m2, R = 1 m, r = 0.1 m. The parameters of the
controller are chosen as k1 = 5, k2 = 2, kd1 = kd2 = 20,
dB = 2, and the gains Γ = diag{10, 10}, Λ = 5. The exter-
nal disturbance τ̄ττ is a random number in the range [−1, 1]T

which is added to verify the robustness of the closed-loop
systems.

The simulation results are shown in Figs. 3 ∼ 7, respec-
tively. From Figs. 3 and 4, we can see that the posture er-
rors z1, z2, θ and velocity errors e1, e2 asymptotically tend
to zero. From Figs. 5 and 6, the estimates of the parame-
ters p̂pp and ϕ̂ are bounded. As shown in Fig. 7, the control
input τττ = (τ1, τ2)

T is convergent to a small neighborhood
of zero asymptotically. The effectiveness of the proposed
controller is verified by the simulations.

In the simulation, as long as k1 and k2 are chosen pos-
itive, the errors are convergent. In the case, k1 = 5 and
k2 = 2, the results are better. When one of k1 and k2 is
chosen negative, the convergence of the errors could not
be guaranteed. Generally, there are little effect caused by
change of α.

Case 2. Now the smoothed sliding mode controller (13)
and (20) with uuus1 in (43) is used to see the performance of
the system, where the boundary layer δ(t) = 1

(1+t)3
. For

comparison, the parameters are chosen the same as in Case
1. Results are shown in Figs. 8 ∼ 12, respectively. From
Fig. 12, we see that the chattering is removed and thus the
proposed method is verified.

Fig. 3 The error states z1, z2, θ with respect to time

Fig. 4 The velocity errors e1, e2

Fig. 5 The estimated parameters p̂1, p̂2

Fig. 6 The estimated parameter 1
α̂

= ϕ̂

5 Conclusions

Based on sliding mode control and adaptive control tech-
niques, a dynamic stabilizing controller has been proposed
for nonholonomic mobile robots with unknown camera pa-
rameters, inertial parameters and disturbances of the dy-
namic system. The designed adaptive torque controller
achieved global asymptotic stabilization and eliminated the
need for integrating the nonlinear kinematic model to ob-
tain the NMR Cartesian position for use in the closed-loop
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control strategy. Hence, we believe that the vision-based
control approach for NMRs holds the potential of higher
performance. The closed-loop system stability and esti-
mated error boundedness were proved by Lyapunov stabil-
ity theory. Simulation results were presented to illustrate
the performance of the proposed adaptive controller. Our
future work will be devoted to relaxation of Assumption
2, and to the study of other nonholonomic mechanical sys-
tems.

Fig. 7 The torques acted on the wheels

Fig. 8 The error states z1, z2, θ with respect to time

Fig. 9 The velocity errors e1, e2

Fig. 10 The estimated parameters p̂1, p̂2

Fig. 11 The estimated parameter 1
α̂

= ϕ̂

Fig. 12 The torques acted on the wheels
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