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Abstract In this technical note, we present a new stability
analysis procedure for ascertaining the delay-dependent stabil-
ity of a class of Lurie systems with time-varying delay and
sector-bounded nonlinearity using Lyapunov-Krasovskii (LK)
functional approach. The proposed analysis, owing to the candi-
date LK functional and tighter bounding of its time-derivative,
yields less conservative absolute and robust stability criteria for
nominal and uncertain systems respectively. The effectiveness of
the proposed criteria over some of the recently reported results
is demonstrated using a numerical example.
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The problem of absolute stability of Lurie systems has
received considerable attention in control community, and
many valuable results, such as Popov criterion, circle cri-
terion, and Kalman-Yakubovih-Popov lemma have been
reported in the past[1−3]. Many typical nonlinear sys-
tems, such as Chua′s circuit and the Lorenz system, can
be classified into this type[4]. Recently, reported results
on master-slave synchronization for Lurie systems using
time-delayed feedback control[5−7] has rekindled the inter-
est on stability studies of the system, and has given a fresh
impetus to the problem. As time-delay is often encoun-
tered in physical systems like communication systems, air-
craft stabilization, nuclear reactor, process systems, popu-
lation dynamics, etc., and is a source of poor performance
and instability, the problem of absolute and robust stabil-
ity of Lurie systems with time-delay attains considerable
significance and interest in control literature. Depending
upon whether or not the stability criteria for Lurie sys-
tem contain the time-delay information, the criteria can
be classified respectively into delay-dependent stability cri-
teria and delay-independent stability criteria. In general,
the delay-dependent criteria are less conservative than the
delay-independent ones if delay size is very small. Hence,
delay-dependent stability studies for Lurie systems with
constant[8−10] and time-varying delay[11−13] have been re-
ceiving increasing attention of the control community in
recent years.

In this paper, we research the problem of delay-
dependent stability of Lurie system with time-varying
delay and sector-bounded nonlinearity using Lyapunov-
Krasovskii (LK) functional approach. Subsequently, ab-
solute and robust stability criteria are derived respectively
for nominal and uncertain Lurie systems in terms of linear
matrix inequalities (LMIs). To make the proposed criteria

less conservative than the recently reported results[11−13],
a candidate LK functional is used in the delay-dependent
stability analysis, and the cross-terms that emerge from
the time-derivative of the functional are bounded tightly
without neglecting any useful terms using minimal number
of slack matrix variables. The proposed analysis, eventu-
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ally, culminates into a stability condition in convex LMI
framework, and is solved non-conservatively at boundary
conditions using standard numerical packages[14]. Finally,
a numerical example is employed to demonstrate the effec-
tiveness of the proposed criteria.

Notations. Rn denotes the n-dimensional Euclidian
space, Rn×m is the set of n × m real matrices, I and 0
represents the identity matrix and null matrix of appropri-
ate dimensions; the superscript “T” stands for the matrix
transposition; X > 0 (respectively X ≥ 0), for X ∈ Rn×m

means that the matrix is real symmetric positive definite
(respectively, positive semi definite); R and Z denote the
set of real numbers and integers; The “∗” represents the
symmetric elements in a symmetric matrix.

1 System description and problem state-
ment

Consider a class of Lurie-type system with time-varying
delay given by

ẋ(t) = Ax(t) + Bx(t− h(t)) + Dw(t)

z(t) = Mx(t) + Nx(t− h(t))

w(t) = −ϕ(t, z(t)) (1)

with
x(t) = φ(t), t ∈ [−h, 0] (2)

where x(t) ∈ Rn, w(t) ∈ Rp, and z(t) ∈ Rq are the
state, input, and output vectors of the system, respectively;
A, B, D, M , and N are constant matrices of appropriate
dimensions and the initial condition φ(t) is a continuous
vector valued function; ϕ(t, z(t)) ∈ Rp is a nonlinear func-
tion that is piecewise continuous in t, and globally Lipschitz
in z(t); ϕ(t, 0) = 0, and satisfies the following sector condi-
tion ∀t ≥ 0, ∀z(t) ∈ Rp:

[ϕ(t, z(t))−K1z(t)]T[ϕ(t, z(t))−K2z(t)] ≤ 0 (3)

where K1 and K2 are real constant matrices of appropriate
dimensions, and K = K2 − K1 is a symmetric positive-
definite matrix. In other words, the nonlinear function
ϕ(t, z(t)) is said to belong to the sector [K1, K2]. On the
other hand, if the nonlinear function ϕ(t, z(t)) belongs to
the sector [0, K], then, we have the following sector condi-
tion ∀t ≥ 0, ∀z(t) ∈ Rp:

ϕT(t, z(t))[ϕ(t, z(t))−Kz(t)] ≤ 0 (4)

The time-varying delay h(t) is a continuous-time function
satisfying the following conditions:

0 ≤ h(t) ≤ h, ḣ(t) ≤ hd, ∀t ≥ 0 (5)

In addition to absolute stability criterion, in this paper,
robust stability criterion is also presented for the following
class of uncertain Lurie systems:

ẋ(t) = (A + ∆A(t))x(t) + (B + ∆B(t))x(t− h(t))+

(D + ∆D(t))w(t) (6)

z(t) = Mx(t) + Nx(t− h(t))

w(t) = − ϕ(t, z(t))

where the time-varying uncertainties are of the form:
[
∆A(t) ∆B(t) ∆D(t)

]
= GF (t)

[
Ea Eb Ed

]
(7)

where G, Ea, Eb, and Ed are known constant matrices of
appropriate dimensions, and F (t) is an unknown real time-
varying matrix satisfying
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FT(t)F (t) ≤ I, ∀t (8)

The following lemmas are indispensable in deriving the
proposed stability criterion, and they are stated below:

Lemma 1[15]. For any constant matrix W ∈ Rn×n,
a scalar γ > 0, and vector function ẋ : [−γ, 0] 7→ Rn

such that the integration
∫ t

t−γ
ẋT(s)Wẋ(s)ds is well de-

fined, then

−γ

∫ t

t−γ

ẋT(s)Wẋ(s)ds ≤ δT
γ (t)ΠW δγ(t) (9)

where

δγ(t) =

[
x(t)

x(t− γ)

]
, ΠW =

[ −W W
∗ −W

]

Lemma 2. Suppose r1 ≤ r(t) ≤ r2, where r(·) : R+

(or Z+) → R+ (or Z+). Then, for any R = RT > 0, free
matrices T and Y , the following integral inequality holds:

−
∫ t−r1

t−r2

ẋT(s)Rẋ(s)ds ≤ δT(t)[(r2 − r(t))TR−1TT+

(r(t)− r1)Y R−1Y T + [Y − Y + T − T ]+

[Y − Y + T − T ]T]δ(t) (10)

where δ(t) = [xT(t − r1) xT(t − r(t)) xT(t − r2)]
T,

T = [TT
1 TT

2 TT
3 ]T, and Y = [Y T

1 Y T
2 Y T

3 ]T.
Proof. For any vectors z, y, and symmetric, positive

definite matrix X, the following inequality holds:

−2zTy ≤ zTX−1z + yTXy

Substituting z = TTδ(t), y =
∫ t−r(t)

t−r2
ẋ(s)ds, X = R

r2−r(t)
,

and subsequently using Jenson integral inequality, we get

− 2δT(t)T

∫ t−r(t)

t−r2

ẋ(s)ds ≤ (r2 − r(t))×

δT(t)TR−1TTδ(t) +

∫ t−r(t)

t−r2

ẋT(s)Rẋ(s)ds

which, by Newton-Leibniz formula, is expressed as follows:

−
∫ t−r(t)

t−r2

ẋT(s)Rẋ(s)ds ≤

δT(t)

[
(r2 − r(t))TR−1TT+

[0 T − T ] + [0 T − T ]T
]

δ(t)

Similarly, we can deduce the following inequality as well:

−
∫ t−r1

t−r(t)

ẋT(s)Rẋ(s)ds ≤ δT(t)

[
(r(t)− r1)Y R−1Y T+

[Y − Y 0] + [Y − Y 0]T
]

δ(t)

Summation of the last two equations completes the proof
of the Lemma 2. ¤

Lemma 3[16]. Suppose γ1 ≤ γ(t) ≤ γ2, where γ(·) :
R+ (or Z+) → R+ (or Z+). Then, for any constant matri-
ces Ξ1, Ξ2, and Ω, the inequality

Ω + (γ(t)− γ1)Ξ1 + (γ2 − γ(t))Ξ2 < 0

holds if and only if the following boundary conditions hold:

Ω + (γ2 − γ1)Ξ1 < 0

Ω + (γ2 − γ1)Ξ2 < 0

Lemma 4[17]. Given matrices Q = QT, H, E, and
R = RT of appropriate dimensions

Q + HFE + ETFTHT < 0

for all F satisfying FTF ≤ R holds, if and only if there
exists some scalar, ε > 0 such that

Q + εHHT + ε−1ETRE < 0

2 The proposed absolute stability crite-
rion

The proposed absolute stability criterion for the system
(1) satisfying (5) is stated below for ϕ(t, z(t)) ∈ [0, K]:

Theorem 1. The system (1) satisfying (5) with
ϕ(t, z(t)) ∈ [0, K] is absolutely stable for a given value
of h and hd, if there exist real symmetric positive definite
matrices P, Q, Zj , j = 1, 2; matrices Q11, Q12, Q22 and
slack matrices Ti, Yi, Mi, and Ni, i = 1, 2, 3 of appro-
priate dimensions such that the following LMIs hold:

[
Q11 Q12

∗ Q22

]
> 0




Π + Π1 + ΠT
1 ĀTU

h

2
Ta

∗ −U 0

∗ ∗ −h

2
Z1


 < 0 (11)




Π + Π1 + ΠT
1 ĀTU

h

2
Ya

∗ −U 0

∗ ∗ −h

2
Z1


 < 0 (12)




Φ + Φ1 + ΦT
1 ĀTU

h

2
Ma

∗ −U 0

∗ ∗ −h

2
Z2


 < 0 (13)




Φ + Φ1 + ΦT
1 ĀTU

h

2
Na

∗ −U 0

∗ ∗ −h

2
Z2


 < 0 (14)

where Π and Φ are given on the top of the next page, and

Π1 =
[

Ya −Ya + Ta −Ta 0 0
]

Ya =
[

Y T
1 Y T

2 Y T
3 0 0

]T

Ta =
[

TT
1 TT

2 TT
3 0 0

]T

Φ1 =
[

0 −Na + Ma Na −Ma 0
]

Ma =
[

0 MT
1 MT

2 MT
3 0

]T

Na =
[

0 NT
1 NT

2 NT
3 0

]T

Ā =
[

A B 0 0 D
]

U =
h

2
(Z1 + Z2)
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Π =




ATP + PA + Q + Q11 PB Q12 0 PD −MTKT

∗ −(1− hD)Q 0 0 −NTKT

∗ ∗ Q22 −Q11 − 2

h
Z2 −Q12 +

2

h
Z2 0

∗ ∗ ∗ −Q22 − 2

h
Z2 0

∗ ∗ ∗ ∗ −2I




Φ =




ATP + PA + Q + Q11 − 2

h
Z1 PB Q12 +

2

h
Z1 0 PD −MTKT

∗ −(1− hD)Q 0 0 −NTKT

∗ ∗ Q22 −Q11 − 2

h
Z1 −Q12 0

∗ ∗ ∗ −Q22 0
∗ ∗ ∗ ∗ −2I




Γ =




ATP + PA + Q + Q11 PB Q12 0 PD −MTKT

∗ −(1− hD)Q 0 0 −NTKT

∗ ∗ Q22 −Q11 −Q12 0
∗ ∗ ∗ −Q22 0
∗ ∗ ∗ ∗ −2I




Proof. Consider the following LK functional candidate:

V (xt, t) = xT(t)Px(t) +

∫ t

t−h(t)

xT(s)Qx(s)ds +

∫ t

t−h
2

[
x(s)

x(s− h
2
)

]T [
Q11 Q12

∗ Q22

] [
x(s)

x(s− h
2
)

]
ds +

∫ 0

−h
2

∫ t

t+θ

ẋT(s)Z1ẋ(s)dsdθ +

∫ −h
2

−h

∫ t

t+θ

ẋT(s)Z2ẋ(s)dsdθ (15)

The time-derivative of the LK functional (15) along the
trajectory of (1) is given by

V̇ (xt, t) = 2xT(t)P (Ax(t) + Bx(t− h(t)) + Dw(t)) +

δT(t)Υδ(t) + xT(t)Qx(t) −
(1− ḣ(t))xT(t− h(t))Qx(t− h(t)) +

ẋT(t)Uẋ(t)−
∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds −
∫ t−h

2

t−h

ẋT(s)Z2ẋ(s)ds (16)

where

δ(t) =




x(t)

x(t− h

2
)

x(t− h)


 , Υ =




Q11 Q12 0
∗ Q22 −Q11 −Q12

∗ ∗ −Q22




Now, using the bound on the delay-derivative, and the
sector condition defined in (4), we transform (16) into the

following inequality:

V̇ (xt, t) ≤ 2xT(t)P (Ax(t) + Bx(t− h(t)) + Dw(t)) +

δT(t)Υδ(t) + xT(t)Qx(t) −
(1− hd)xT(t− h(t))Qx(t− h(t)) +

ẋT(t)Uẋ(t)−
∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds −
∫ t−h

2

t−h

ẋT(s)Z2ẋ(s)ds− 2wT(t)w(t) −

2wT(t)K(Mx(t) + Nx(t− h(t)) (17)

By defining an augmented vector ζ(t) = [xT(t) xT(t −
h(t)) xT(t − h

2
) xT(t − h) wT(t)]T, we can express (17)

as follows:

V̇ (xt, t) ≤ ζT(t)(Γ + ĀTUĀ)ζ(t)−
∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds −
∫ t−h

2

t−h

ẋT(s)Z2ẋ(s)ds (18)

where Γ is given on the top of this page. Now, when
0 ≤ h(t) ≤ h/2, the cross-terms − ∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds and

− ∫ t−h
2

t−h ẋT(s)Z2ẋ(s)ds are dealt using Lemmas 1 and 2 re-
spectively as follows:

−
∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds ≤ δT
1 (t)

[(
h

2
− h(t)

)
TZ−1

1 TT +

h(t)Y Z−1
1 Y T +

[
Y −Y + T −T

]
+

[
Y −Y + T −T

]T ]
δ1(t) (19)
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and

−
∫ t−h

2

t−h

ẋT(s)Z2ẋ(s)ds ≤
[

x(t− h

2
)

x(t− h)

]T


− 2

h
Z2

2

h
Z2

∗ − 2

h
Z2




[
x(t− h

2
)

x(t− h)

]
(20)

where

δ1(t) =

[
xT(t) xT(t− h(t)) xT(t− h

2
)

]T

T =
[

TT
1 TT

2 TT
3

]T

Y =
[

Y T
1 Y T

2 Y T
3

]T

In a similar manner, when h/2 ≤ h(t) ≤ h, the cross-

terms − ∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds and − ∫ t−h
2

t−h ẋT(s)Z2ẋ(s)ds

are dealt using Lemmas 1 and 2 respectively as follows:

−
∫ t

t−h
2

ẋT(s)Z1ẋ(s)ds ≤

[
x(t)

x(t− h

2
)

]T


− 2

h
Z1

2

h
Z1

∗ − 2

h
Z1




[
x(t)

x(t− h

2
)

]
(21)

and

−
∫ t−h

2

t−h

ẋT(s)Z2ẋ(s)ds ≤ δT
2 (t)

[
(h− h(t))MZ−1

2 MT +

(
h(t)− h

2

)
NZ−1

2 NT +
[ −N + M N −M

]
+

[ −N + M N −M
]T ]

δ2(t) (22)

where

δ2(t) =

[
xT(t− h(t)) xT(t− h

2
) xT(t− h)

]T

M =
[

MT
1 MT

2 MT
3

]T

N =
[

NT
1 NT

2 NT
3

]T

Hence, for 0 ≤ h(t) ≤ h/2, we use the relationships given
in (19) and (20) in (18) and obtain the following inequality:

V̇ (xt, t) ≤ ζT(t)

[
Ω1 +

(
h

2
− h(t)

)
TaZ−1

1 TT
a +

h(t)YaZ−1
1 Y T

a

]
ζ(t) (23)

similarly, for h/2 ≤ h(t) ≤ h, we use (21) and (22) in (18)
and obtain the following inequality condition:

V̇ (xt, t) ≤ζT(t)

[
Ω2 + (h− h(t))MaZ−1

2 MT
a +

(
h(t)− h

2

)
NaZ−1

2 NT
a

]
ζ(t) (24)

where Ω1 = Π+Π1 +ΠT
1 + ĀTUĀ and Ω2 = Φ+Φ1 +ΦT

1 +
ĀTUĀ. By Lyapunov-Krasovskii stability theorem[18], the

system (1) is absolutely stable, if V̇ (xt, t) ≤ −λ‖x(t)‖2 for
some λ > 0, if, for 0 ≤ h(t) ≤ h/2,

Ω1 +

(
h

2
− h(t)

)
TaZ−1

1 TT
a + h(t)YaZ−1

1 Y T
a < 0 (25)

and for h/2 ≤ h(t) ≤ h,

Ω2 + (h− h(t))MaZ−1
2 MT

a +

(
h(t)− h

2

)
NaZ−1

2 NT
a < 0

(26)

By applying Lemma 3 and Schur complement[19] suc-
cessively to (25) and (26), we deduce the LMIs stated in
Theorem 1. ¤

3 Robust stability criterion
The proposed robust stability criterion for the uncertain

system (6) satisfying the time-varying delay (5) is stated
below for ϕ(t, z(t)) ∈ [0, K]:

Theorem 2. The uncertain system (6) satisfying (5)
with ϕ(t, z(t)) ∈ [0, K] is robustly absolutely stable for
a given value of h and hd, if there exist real symmet-
ric positive definite matrices P, Q, Zj , j = 1, 2; ma-
trices Q11, Q12, Q22 and slack matrices Ti, Yi, Mi and
Ni, i = 1, 2, 3 of appropriate dimensions, and scalars
µi > 0, i = 1 to 4 such that the following LMIs hold:

[
Q11 Q12

∗ Q22

]
> 0




Π + Π1 + ΠT
1 ĀTU P̄G µ1Ē

T h

2
Ta

∗ −U UG 0 0
∗ ∗ −µ1I 0 0
∗ ∗ ∗ −µ1I 0

∗ ∗ ∗ ∗ −h

2
Z1




< 0

(27)


Π + Π1 + ΠT
1 ĀTU P̄G µ2Ē

T h

2
Ya

∗ −U UG 0 0
∗ ∗ −µ2I 0 0
∗ ∗ ∗ −µ2I 0

∗ ∗ ∗ ∗ −h

2
Z1




< 0

(28)


Φ + Φ1 + ΦT
1 ĀTU P̄G µ3Ē

T h

2
Ma

∗ −U UG 0 0
∗ ∗ −µ3I 0 0
∗ ∗ ∗ −µ3I 0

∗ ∗ ∗ ∗ −h

2
Z2




< 0

(29)


Φ + Φ1 + ΦT
1 ĀTU P̄G µ4Ē

T h

2
Na

∗ −U UG 0 0
∗ ∗ −µ4I 0 0
∗ ∗ ∗ −µ4I 0

∗ ∗ ∗ ∗ −h

2
Z2




< 0

(30)
where

P̄ =
[

PT 0 0 0 0
]T

Ē =
[

Ea Eb 0 0 Ed

]
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Proof. Replace the system matrices A, B, and D in
LMIs (11)∼ (14) with (A + ∆A(t)), (B + ∆B(t)), and
(D + ∆D(t)), respectively. Then, from the definition of
norm-bounded uncertainties (7), we obtain the following
inequalities:

Ω1 + ( ¯̄PGF (t) ¯̄E) + ( ¯̄PGF (t) ¯̄E)T +
h

2
Tb Z−1

1 TT
b < 0

(31)

Ω1 + ( ¯̄PGF (t) ¯̄E) + ( ¯̄PGF (t) ¯̄E)T +
h

2
Yb Z−1

1 Y T
b < 0

(32)

Ω2 + ( ¯̄PGF (t) ¯̄E) + ( ¯̄PGF (t) ¯̄E)T +
h

2
MbZ

−1
2 MT

b < 0

(33)

Ω2 + ( ¯̄PGF (t) ¯̄E) + ( ¯̄PGF (t) ¯̄E)T +
h

2
Nb Z−1

2 NT
b < 0

(34)

where ¯̄P = [P̄T UT]T, ¯̄E = [Ē 0], Tb = [TT
a 0]T, and

Yb = [Y T
a 0]T. Now, there exists µi > 0, i = 1, 2, 3, 4

such that by Lemma 4, if (31) ∼ (34) hold, the following
inequalities hold:

Ω1 + µ−1
1 ( ¯̄PG)( ¯̄PG)T + µ1

¯̄ET ¯̄E +
h

2
Tb Z−1

1 TT
b < 0 (35)

Ω1 + µ−1
2 ( ¯̄PG)( ¯̄PG)T + µ2

¯̄ET ¯̄E +
h

2
Yb Z−1

1 Y T
b < 0 (36)

Ω2 + µ−1
3 ( ¯̄PG)( ¯̄PG)T + µ3

¯̄ET ¯̄E +
h

2
MbZ

−1
2 MT

b < 0 (37)

Ω2 + µ−1
4 ( ¯̄PG)( ¯̄PG)T + µ4

¯̄ET ¯̄E +
h

2
Nb Z−1

2 NT
b < 0 (38)

Schur complement to (35) ∼ (38) completes the proof. ¤
Remark 1. For ϕ(t, z(t)) ∈ [K1, K2], by using loop

transformation[2], we can obtain the absolute and robust
stability criteria by replacing A, B and K in Theorems 1
and 2 with (A − DK1M), (B − DK1N), and (K2 − K1),
respectively.

Remark 2. The reason for less conservativeness of the
proposed stability criteria over the recently reported results
[11−12] is attributed to the candidate LK functional used
in the delay-dependent stability analysis. In [11−12], the
LK functional is formulated by considering the variation of
the delay h(t) in the entire delay range, i.e., h(t) ∈ [0, h];
whereas in this paper, we have considered the variation
of the delay in two equal segments of the delay-range viz.
h(t) ∈ [0, h/2] and h(t) ∈ [h/2, h], and have suitably em-
bedded the segment information into the LK functional.
The analysis, subsequently, paves way to stability criteria
that yield less conservative stability criteria compared to
those of [11−12].

Remark 3. Though the delay-dependent stability anal-
ysis presented in [13] also splits the delay-interval [0, h]
into two equal sub-intervals and defines different energy
functions on each interval, the following over-bounding:

−
(

h− h

2

) ∫ t−h
2

t−h

ẋT(s)Z2ẋ(s)ds ≤

−
(

h(t)− h

2

) ∫ t−h
2

t−h(t)

ẋT(s)Z2ẋ(s)ds

neglecting the terms −(h − h(t))
∫ t−h(t)

t−h
ẋT(s)Z2ẋ(s)ds,

−(h(t)− h
2
)

∫ t−h(t)

t−h
ẋT(s)Z2ẋ(s)ds, and −(h − h(t))×

∫ t−h
2

t−h(t) ẋT(s)Z2ẋ(s)ds in the stability analysis introduces

conservatism in the ensuing stability criteria. On the
other hand, in the proposed stability analysis, we have re-
duced the conservatism of the stability criteria by using a
candidate LK functional[20], and have bounded the time-
derivative of the functional tightly (without neglecting any
useful terms) using minimal number of slack matrix vari-
ables that are not redundant. This, in turn, yields less
conservative stability criteria compared to those of [13].

Remark 4. In situations where there is no restriction
on the derivative of the time-varying delay, the stability
criteria can be deduced readily by letting Q = 0 in the
Theorems 1 and 2.

4 A numerical example

The effectiveness of the proposed stability criteria over
[11−12] and [13] is demonstrated on a numerical example
in this section.

Example 1. Consider the nominal Lurie system given
in (1) with following parameters:

A =

[ −2 0
0 −0.9

]
, B =

[ −1 0
−1 −1

]

D =

[ −0.2
−0.3

]
, M =

[
0.3 0.1

]

N =
[

0.1 0.2
]
, K1 = 0.2, K2 = 0.5

The maximum allowable delay bounds (MADB) pro-
vided by the proposed stability criterion for Example 1 is
listed in Table 1 for different values of hd. Owing to the
use of a candidate LK functional (15) and tighter bounding
conditions on the cross-terms, the proposed absolute sta-
bility criterion yields less conservative delay bounds than
the existing results[11−13].

Consider the uncertain Lurie system which has the fol-
lowing parameters in addition to those furnished in Exam-
ple 1:

Ea = Eb =

[
1 0
0 1

]
, Ed =

[
0
0

]
, G =

[
0.1 0
0 0.1

]

The maximum delay bounds provided by the proposed
robust stability criterion of Theorem 2 for the uncertain
system is listed in Table 2 for different values of hd. For
the uncertain case, the proposed robust stability criterion
also yields less conservative delay bounds than those of the
existing results.

Table 1 Absolute stability: maximum allowable delay
bound h for given hd

Method hd 0 0.3 0.6 0.9 1 > 1

[11] h 4.6839 2.6634 1.7846 1.1721 0.9798 0.9798

[12] h 4.6839 2.8688 2.1925 1.8724 1.8517 1.8517

[13]a h 5.9964 3.0955 1.8753 1.3149 1.3149 1.3149

Theorem 1 h 5.9964 3.1436 2.3064 2.1595 2.1595 2.1595
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Table 2 Robust stability: maximum allowable
delay bound h for given hd

Method hd 0 0.3 0.6 0.9 1 > 1

[11] h 3.3056 2.0787 1.4195 0.9228 0.7638 0.7638

[12] h 3.3056 2.2262 1.7409 1.4682 1.4383 1.4383

[13]a h 4.1077 2.3707 1.4819 1.0346 1.0346 1.0346

Theorem 2 h 4.1077 2.4335 1.8718 1.7077 1.6995 1.6995

aThese are the true results of Corollaries 1 and 2 of [13].

Remark 5. By solving the LMIs presented in Corollar-
ies 1 and 2 of [13], we have found that the delay bounds
claimed in the paper are not true. In fact, the actual delay
bounds provided by the corollaries are more conservative
than what is actually claimed. These results are presented
in Tables 1 and 2.

5 Conclusion
In this note, we have proposed less conservative absolute

and robust stability criteria for a class of Lurie systems
with time-varying delay and sector-bounded nonlinearity.
The delay-dependent stability analysis that yields the sta-
bility criteria uses a candidate LK functional, and the time-
derivative of the functional is bounded tightly without ne-
glecting any useful terms using minimal number of slack
matrix variables. The proposed analysis, subsequently,
yields a stability criterion in convex LMI framework and
is solved non-conservatively at boundary conditions us-
ing standard numerical packages. The effectiveness of the
proposed criteria over recently reported results is demon-
strated on a standard numerical example. As master-slave
synchronization of Lurie systems with time-delayed feed-
back control is an important practical application, the fu-
ture research is focused on delay-dependent stabilization of
Lurie systems with time-varying delay.
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