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A Simple and Accurate ICA Algorithm for Separating

Mixtures of Up to Four Independent Components
TANG Ying1 LI Jian-Ping1 WU Huai1

Abstract This paper introduces an algorithm for independent component analysis (ICA) using explicit closed forms of two-, three-
and four-dimensional antisymmetric matrix exponentials, based on which both the search direction and matrix exponentials can be
directly computed in each iteration without any approximation. In addition, two errors have been corrected for the representation
of four-dimensional antisymmetric matrix exponentials that were established in other works. Simulations show that the algorithm
converges fast and can achieve better performance than the well-known Extended InfoMax and FastICA algorithms for mixtures of
up to four independent components.
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The simplest problem setting of independent component
analysis (ICA) involves recovering the independent source
signals sss(t) = [s1(t), · · · , sn(t)]T from the observed data
vector xxx(t) = [x1(t), · · · , xn(t)]T = Asss(t), where A is a

mixing matrix with full rank[1−2]. The solution of the ICA
problem is to find a matrix B such that the estimate yyy(t) =
Bxxx(t) = BAsss(t) is equal to sss(t) within scale changes and
permutations.

It is typical to tackle the ICA problem in two stages.
First, the observation vector xxx(t) is whitened to get
zzz(t) = Wxxx(t) by using a principal component analysis

algorithm[3], where W is the whitening matrix. Then,
based on the InfoMax principle[4] the ICA problem is re-
duced to find an orthogonal matrix U to maximize the fol-
lowing cost function:

φ = E

{
n∑

i=1

log g′i(yi)

}

s.t. yyy = Uzzz = [y1, · · · , yn]T (1)

where E(·) is the expectation operator and gi(·) is a squash-
ing function. The selection of gi(·) in (1) plays an important
role in the ICA problem. Ideally, gi(·) may be selected as
the cumulative distribution function (CDF) of si. Practical
choices of the squashing functions are discussed in Section
2.

Let the set of n-by-n orthogonal matrices be O(n), and
the subset of O(n) be SO(n) in which the determinant of
the matrix is 1. Clearly, it is sufficient to search for U
in SO(n) because we can only find U with ambiguities in
permutations. Thus the problem in (1) can be rewritten as

max φ = E

{
n∑

i=1

log g′i(yi)

}

s.t. yyy = Uzzz = [y1, · · · , yn]T, U ∈ SO(n) (2)

Denote by so(n) the set of n-by-n antisymmetric matri-
ces. Then, the following lemma is proved in the Appendix.

Lemma 1. If and only if there is a matrix C ∈ so(n)
satisfying eC = U , then there exists U ∈ SO(n).
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Based on the above lemma, (2) can be reformulated as

max φ = E

{
n∑

i=1

log g′i(yi)

}

s.t. yyy = eCzzz = [y1, · · · , yn]T, C ∈ so(n) (3)

The above formulation has the advantage that the anti-
symmetric constraints can be easily implemented although
matrix exponentials are required. However, most methods
for matrix exponentials are approximate ones whose closed-
form expressions are rarely available[5].

This paper addresses the separation of low-order mix-
tures using explicit closed forms of exponentials of anti-
symmetric matrices up to order 4. Unlike those geodesic-
based ICA methods involving matrix exponentials[6−10],
the method of this paper is based on simple matrix analysis
and does not require complex mathematical concepts.

1 Closed forms of low-order antisym-
metric matrix exponentials

For any square matrix P of order n, the matrix exponen-

tial eP is defined as eP = In +
∑∞

k=1
P k

k!
, where In is the

identity matrix of order n. To the best of our knowledge, in
general there are no explicit closed forms for eC , C ∈ so(n),
except for n = 2, 3, 4. In what follows, c1, · · · , c6, are six
real numbers used to construct the antisymmetric matrix
C of orders 2, 3 and 4.

In the case of n = 2, we have the following simple for-
mula:

C =

[
0 c1

−c1 0

]
⇒ eC =

[
cos c1 sin c1

− sin c1 cos c1

]
(4)

In the case of n = 3, we have the following formula due
to Rodrigues[11−12]:

C =




0 c3 c2

−c3 0 c1

−c2 −c1 0


⇒ eC = In+

sin β

β
C+

1− cos β

β2
C2

(5)

where β =
√

c2
1 + c2

2 + c2
3.

The following method for evaluating eC , C ∈ so (4), was
obtained in [13]. Let

C =




0 c6 c5 c3

−c6 0 c4 c2

−c5 −c4 0 c1

−c3 −c2 −c1 0


 (6)
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and let

s = (c1c6 + c3c4 − c2c5)
2, t =

6∑
i=1

c2
i (7)

Clearly, there exists t2 − 4s ≥ 0. Define

γ =

√
t−√t2 − 4s

2
, µ =

√
t +

√
t2 − 4s

2

α1 =
γ sin µ− µ sin γ

γµ(γ2 − µ2)
, α2 =

cos µ− cos γ

γ2 − µ2

α3 =
sin γ

γ
+ α1γ

2, α4 = cos γ + α2γ
2 (8)

If t2 − 4s = 0, i.e.,

c1 = c6, c2 = −c5, c3 = c4

or
c1 = −c6, c2 = c5, c3 = −c4 (9)

we have

eC =
sin ν

ν
C + cos νI4, ν =

√
t

2
(10)

If t2 − 4s > 0, we have

eC = α1C
3 + α2C

2 + α3C + α4I4 (11)

The above results are the same as those in [13] except
for two typographical errors in the expressions of α1 and
α3.

2 Computation procedure for low-
dimensional ICA

We use stochastic gradient adaptation to solve (3) with
the expectation operator replaced by an estimate obtained
from a single-sample realization. In what follows, the
derivations assume single-sample estimates. The extensions
to the case of block-based adaptation are straightforward,
and the experimental results presented in the next section
are based on updating the parameters every 100 samples.

This is an unconstrained optimization problem involv-

ing n(n−1)
2

parameters of the antisymmetric matrix C. For

simplicity, let ccc(k) = [c1(k), · · · , cm(k)]T, m = n(n−1)
2

, de-
note the vector of the estimated parameters after the kth
iteration. We consider the following iterative algorithm to
update ccc(k):

ccc(k + 1) = ccc(k) + µ(k) · ∇φ∇φ∇φ(k), k = 0, 1, 2, · · · (12)

where µ(k) is the step size at the kth iteration and ∇φ∇φ∇φ(k)
is the gradient of φ with respect to ccc(k):

∇φ∇φ∇φ(k) =

[
∂φ(k)

∂c1(k)
, · · · ,

∂φ(k)

∂cm(k)

]T

(13)

As defined in (3), φ(k) = Σn
i=1 log g′i(yi(k)), where yi(k) is

the ith element of yyy(k) = eC(k)zzz and C(k) is the antisym-
metric matrix generated by vector ccc(k).

Getting precise representations of ∇φ∇φ∇φ for n = 2, 3, 4, is
the main task of this section. The calculation depends on
the choice of gi(·) in (3). It is known that the local con-
vergence can be ensured if gi(·) is selected to be the CDF

of sources[14]. Several practical choices are discussed in

[4, 14∼ 16]. The following form for g′′(yi(k))
g′(yi(k))

was proposed

in [15] for sources with both sub- and super-Gaussian dis-
tributions1:

g′′(yi(k))

g′(yi(k))
= −yi(k)− sign(κi(k)) tanh yi(k) (14)

where κi(k) takes the following form[16]:

κi(k) = E{sech2yi(k) · y2
i (k)− yi(k) · tanh yi(k)} (15)

Based on (3), we have

∇φ∇φ∇φ(k) = [∇y1∇y1∇y1(k), · · · ,∇yn∇yn∇yn(k)]

[
g′′(y1(k))

g′(y1(k))
, · · · ,

g′′(yn(k))

g′(yn(k))

]T

(16)

where

∇yi∇yi∇yi(k) =

[
∂yi(k)

∂c1(k)
, · · · ,

∂yi(k)

∂cm(k)

]T

(17)

for i = 1, · · · , n, m = n(n−1)
2

.
In what follows, we will develop explicit expressions

for ∇yi∇yi∇yi(k), i = 1, · · · , n, for n = 2, 3, 4. Throughout
the following derivations, vector zzz = [z1, · · · , zn]T denotes
whitened signals.

2.1 Case of nnn = 2

This is a trivial case. From (4), we have

∇y1(k) = − sin c1(k) · z1 + cos c1(k) · z2

∇y2(k) = − cos c1(k) · z1 − sin c1(k) · z2 (18)

2.2 Case of nnn = 3

For simplicity, let ddd(k) = C(k)zzz = [d1(k), d2(k), d3(k)]T

and fff(k) = C2(k)zzz = [f1(k), f2(k),f3(k)]T, where
C(k) is generated by ccc(k) using (5). Let ∇di∇di∇di(k) =

[ ∂di(k)
∂c1(k)

, · · · , ∂di(k)
∂c3(k)

]T and ∇fi∇fi∇fi(k) = [ ∂fi(k)
∂c1(k)

, · · · , ∂fi(k)
∂c3(k)

]T for

i = 1, 2, 3.
By direct computation, it is easy to get

∇d1∇d1∇d1(k) = [ 0 z3 z2 ]T

∇d2∇d2∇d2(k) = [ z3 0 −z1 ]T

∇d3∇d3∇d3(k) = [ −z2 −z1 0 ]T

(19)

and

∇f1∇f1∇f1(k) =




0 −c2(k) c3(k)
−2c2(k) −c1(k) 0
−2c3(k) 0 c1(k)


zzz

∇f2∇f2∇f2(k) = −



c2(k) 2c1(k) 0
c1(k) 0 c3(k)

0 2c3(k) c2(k)


zzz

∇f3∇f3∇f3(k) =




c3(k) 0 −2c1(k)
0 −c3(k) −2c2(k)

c1(k) −c2(k) 0


zzz (20)

1g′(yi(k)) and g′′(yi(k)) are the first- and second-order deriva-
tives of g with respect to yi(k)
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We can now use the above results, the closed-form ex-
pression for eC in (5) and yyy(k) = eC(k)zzz to get

∂yi(k)

∂cj(k)
=

sin β(k)

β(k)

∂di(k)

∂cj(k)
+ cj(k)

β(k) cos β(k)− sin β(k)

β3(k)
di(k) +

1−cos β(k)

β2(k)

∂fi(k)

∂cj(k)
+ cj(k)

β(k) sin β(k)− 2(1−cos β(k))

β4(k)
fi(k)

(21)

where i, j = 1, 2, 3 and β(k) =
√

c2
1(k) + c2

2(k) + c2
3(k).

Equation (21) can be rewritten using the following vector
form:

∇yi∇yi∇yi(k) =




c1(k)
c2(k)
c3(k)




[
β(k) sin β(k)− 2(1− cos β(k))

β4(k)
fi(k)+

β(k) cos β(k)− sin β(k)

β3(k)
di(k)

]
+

1− cos β(k)

β2(k)
∇fi∇fi∇fi(k)+

sin β(k)

β(k)
∇di∇di∇di(k)

2.3 Case of n = 4

Let ppp(k) = C(k)zzz = [p1(k), · · · , p4(k)]T, qqq(k) =
C2(k)zzz = [q1(k), · · · , q4(k)]T and hhh(k) = C3(k)zzz =
[h1(k), · · · , h4(k)]T, where C(k) is created by ccc(k) using
(6). Let ∇pi∇pi∇pi(k),∇qi∇qi∇qi(k), ∇hi∇hi∇hi(k), and ∇αi∇αi∇αi(k) be the gra-
dient vectors of pi(k), qi(k), hi(k) and αi(k), respectively,
with respect to vector ccc(k). Here, αi(k) is the value of αi

defined in (8) at the kth iteration.
If eC takes the form as (11), we have

∇yi∇yi∇yi(k) = hi(k)∇α1∇α1∇α1(k) + α1(k)∇hi∇hi∇hi(k) + qi(k)∇α2∇α2∇α2(k)+

α2(k)∇qi∇qi∇qi(k) + pi(k)∇α3∇α3∇α3(k)+

α3(k)∇pi∇pi∇pi(k) + zi∇α4∇α4∇α4(k) (22)

for i = 1, · · · , 4. All the components of (23) are explicitly
evaluated in the appendix.

If the condition (9) holds, eC takes the form as (10) and
it is straightforward to show that

∇yi∇yi∇yi(k) =
ν(k) cos ν(k)− sin ν(k)

ν2(k)
pi(k)∇ν∇ν∇ν(k) +

sin ν(k)

ν(k)
∇pi∇pi∇pi(k)− zi sin ν(k)∇ν∇ν∇ν(k) (23)

for i = 1, · · · , 4. In the above equation, the gradient vec-
tor ∇pi∇pi∇pi(k) is computed in the appendix, ν(k) is the value
of ν defined in (10) at the kth iteration and ∇ν∇ν∇ν(k) =

[ ∂ν(k)
∂c1(k)

, · · · , ∂ν(k)
∂c6(k)

]T =
√

2

2
√

t(k)
[c1(k), · · · , c6(k)]T where t(k)

is the value of t defined in (7) at the kth iteration.
The complete algorithm for four-dimensional whitened

mixtures is summarized in Table 1.

3 Simulation results

In this section, we present the experimental results for
the case of n = 4. In this simulation, the first three source
signals were super-Gaussian speech signals2 and the fourth
was a uniformly distributed sub-Gaussian noise sequence
in the interval [−1, 1]. The signals as well as their mixtures
created by a random mixing matrix whose elements were
uniformly distributed in the range [−1, 1] were 50 000 sam-
ples long. The algorithm of this paper was implemented in

2From http://www.cis.hut.fi/projects/ica/cocktail/cocktail en.cgi

a block-adaptive manner, with each block containing 100
samples. All the elements of the initial vector ccc(0) were set
to 0.01. The step size µ = 0.02 was used in the first 100
iterations. Subsequent to that, µ was set to 0.002. The

iterations were terminated when | ∇φ∇φ∇φ(k)
||∇φ∇φ∇φ(k)|| | < 0.001. If nec-

essary, the algorithm would iterate on the mixture a second
time after the 50 000 samples were exhausted. Five hun-
dred independent experiments were conducted, in which
the mixing matrix and the sub-Gaussian noise sequence
changed with each run. Fig. 1 shows the results from a ty-

(a) Time index (b) Time index

(c) Time index

Fig. 1 (a) Source waveforms; (b) typical mixtures; and (c)
separated signals using the proposed algorithm for a typical run

Table 1 Algorithm for the case of n = 4

Input: The whitened signals zzz, step size µ, block size l

and stopping condition ε.

Initialization: Set ccc(0) to a nonzero vector. Let k = 0.

*During the kth iteration:

Create C(k) from ccc(k) using (6). Compute eC(k) using

(10) or (11);

yyy(kl + v) = eC(k)zzz(kl + v), v = 0, · · · , l− 1;

κi = 1
l

l−1∑

v=0

sech
2
yi(kl + v)× y

2
i (kl + v)− yi(kl + v)×

tanh yi(kl + v);
g′′(yi(kl+v))
g′(yi(kl+v)) =−yi(kl+v)−sign(κi(k)) tanh yi(kl+v);

Compute ∇yi∇yi∇yi(kl + v) using (23) or (24) for i = 1,· · ·, 4;

∇φ∇φ∇φ(k) = 1
l

l−1∑

v=0

{[∇y1∇y1∇y1(kl + v), · · · ,∇y4∇y4∇y4(kl + v)]×

[
g′′(y1(kl+v))
g′(y1(kl+v)) ,· · ·, g′′(y4(kl+v))

g′(y4(kl+v)) ]T};
ccc(k + 1) = ccc(k) + µ · ∇φ∇φ∇φ(k);

If | ∇φ∇φ∇φ(k)
||∇φ∇φ∇φ(k)|| | < ε, end iteration, otherwise let k = k + 1

and go to *;
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Table 2 The mean normalized kurtosis and steady-state PI of three algorithms over the convergent cases of 500 runs

Source signals Our algorithm Extended InfoMax FastICA

Sound 1 1.2684 1.2684 1.2685 1.2685

Sound 2 1.1934 1.1936 1.1953 1.1953

Sound 3 15.873 15.871 15.887 15.906

Noise −1.2059 −1.2063 −1.2075 −1.2068

Steady-state PI 0.1118 0.1273 0.11468

Convergent cases 94% 81% 76%

pical run based on the proposed algorithm. Only the first
500 samples of the noise sequence were plotted in the fig-
ure to clearly show its waveform. From Fig. 1, we can see
that the propsoed algorithm achieved good separation in
this example. Fig. 2 displays two learning curves based on
our algorithm and the Extended InfoMax algorithm[16] ob-
tained by averaging the following performance measure[1]:

PI(k) =

n∑
i=1

(
n∑

j=1

|tij(k)|
maxh|tih(k)| − 1

)
+

n∑
j=1

(
n∑

i=1

|tij(k)|
maxh |thj(k)| − 1

)
(24)

Fig. 2 Average learning curves of the proposed algorithm and
the Extended InfoMax alorithm over the converged cases in 500

runs

over the converged cases of 500 runs. In (25), tij(k) is

the (i, j)-element of matrix T (k) = eC(k)WA. Clearly, the
smaller such measure is, the better the performance of an
algorithm is. From Fig. 2, we can see that the proposed
algorithm converges significantly faster than the Extended
InfoMax algorithm while performing at least as well as or
better than the Extended InfoMax algorithm. Because the
FastICA algorithm[17] extracts the source signals sequen-
tially, it is impossible to plot a similar curve for that algo-
rithm.

Comparisons of the three algorithms after convergence
is provided in Table 2 in terms of the mean normalized
kurtosis (the kurtosis of a signal si normalized to have unit
variance, also known as the normalized kurtosis, is given by
E(s4

i )−3), and the steady-state PI. We make a few obser-
vations here. Possibly because of the multimodal nature of
the performance surface, none of the algorithms converged
in all runs (the algorithm was deemed to have converged if

PI(k) reached 0.2). As tabulated in Table 2, of the three al-
gorithms, our method achieved satisfactory separation 94 %
of the 500 runs while the other two algorithms converged
only 81 % and 76% of the 500 runs, indicating that the
proposed approach may have superior convergence proper-
ties than the Extended InfoMax and FastICA algorithms.
This may be because our method updates the parameters
strictly in the smaller space SO(n), instead of the space
of general matrices, while the other two do not have such
advantage. The results in Table 2 also indicate that the
proposed algorithm exhibits comparable or slightly better
separation capability than the other two algorithms.

4 Conclusions

This paper proposed an ICA algorithm for separating
low-dimensional mixtures using explicit closed forms of
two-, three- and four-dimensional antisymmetric matrix
exponentials along with two corrections for the represen-
tation of four-dimensional antisymmetric matrix exponen-
tials introduced in other papers. The resulting algorithm
is computationally straightforward. Experimental results
have indicated that the proposed algorithm exhibits faster
convergence and better separation than the two competing
algorithms from the literature. Consequently, we believe
that this new approach is a viable alternative to the ICA
algorithms available in the literature.

Appendix
1) Proof of Lemma 1:

If C ∈ so(n), we have eCeCT
= eC+CT

= In and det(eC) =
etrace(C) = 1. Next, we show that the converse is also true.

Since U is an orthogonal matrix, there exists an orthogonal
matrix H such that[18]

U = H · diag{1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s

, B1, · · · , Bt︸ ︷︷ ︸
t

} ·HT (25)

where

Bi =

[
cos θi sin θi

− sin θi cos θi

]
, i = 1, · · · , t

Since det (U) = 1, s in (26) must be even, i.e., s = 2q, q =
0, 1, · · · . Let

Fα =

[
0 α
−α 0

]
, α ∈ R

It is straightforward to verify

eFπ =

[ −1 0
0 −1

]
, e

Fθi =

[
cos θi sin θi

− sin θi cos θi

]

for i = 1, · · · , t. Then, we construct C as

C = H · diag{0, · · · , 0︸ ︷︷ ︸
r

, Fπ, · · · , Fπ︸ ︷︷ ︸
q

, Fθ1 , · · · , Fθt︸ ︷︷ ︸
t

} ·HT
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Using the definition of eC and the orthogonality of H, we can
write

eC = H · diag{e0, · · · , e0

︸ ︷︷ ︸
r

, eFπ ,· · ·, eFπ

︸ ︷︷ ︸
q

, e
Fθ1 , · · · , eFθt

︸ ︷︷ ︸
t

} ·HT =

U

thus proving the lemma. ¤

2) Computation of the components in (23)

In what follows, we provide details of the computation of sev-
eral variables in (23). The iteration number k is omitted in
the following derivations for simplicity. Denote γi = ∂γ

∂ci
, µi =

∂µ

∂ci
, λij = cicj . Based on (7) and (8), we have

γi =
ci

√
t2 − 4s− tci + 2η(λ16 + λ34 − λ25)c7−i

2γ
√

t2 − 4s

µi =
ci

√
t2 − 4s+tci − 2η(λ16+λ34−λ25)c7−i

2µ
√

t2 − 4s
(26)

where η satisfies

η =

{
1, if i = 1, 3, 4, 6
−1, if i = 2, 5

(27)

Let t1, · · · , t6, defined as follows:

t1 = γµ(γ2 − µ2),

t2 = (γi sin µ + γµi cos µ− µi sin γ − µγi cos γ)t1,

t3 = (γ sin µ− µ sin γ)(3γ2µγi + γ3µi − γiµ
3 − 3γµ2µi),

t4 = γ2 − µ2,

t5 = (γi sin γ − µi sin µ)t4,

t6 = 2(cos µ− cos γ)(γγi − µµi).

From (8), it is straightforward to verify that

∂α1

∂ci

=
t2 − t3

t21
∂α2

∂ci

=
t5 − t6

t24
∂α3

∂ci

=
γγi cos γ − γi sin γ

γ2
+

∂α1

∂ci

γ2 + 2α1γγi

∂α4

∂ci

= −γi sin γ +
∂α2

∂ci

γ2 + 2α2γγi (28)

Direct evaluation using the definition of ∇hi∇hi∇hi, i = 1, 2, 3, 4,
gives

∇h1∇h1∇h1 =




0 λ34 − λ25 −2λ15 λ46 − 2λ13

0 −2λ26 −λ34 − λ16 −λ45 − 2λ23

0 λ14 − 2λ36 −2λ35 − λ24 λ44 − 2λ33 − t
0 −2λ46 −2λ45 λ16 − λ25

0 −2λ56 − λ12 λ22 − 2λ55 − t −2λ35 − λ24

0 λ11 − 2λ66 − t −2λ56 − λ12 λ14 − 2λ36




zzz

∇h2∇h2∇h2 =




λ25 − λ34 0 λ36 − 2λ14 −λ56 − 2λ12

2λ26 + λ15 0 −λ35 − 2λ24 λ55 − 2λ22 − t
2λ36 0 λ16 − λ25 −λ45 − 2λ23

2λ46 − λ13 0 λ33 − 2λ44 − t −λ35 − 2λ24

2λ56 0 −2λ45 −λ34 − λ16

t− λ11 + 2λ66 0 λ13 − 2λ46 −2λ26 − λ15




zzz

∇h3∇h3∇h3 =




λ26 + 2λ15 2λ14 − λ36 0 λ66 − 2λ11 − t
λ16 + λ34 λ35 + 2λ24 0 −λ56 − 2λ12

2λ35 + λ24 λ25 − λ16 0 λ46 − 2λ13

2λ45 + λ23 t− λ33 + 2λ44 0 λ36 − 2λ14

t− λ22 + 2λ55 2λ45 + λ23 0 −λ26 − 2λ15

2λ56 2λ46 − λ13 0 λ34 − λ25




zzz

∇h4∇h4∇h4 =




2λ13 − λ46 λ56 + 2λ12 t− λ66 + 2λ11 0
λ45 + 2λ23 t− λ55 + 2λ22 λ56 + 2λ12 0

t− λ44 + 2λ33 λ45 + 2λ23 2λ13 − λ46 0
λ25 − λ16 λ35 + 2λ24 2λ14 − λ36 0
2λ35 + λ24 λ16 + λ34 λ26 + 2λ15 0
2λ36 − λ14 2λ26 + λ15 λ25 − λ34 0




zzz

(29)
where t is defined in (7). Similarly, there exists

∇q1∇q1∇q1 =




0 0 −c3 c5

0 −c3 0 c6

−2c3 −c2 −c1 0
0 −c5 c6 0

−2c5 −c4 0 c1

−2c6 0 c4 c2




zzz,∇q2∇q2∇q2 =




0 0 −c2 c4

−c3 −2c2 −c1 0
−c2 0 0 −c6

−c5 −2c4 0 c1

−c4 0 −c6 0
0 −2c6 −c5 −c3




zzz

∇q3∇q3∇q3 =




−c3 −c2 −2c1 0
0 −c1 0 −c4

−c1 0 0 −c5

c6 0 −2c4 −c2

0 −c6 −2c5 −c3

c4 −c5 0 0




zzz, ∇q4∇q4∇q4 =




c5 c4 0 −2c1

c6 0 −c4 −2c2

0 −c6 −c5 −2c3

0 c1 −c2 0
c1 0 −c3 0
c2 −c3 0 0




zzz

(30)

∇p1∇p1∇p1 = [ 0 0 z4 0 z3 z2 ]T

∇p2∇p2∇p2 = [ 0 z4 0 z3 0 −z1 ]T

∇p3∇p3∇p3 = [ z4 0 0 −z2 −z1 0 ]T

∇p4∇p4∇p4 = [ −z3 −z2 −z1 0 0 0 ]T

(31)
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