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Cooperative Tracking and

Disturbance Suppression: A

Classical Approach

HUANG Chao1 HE Yan1 YE Xu-Dong1

Abstract In this paper, the cooperative tracking problem
of multiagent systems with a determinate disturbance input is
analyzed. The communication topology of single-input-single-
output (SISO) general linear node dynamics is directed and time
invariant. Throughout this paper, the distributed control issue
of multiagent systems is viewed and tackled as an output regu-
lation problem and a distributed cooperative control law based
on relative output measurements is proposed using classic pole
assignment technique. Moreover, the notion of complex vector
root locus (CVRL) is introduced, which is a generalization of
classical root locus method, to analyze the stability of the con-
trol system.
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Distributed control of multiagent systems has received
significant attention due to its broad applications.
Research areas include rendezvous problems[1−2],
flock-ing[3−6], formation control[7−10] , consensus
problems[11−19], and so on. The mathematical models
for agent dynamics include single-integrator model[11−13],
double-integrator model[14−15] , high-order-integrator
model[16], and so on.

Great progress in recent years has been made and var-
ious distributed strategies that achieve agreements have
been proposed in the field of multiagent distributed con-
trol. Sorensen et al.[7] considered tracking control for mul-
tiagent consensus with single or multiple leaders. The au-
thors of [12] and [13] investigated the consensus problem
for directed networks of agents with switching topology or
time-delays. Fast consensus algorithms for multiagent sys-
tems with interconnected topology are studied in [15] and
[19], to name a few.

A closely related issue on consensus problems of mul-
tiagent systems is the study of graph Laplacian. Graph
Laplacian and its spectral properties[20−21] are important
graph-related matrix that plays an important role in con-
vergence analysis of consensus algorithms. The theory of
nonnegative matrices is quite useful in understanding the
links between graph theory and consensus reaching[9]. A
brief introduction on graph Laplacian is also included in
the next section.

The purpose of this paper is to provide a new viewpoint
for tackling consensus-related problems. In our framework,
consensus is viewed and handled as a tracking control prob-
lem (or the same as an output regulation problem). The
benefit for this kind of perspective is that it allows us to
tackle consensus (cooperative tracking) problem as well as
disturbance suppression in much the same way. Secondly,
most existing literature on consensus problems are focused
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on reaching agreement or synchronization of agent behav-
iors, but from the angle of control theory, by cooperative
tracking we mean that each agent in the system has the
capability of tracking its own desired trajectory with the
help of the extra information provided by the neighboring
agents. In our framework, this can be well posed and ana-
lyzed. Moreover, a wider set of models can be included in
this framework besides some integrator-like dynamics. In
this paper, the general single-input-single-output (SISO)
linear dynamics in the frequency domain is further stud-
ied and the communication topology concerned throughout
this paper is time-invariant.

We would like to mention that most existing consensus
algorithms are based on state space models. However, this
may not always be available for plants acquired from iden-
tification procedures, or some industrial plants such as elec-
tric motors. Besides, state variables are not always directly
available either. So the control algorithms based on trans-
fer function and output feedback studied in this paper is of
much practical use.

Another contribution of this paper is that we introduced
a generalized root locus method, so called complex vector
root locus (CVRL), to analyze the stability of the proposed
control law. The characteristic of CVRL essentially has no
big difference with that of classic root locus method but a
small modification, which will be further analyzed later on.

The rest of this paper is organized as follows: Section 1
introduces some basic notations including CVRL and some
useful results of algebraic graph theory. Section 2 presents
the framework to tackle the cooperative control problem
using the internal model principle. Topology analysis and
controller design issue are considered in Section 3. Section
4 concludes this paper.

1 Notion and preliminaries

1.1 Complex vector root locus

Root locus method is a branch of classic control theory
with wide applications. The basic idea of this method is to
identify the closed-loop poles of a negative feedback control
system by varying the open-loop gain K from 0 to +∞ with
the open-loop transfer function characterized by

G(s) =

K
m
∏

i=1

(s − zi)

n
∏

i=1

(s − pi)
(n ≥ m) (1)

The CVRL technique studied in this paper is a generalized
one in which K = r · ejθ, zi, pi ∈ C, where r > 0 and
θ ∈ [0, 2π). The closed-loop poles move as r varies from 0
to +∞ with θ being a constant.

Here we state 4 properties of CVRL:
Property 1. The number of the root locus branches is

equal to the order of the closed-loop characteristic equation.
Property 2. The locus starts (when r = 0) at poles,

and ends (when r → +∞ ) at the zeros. There are n − m
branch ends at s = ∞.

Property 3. If n > m there are asymptotes of the root
locus, and the starting point of the asymptotes is

σ =

n
∑

i=1

pi −
m
∑

i=1

zi

n − m

while the angle between the asymptotes and the positive

real axis is

ϕ =
2κπ + (θ + π)

n − m
(κ = 0,±1,±2, · · · )

Property 4. The angle of departure from a singular
pole is

θpj = 2κπ + (π + θ) +

m
∑

i=1

∠(pj − zi) −

n
∑

i=1,
i6=j

∠(pj − pi)

and the angle of arrival at a singular zero is

θzj = 2κπ + (π − θ) −

m
∑

i=1,
i6=j

∠(zj − zi) +

n
∑

i=1

∠(zj − pi)

Proof. The proof of Properties 1∼3 are natural exten-
sions of that of ordinary root locus from domain R to C,
which is available in many control theory tutorials, [22] for
example. Property 4 is also easy to prove when the gener-
alized angle condition

m
∑

i=1

∠(s − zi) −

n
∑

i=1

∠(s − pi) = 2κπ + (π − θ)

is applied to the proof in [22]. �

Remark 1. The starting point of CVRL asymptotes has
the same form as that of ordinary root locus asymptotes.
But generally it is not a real number any more as the former
since the poles and zeros are complex. The angle between
the asymptotes and the positive real axis rotates by θ/(n−
m) counterclockwise compared with that of ordinary root
locus.

Remark 2. Compared with ordinary root locus, the an-
gle of departure from a singular pole rotates by θ coun-
terclockwise while the angle of arrival at a singular zero
rotates clockwise also by θ.

Example 1. Draw the root locus of the system

G1(s) =
r · ejθ

s(s + 1)(s + 2)

where r ∈ (0, +∞), 1) θ = 0, 2) θ = π/4.
The root locus of 1) is shown in Fig. 1 (a) while 2) is in

Fig. 1 (b). It is not hard to find that the asymptotes in 2)
rotate by θ/(n − m) = π/12 counterclockwise compared
with 1) (the dashed line in Fig. 1 (b)) while the angles of
departure from the poles rotate all by θ = π/4 counter-
clockwise. The break-away point is gone.

(a) Root locus of 1)
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(b) Root locus of 2)

Fig. 1 Root locus of G1(s)

Example 2. Draw the root locus of the system

G2(s) =
r · ej π

4

s(s + 1)(s + j)

where r ∈ (0, +∞).
According to Fig. 2, the starting point of the asymptotes

equals −(1 + j)/3 which is complex.

Fig. 2 Root locus of G2(s)

1.2 Graph theory

A directed graph or digraph G = (V, E) consists of a
finite set V of vertices and a set E ⊆ V × V to be referred
to as (directed) edges. We will assume that the digraph
has no loops, that is, (x, y) ∈ E implies x 6= y.

A (directed) walk in a digraph is a finite sequence of
edges (ak, bk), k = 1, 2, · · · , r such that bk = ak+1 for k =
1, 2, · · · , r − 1. A walk with distinct vertices is called a
(directed) path. A walk is called a (directed) circuit if in
addition br = a1. We say a digraph G is strongly connected
if for any vertices i, j ∈ V , there exists a walk in G from i
to j.

Definition 1 (Directed tree). A directed graph T is
called a directed tree if it satisfies the following character-
istics:

1) there is no circuit in T ;
2) there exists a root vertex v such that any vertex in T

has a path to v.

Definition 2 (Augmented graph). Suppose
a digraph G = (V, E) with a vertex set V =
{1, 2, · · · , r, · · · , N}. A r-th order augmented graph of G
is defined as G∗ = (V ∗, E∗), where V ∗ = V ∪ {0} and
E∗ = E ∪ {(1, 0), (2, 0), · · · , (r, 0)}.

The r-th order augmented graph of G has one additional
vertex 0 in it with r directed edges (1, 0), (2, 0), · · · , (r, 0)
connected to 0.

The adjacency matrix Q = [qij ] of G is defined as:

qij =

{

1, if (i, j) ∈ E
0, otherwise

(i, j ∈ V ) (2)

The out-degree matrix of G is the diagonal matrix D with
diagonal entries dii = |{j ∈ V |(i, j) ∈ E}|. The directed

Laplacian of G is the matrix defined by[8]

L = D − Q (3)

Lamma 1. Given a digraph G with L being its Lapla-
cian, then 0 is an eigenvalue of L, and all the non-zero
eigenvalues of L have positive real part[8].

Lamma 2. Given a digraph G, its Laplacian L has an
eigenvalue with algebraic multiplicity one iff G has a rooted
directed spanning tree[8].

2 Control law

2.1 Modeling

The dynamics of the agents are identical linear and
single-input-single-output characterized by the transfer
function

g(s) =
n(s)

d(s)
(i = 1, 2, · · · , N) (4)

where g(s) is a proper rational fraction with n(s) and d(s)
coprime with each other.

We address the problem by making the following assump-
tions: 1) There is at least one agent in the system knowing
about its reference input, and we call it (them) leader(s).
2) The other agents do not have the knowledge of their
own reference input, nor can they get the absolute output
of anyone else in the system, what they can get are the cur-
rent output errors between their neighbors and themselves.
Besides, the leaders can also have this ability. 3) Any agent
knows about the desired bias between its neighbors and it-
self which can be predetermined and time-variant.

It is not hard to notice that the communication topology
can be interpreted as a digraph G with each vertex repre-
senting an agent. Ni denotes the set containing the serial
numbers of the i-th agent′s neighbors. So, |Ni| is the i-th
vertex′s out-degree. Directed edge (i, j) means that i can
get the relative output error between agents i and j. In
other words, j is a neighbor of i. The digraph shown in
Fig. 3 is an example.

Fig. 3 Communication topology of the multiagent system

Without loss of generality, we assume that the leaders
are numbered 1, 2, · · · , r(1 6 r ≤ N). The reference input
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of agent i is vi(s) = nvi(s)/dvi(s) which is not available
for anyone and the determinate disturb input is wi(s) =
nwi(s)/dwi(s). The error between reference input and the
actual output of agent i is denoted as ei = vi − yi. The
desired bias between i and j is denoted as vij = vi − vj

which is predetermined, while the actual error is yij = yi −
yj .

Before dealing with the problem, we introduce the fol-
lowing truth, i.e., the internal model principle:

Theorem 1. Suppose that the controlled system g(s) =
n(s)/d(s) is a rational proper fraction with n(s) and d(s)
coprime with each other.φ(s) is the least common factor
of the unstable poles in v(s) = nv(s)/dv(s) and w(s) =
nw(s)/dw(s) and has no common zeros with g(s). Then,
there exists a compensator gc(s) = nc(s)/dc(s) character-
ized by a rational fraction that makes the control system
in Fig.4 have the capability of asymptotic tracking and dis-
turbance suppression if and only if the following equation

df (s) = dc(s)d(s)φ(s) + nc(s)n(s) = 0 (5)

has all of its roots in the left part of the complex plane[23].

Fig. 4 Block diagram of asymptotic tracking

Proof. From Fig. 4, the following equation is yielded:

(v − y)
ncn

dcφ
− dy + w = 0 (6)

So, the output caused by disturbance w alone equals

yw =
dcφ

dcφ + ncn
w =

dcnw

dcdφ + ncn
·

φ

dw

(7)

Similarly, the error caused by reference input v alone equals
to

e =
dcdφ

dcdφ + ncn
v =

dcdnv

dcdφ + ncn
·

φ

dv

(8)

Since φ accurately offsets the unstable zeros in dv and dw,
as long as the characteristic equation

df = dcdφ + ncn = 0 (9)

has all of its roots placed in the left part of the complex
plane, both yw and e are stable. So, (6) is stable. �

To begin with, design the input signal of gc(s) in each
agent as follows:







δi = ei +
∑

j∈Ni

(yji − vji) (1 ≤ i ≤ r)

δi =
∑

j∈Ni

(yji − vji) (r < i ≤ N)
(10)

Note that
∑

j∈Ni
(yji − vji) =

∑

j∈Ni
(ei − ej). The fol-

lowing equations hold true:

eee = vvv − yyy; δδδ = Weee (11)

where δδδ = [δ1, δ2, · · · , δN ]T, eee = [e1, e2, · · · , eN ]T, vvv =
[v1, v2, · · · , vN ]T, yyy = [y1, y2, · · · , yN ]T and

W = L + Er

(

Er =

[

Ir 0
0 0

])

L is the Laplacian of G. Let www = [w1, w2, · · · , wN ]T, here
we get the block diagram of the cooperative control system
in Fig. 5:

Fig. 5 Block diagram of cooperative tracking

2.2 Decoupling transformation

From Fig. 5, the following equation is yielded:

W (vvv − yyy)
ncn

dcφ
− dyyy + www = 0 (12)

According to matrix theory, W can be similar to an upper
triangular matrix as U = P−1WP , where

U =













λ1 ∗ · · · ∗

0 λ2

. . .
...

...
. . .

. . . ∗
0 · · · 0 λN













and λi is i-th eigenvalue of W , P is a unitary matrix.
Thus a decoupling transformation is introduced. Let vvv =
Pṽvv, www = Pw̃ww, yyy = Pỹyy, and eee = Pẽee, vi, wi, yi, and ei be i-th
entries of ṽvv, w̃ww, ỹyy, ẽee, respectively. We show the following to
be true.

Theorem 2. The system in Fig. 5 is stable if and only
if the following N systems are all stable

λi(ṽi − ỹi)
ncn

dcφ
− dỹi + w̃i = 0 (i = 1, 2, · · · , N) (13)

Proof. The transformed equation of (12) is as follows:

λi(ṽi − ỹi)
ncn

dcφ
− dỹi + w̃i = fi(ẽi+1, ẽi+2, · · · , ẽN ) (14)

where fN ≡ 0. For i 6= N , fi → 0 if and only if ẽj → 0 (i <
j ≤ N) simultaneously.

If (13) are all stable, firstly, N-th equation of (14) is
stable and fN−1 → 0; then (N − 1)-th of (14) follows and
fN−2 → 0 and so on until fi → 0 (i = 1, 2, · · · , N) so that
(14) are all stable.

If (14) are all stable, that means ẽi → 0 for all i =
1, 2, · · · , N which is equivalent to fi → 0 (i = 1, 2, · · · , N).
So (13) are all stable.

Theorem 2 reveals the fact that in the cooperative man-
ner, the goal is achieved if and only if one single internal
model φ−1 and compensator gc(s) simultaneously solve the
tracking problem of N independent systems:

gi(s) =
λin(s)

d(s)
(i = 1, 2, · · · , N) (15)

with ṽi being the reference input and w̃i the disturb input
whose denominators are the least common factor of the un-
stable poles of each vi and wi (i = 1, 2, · · · , N), respectively.
The block diagram is shown in Fig. 6. �

Fig. 6 Block diagram of the decoupled system
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Corollary 1. The necessary and sufficient condition for
the stability of the system in Fig. 5 as well as Fig. 6 is that
the characteristic equations

dfi = dcdφ + λincn = 0 (16)

have all of the roots in the left part of the complex plane.
Proof. This is a direct corollary of Theorem 1 and The-

orem 2. �

3 Stability analysis

3.1 Leader selection

According to Corollary 1, it is obvious that W must have
no zero eigenvalue unless d(s) and φ(s) have no unstable
factors, which is not allowed. Here, we first present the
spectral properties of W .

Lamma 3. The spectrum of W has one less zero eigen-
value compared with L∗, which is the Laplacian of r-th
order augmented graph of G, namely G∗.

Proof. L∗ has the following form according to the defi-
nition of Laplacian:

L∗ =

0
1
...
r

r + 1
...
N

























0 0 · · · 0 0
−1
...

−1
0
...
0

W

























since det(sI −L∗) = s ·det(sI −W ), clearly W has one less
zero eigenvalue compared with L∗. �

Lamma 4. W is nonsingular if and only if G∗ has rooted
direct spanning tree, where all the eigenvalues of W have
positive real part.

Proof. With reference to Lemma 3, W is nonsingular
iff 0 is an eigenvalue of L∗ with algebraic multiplicity one.
According to Lemma 2, this means G∗ has a rooted direct
spanning tree. And Lemma 1 reveals that all the eigenval-
ues of W have positive real part. �

That G∗ has a direct rooted spanning tree or not cor-
relates closely to the selection of leaders. Let us divide
G into M subgraphs Gm (m = 1, 2, · · · , M) such that
⋃M

m=1 Gm = G. Make sure that each of them has a direct
rooted spanning tree in it. Since isolated vertices can also
be treated as a directed tree, this kind of division always
exists but may not be unique.

Theorem 3. The necessary and sufficient condition for
G∗ to have a direct rooted spanning tree is that there exists
a division of G such that for any subgraph Gm, its root of
(one of) the spanning trees is the leader of the system.

Proof. To prove the sufficiency, there is a need to prove
that in this case any vertex v0 ∈ G has a path to 0. Assume
that v0 ∈ Gm0

; then if v0 is not the root of the spanning
tree of Gm0

, namely vm0
, it must have a path to vm0

. Since
vm0

is a leader, directed edge (vm0
, 0) exists. Thus v0 can

get to 0 via vm0
. Else if v0 = vm0

, then it can get to 0
directly.

If G∗ has a direct rooted spanning tree and the leaders
1, 2, · · · , r connect 0 directly, then any other vertices can
get to one of the leaders along a certain path. The subgraph
is divided like this: Gi =

⋃

{the vertex that has a path to
i and this path}. Obviously, Gi has a spanning tree. �

The theorem above puts forward a criterion for selecting
leaders. An intuitive example is given in Fig. 7 with the

agents painted black representing the leader. Though the
division of G may not be unique, there is a smallest value
of M when the number of leaders reaches its minimum. If
G owns a direct rooted spanning tree itself, then M = 1,
which means only one leader is needed. If G is strongly
connected, any agent in the system can be selected as a
leader.

Fig. 7 Leader selection for communication topology

3.2 Controller design

The roots of (16) is the same as the closed-loop poles of
the transfer function:

Gi(s) = λiφ
−1(s) · gc(s) · g(s) (17)

which can be transformed into the following form:

Gi(s) =

r · earg(λi)
m
∏

j=1

(s − zj)

n
∏

j=1

(s − pj)
(r > 0) (18)

The difficulty increases for designing the open-loop gain
as n − m, namely the relative order, gets higher. Here, we
put forward the following conclusion for n − m = 1:

Theorem 4. The roots of (16), i.e., the closed-loop
poles of Gi(s), are strictly stable when r gets sufficiently
large if the following two conditions are satisfied:

1) n − m = 1;
2) Gi(s) has no zeros in the right half of the complex

plane.
Proof. Based on Property 2, pj → zj (1 ≤ j ≤ m), and

pj → ∞ (m < j ≤ n) as r → +∞. Since n − m = 1, only
one branch goes to infinity, i.e., pn → ∞. Let ϕi be the
angle between the asymptote and the positive direction of
the real axis, ϕi = π + arg(λi) according to Property 3.
Since λi has positive real part, arg(λi) ∈ (−π/2, π/2), we
have ϕi ∈ (π/2, 3π/2) and pn → +∞ · ejϕi which is stable
as r → +∞. The other poles are also stable according to
2).

For n − m > 1, there is no ready solution to assure
the stability of N distinct systems of (16) with a single
parameter r adjustable. But there are still plenty of ways
to achieve that by properly arranging the zeros and poles
of gc(s).

Let us present a protocol for controller design based on
the conclusions above:

1) Determine φ(s) according to the denominators of vi(s)
and wi(s).

2) Select leaders of the system according to the criterion
proposed in Theorem 3.

3) Disign gc(s) properly such that for λi ∈ R, i.e.,
arg(λi) = 0, which may be an imaginary one, Gi(s) has
a stable threshold as large as possible. During this step
guidelines for root locus designing can be widely used.
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4) Plot root locus with respect to the other eigenvalues
to obtain the interval of r where all the systems are stable,
test whether the designed controller meets the requirements
or not.

5) If gc(s) meets the requirements, 5) is over, else return
to 3) to get a better controller.

Maybe in the current framework there is a difficulty in
accurately evaluating the transient performance since for
an N-agent system, there are usually N eigenvalues to be
considered but only one root locus can be designed (usu-
ally the ordinary root locus because of its simplicity), the
rest ones are also determined afterwards. However, this
drawback is partially caused by the property of the graph
itself, in other words, the interaction mode between the
agents has a substantial influence on the performance of
the control algorithm. If the graph is also adjustable, say,
it is an undirected graph where its Laplacian is symmetri-
cal, the convergence rate can be analyzed and is related to
the smallest nonzero eigenvalue of the (augmented) graph
Laplacian known as the “algebraic connectivity” according
to the existing literature[11]. This can also be figured out
in our framework because in this case one ordinary root lo-
cus is enough to investigate the whole system since all the
eigenvalues here are real, and the smallest nonzero eigen-
value is corresponding to the smallest open loop gain and
a set of closed loop poles nearest to the imaginary axis.

Secondly, although accurate evaluation of the perfor-
mance may not be available under general circumstances,
there is still a possibility to improve it. It has been proved
that the shape of CVRL is much the same as the corre-
sponding ordinary root locus despite some differences in the
direction of the asymptotes and departure (arrival) angles,
so once the performance of the first root locus is improved,
the rest will follow. �

Example 3. The communication topology is shown in
Fig. 3. The eigenvalues of W are λ1 = 0.245, λ2 = 2 and
λ3,4 = 2.020 · e±j0.378 when Agents 1 and 2 are chosen as
leaders. The reference input are vi(t) = sin t (i = 1, 2, 3, 4)
with disturb input w1,2(t) = 1 and w3,4(t) = t. The dy-
namics of the agent is given by

g(s) =
1

(s + 5)2
(19)

We see in this case that φ(s) = s2(s2+1). The controller
is designed as

hc(s) =
gc(s)

φ(s)
=

K(s + 1)4

s2(s2 + 1)

The root locus of Gi(s) is shown in Fig. 8. Note that the
root loci are symmetrical with each other with respect to
the real axis when λi are mutually conjugate, so Fig. 8 (b)
is of arg(λi) = 0.378 alone. G1,2(s) is stable when r ∈
(4, +∞) while G3,4(s) is stable when r ∈ (10, 240). Hence,
the interval for stability is (10, 240). The output result in
Fig. 9 is for K = 50.

4 Conclusion

This paper deals with the cooperative tracking and dis-
turbance suppression problem with single or multiple lead-
ers using the internal model principle. We see that the
control problem of a multiagent system consisting of N
identical agents can be reduced into the stability problem
of N distinct SISO systems modified by an eigenvalue of
the augmented digraph. We show the necessary and suffi-
cient conditions on the communication topology such that

all the eigenvalues of W are nonzero. Simulation result
shows that the CVRL technique is helpful and effective in
stability analysis and pole assignment.

(a) Root locus for G1,2(s)

(b) Root locus for G3,4(s)

Fig. 8 Root locus of Gi(s)

Fig. 9 Trajectory of the multiagent system
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