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Fault-tolerant Control and Disturbance Attenuation of a

Class of Nonlinear Systems with Actuator and

Component Failures
FAN Ling-Ling1 SONG Yong-Duan1, 2

Abstract This paper investigates the stabilization problem of a class of nonlinear dynamic systems with actuator and component
failures as well as external disturbances. New fault-tolerant control algorithms are derived without the need for analytically estimating
bound on actuator failure variables, and thus the resultant control scheme has simpler structure and demands less online computations
as compared with most existing methods. It is shown that with the proposed control, both actuator and subsystem/component failures
can be accommodated, and the state dependent growth disturbances can be effectively attenuated. The algorithm is validated via a
formative mathematical analysis based on a Lyapunov approach and numerical simulations in the presence of external disturbances,
parametric uncertainties, as well as severe actuator/subsystem failures.
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Actuator and/or component failure could cause serious
safety problem to engineering systems if no proper action
is taken in time. Fault-tolerant control (FTC) has been
counted as one of the most promising control technologies
for maintaining specified safety performance of a system in
the presence of unexpected faults. Various FTC methods
have been proposed during the past decade (e.g., [1−15],
to just name a few). Among the most existing FTC ap-
proaches, the one that does not rely on fault detection and
diagnosis (FDD) is of particular interest in practice due
to the fact that it does not demand timely and precise
fault detection or diagnosis for implementation. Tang et
al.[7] investigated a robust adaptive compensation method
for linear time-invariant systems with actuator failures and
applied it to rocket fairing structural-acoustic model. Al-
though independent of FDD, this method needs to utilize
an iterative algorithm to check the solvability of a linear
matrix inequality (LMI). This is essentially an approxima-
tion process, which is quite time-consuming when multiple
fault modes (patterns) are involved. Jin et al.[16] consid-
ered a similar problem in their recent work and proposed
a robust adaptive FTC method to stabilize linear time-
invariant systems with both actuator failures and bounded
external disturbances. However, as noted in [17], their con-
trol scheme involves solving a failure-factor related Lya-
punov equation (as with the one in Tang et al.[7]), which

is non-trivial in control design. Fan et al.[17] have recently
proposed a new FTC in which not only the state dependent
growing external disturbances were addressed, but also the
drawbacks associated with [7, 16] were completely circum-
vented.

This paper extends and improves the results in [17] from
linear systems to nonlinear systems subject to external dis-
turbances and actuator failures. The impact from sub-
system/component malfunction is also considered. A con-
trol scheme that is FDD-independent is proposed, in which
there is no need for explicit fault information in terms of
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its magnitude and time instance of the fault occurrence.
The FTC control scheme developed herein does not need
to solve a Lyapunov equation that contains uncertain and
time-varying actuator failure variables, nor does it demand
any explicit fault information for control design and im-
plementation. The result presented here is inspired by the
work of [16] and especially [17]. In fact, it can be viewed
as the natural extension and improvement of the work by
[16, 17].

1 FTC problem formulation

Consider the stabilization problem of the following non-
linear dynamic system under actuator and component
faults as well as external disturbances.

ẋxx(t) = NNN(xxx, tf ) + B(uuua(t) + ddd(xxx, t)) (1a)

with

NNN(xxx, tf ) = Axxx(t) + B[ξξξ(xxx) + µ(t− tf )ηηη(xxx, t)] (1b)

where xxx(t) ∈ Rn is the state, uuua(t) ∈ Rm denotes the
actual control input to the system, ddd(xxx, t) ∈ Rm models
external disturbances acting on the system, ξξξ(xxx) ∈ Rm is
a nonlinear and unknown vector function, µ(t − tf )ηηη(xxx, t)
denotes the uncertain effect due to subsystem/component
failures occurring at the time instant t ≥ tf , A and B are
known real constant matrices with appropriate dimensions.

When component and actuator failures (such as element
outage, actuator loss of effectiveness, stuck, combination of
all) occur, the actual control input uuua(t) and the designed
control input uuu(t) function according to

uuua(t) = ρ(t)uuu(t) + EEE(t) (2)

where ρ(t) =diag{ρi(t)} is a diagonal matrix with
ρi(t) ∈ (0, 1] (i = 1, 2, · · · , m), being a time-varying scalar

function called actuator efficiency factor[16], or “health
indicator”[18], EEE(t) denotes a vector function correspond-
ing to the portion of the control action produced by the
actuator that is completely out of control. Note that EEE(t)
might be immeasurable and time-varying.

Remark 1. It is noted that the system investigated
here includes the one considered in [7, 16−17] as a special
case. In fact, the system studied in [7] corresponds to the
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case that ddd(xxx, t) ≡ 0, ξξξ(xxx) ≡ 0 and µ(t− tf )ηηη(xxx, t) ≡ 0, the
work of [16] considered the case that the disturbance ddd(xxx, t)
is bounded by a constant and EEE(t) is constant, while the
work of [18] assumed that the system is linear and µ(t −
tf )ηηη(xxx, t) ≡ 0.

Remark 2. Regarding the disturbance, it is noteworthy
that output disturbance and/or state disturbance are in-
evitable, thus a practical control scheme should is consider
for such impact. In this work, the disturbance is treated
as an overall impact on the system (unpredictable and im-
measurable), and such impact grows depending on the state
rather than being bounded by a constant. The lumped dis-
turbances, together with the modeling uncertainties as well
as actuator and subcomponent failures are compensated by
the control scheme to be developed in the sequel.

For the system to admit a feasible FTC solution, the
following assumptions are needed.

Assumption 1. All the states of the system are avail-
able at every instant.

Assumption 2. (A, B) is controllable in that there
exists a constant matrix K0 such that the matrix A−BK0

is Hurwitz matrix.
Assumption 3. The stuck-actuator fault is bounded

by some unknown constant; the external disturbance, the
nonlinear term, and the impact of the subsystem failure
are piece-wise continuous and bounded by multiplication of
some unknown nonnegative constants and known nonlinear
functions, i.e., there exist some unknown constants aE , ad,
aξ and aη as well as known functions ψd(xxx), ψξ(xxx) and
ψη(xxx) such that

‖EEE(t)‖ ≤ aE < ∞
‖ddd(·)‖ ≤ adψd(xxx)

‖ξξξ(·)‖ ≤ aξψξ(xxx)

‖µ(t− tf )ηηη(·)‖ ≤ aηψη(xxx)

Remark 3. Since (A, B) is controllable, one can choose
K0 properly such that Ā = A−BK0 is Hurwitz matrix in
that for any given Q = QT > 0, there exists a symmetric
and positive definite matrix P such that

−Q = ĀTP + PĀ (3)

Since A and B are available and Ā can be specified as
Hurwitz matrix by the designer, K0 can be determined di-
rectly from Ā = A − BK0, and P can be readily solved
from the Lyapunov equation (3) for a given Q = QT > 0.

2 Fault-tolerant control

2.1 Robust fault-tolerant control

In this section, a robust fault-tolerant control of the fol-
lowing form is proposed.

uuu(t) = −(K0 + K(t))xxx (4a)

where K0 is a constant matrix chosen such that A − BK0

is Hurwitz matrix, and K(t) is computed on-line by

K(t) =
a

λm
(1 + ‖K0xxx‖) BTP

‖BTPxxx‖ (4b)

with

0 < λm ≤ min{ρ1, · · · , ρm}
ψ(xxx) = ψd(xxx) + ψξ(xxx) + ψη(xxx) (4c)

a = max{1, aE , ad, aξ, aη} (4d)

Theorem 1. Consider the system described by (1) sub-
ject to actuator failures as defined in (2). Under Assump-
tions 1∼ 3, if the robust FTC given in (4) is applied, the
system is globally and asymptotically stable.

Proof. When the system is subject to the actuator fail-
ure as described in (2), its dynamic behavior is governed
by

ẋxx = Axxx+B[ρ(t)uuu(t)+EEE(t)+ddd(·)+ξξξ(·)+µ(t− tf )ηηη(·)] (5)

With the proposed control (4), the closed-loop dynamics
becomes

ẋxx = Axxx + B[ρ(t)(−K0xxx−K(t)xxx) + EEE(t)+

ddd(·) + ξξξ(·) + µ(t− tf )ηηη(·)] =

(A−BK0)xxx + B[−ρ(t)K(t)xxx + L(t)] =

Āxxx + B[−ρ(t)K(t)xxx + L(t)] (6)

where

L(·) = (I − ρ)K0xxx + EEE(t) + ddd(·) + ξξξ(·) + µ(t− tf )ηηη(·)
By Assumption 3

‖L(·)‖ ≤ ‖K0xxx‖+ ‖EEE(t)‖+ ‖ddd(·) + ξξξ(·)+

µ(t− tf )ηηη(·)‖ ≤ a(1 + ‖K0xxx‖+ ψ(xxx)‖)
where a and ψ(xxx) are defined as in (4c). Therefore, it is
true that

(BTPxxx)TL ≤ a(1 + ‖K0xxx‖+ ψ(xxx))‖BTPxxx‖ (7)

Choose Lyapunov function candidate

V =
1

2
xxxTPxxx

By the Lyapunov equation (3), it is shown that

V̇ =− 1

2
xxxTQxxx + (BTPxxx)TL +

(BTPxxx)T
[
−ρ

a

λm
(1 + ‖K0xxx‖+ ψ(xxx))

BTPxxx

‖BTPxxx‖
]
≤

− 1

2
xxxTQxxx + a(1 + ‖K0xxx‖+ ψ(xxx))‖BTPxxx‖−

a

λm

(1 + ‖K0xxx‖+ ψ(xxx))

‖BTPxxx‖ (BTPxxx)Tρ(BTPxxx) (8)

Since (BTPxxx)Tρ(BTPxxx) ≥ λm‖BTPxxx‖2, with certain
calculation, the last two terms of (8) can be combined for
cancellation therefore.

V̇ ≤ −1

2
xxxTQxxx ≤ 0

By Lyapunov stability theory, the system is globally and
asymptotically stabilized by the proposed robust FTC. ¤

Remark 4. With certain information on the fault model
and external disturbances, the two design parameters a and
λm as defined in (4c) can be determined. Overall, the de-
sign and the implementation of the control scheme (4) is
less involved as compared with the one in [7, 16], both are
for linear systems. The next control scheme further simpli-
fies the design procedure by avoiding the analytic determi-
nation of any design parameters.
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2.2 Robust adaptive fault-tolerant control

The control scheme that is robust and adaptive is pro-
posed as follows.

uuu(t) = −(K0 + K̂(t))xxx (9a)

where K0 > 0 is chosen such that A − BK0 is Hurwitz
matrix, and K̂(t) is on-line updated by

K̂(t) =
â(t)ϕ(xxx)BTP

‖BTPxxx‖ (9b)

with
ϕ(xxx) = 1 + ‖K0xxx‖+ ψ(xxx) (9c)

and
˙̂a(t) = γϕ(xxx)‖BTPxxx‖, γ > 0 (9d)

Theorem 2. For the system with external disturbances,
subsystem failures and actuator failures as described by
(1)∼ (2), let Assumptions 1∼ 3 hold. If the robust adaptive
FTC (9) is applied, the system is asymptotically stable.

Proof. Consider the following Lyapunov function can-
didate

V = xxxTPxxx +
1

λmγ
(a− âλm)2 (10)

where γ > 0 is a constant related to adaptation rate chosen
by the designer and λm > 0 is constant as defined as before.
Upon using the control scheme with the adaptive algorithm,
it is not difficult to show that

V̇ = ẋxxTPxxx + xxxTPẋxx + 2(a− âλm)(− ˙̂aγ−1) =

[Āxxx + B(−ρK̂xxx + L)]TPxxx +

xxxTP [Āxxx + B(−ρK̂xxx + L)] + 2(a− âλm)(− ˙̂aγ−1) =

xxxT(ĀTP + PĀ)xxx + 2xxxTPB(−ρK̂xxx + L)+

2(a− âλm)(− ˙̂aγ−1)

By Lyapunov equation (3), it follows that

V̇ =− xxxTQxxx + 2xxxTPB

{
ρ

[
− â(t)ϕ(xxx)(BTP )

‖BTPxxx‖ xxx

]
+ L

}
+

2(a− âλm)(− ˙̂aγ−1) (11)

In light of the definition of λm, it is true that
(BTPxxx)Tρ(BTPxxx) ≥ λm‖BTPxxx‖2, thus the second term
in (11) can be rewritten as

2xxxTPB

{
ρ

[
− â(t)ϕ(xxx)(BTP )

‖BTPxxx‖ xxx

]
+ L

}
=

− 2
â(t)ϕ(xxx)

‖BTPxxx‖ (BTPxxx)Tρ(BTPxxx) + 2(BTPxxx)TL ≤

2(a− λmâ)ϕ(xxx)‖BTPxxx‖
Thus, (11) becomes

V̇ ≤− xxxTQxxx + 2(a− λmâ)ϕ(xxx)‖BTPxxx‖+

2(a− λmâ)(−γ−1 ˙̂a) (12)

Using the updating law (9d), one obtains from (12) that

V̇ ≤ −xxxTQxxx ≤ 0

Therefore, xxx ∈ L2 ∩ L∞, and â ∈ L∞, hence, uuu(t) ∈ L∞
and ẋxx ∈ L∞. Namely, xxx is uniformly continuous. Then by
Barbalat lemma[19], it is concluded that xxx → 0 as t →∞.

¤
The control block diagram of the control scheme and un-

derlying system with actuator and component failures and
external disturbances is depicted in Fig. 1. Clearly, one can
easily build such control scheme with the information of A,
B (thus K0), and ϕ(xxx), there is no need for any other an-
alytic estimation on the uncertain faults and disturbances.

Fig. 1 The block diagram of the proposed FTC for systems
with actuator/component failures

Remark 5. It is seen that the proposed control is inde-
pendent of explicit information on faults and disturbances.
As with most variable structure control methods, when the
states get closer to zero, the control scheme might experi-
ence chattering, which can be easily avoided by replacing
z

‖z‖ with
z

‖z‖+ ε
, where ε is a small number, as commonly

adopted in the literature. Also, to prevent the estimate â
from drifting, (9d) can be modified to

˙̂a(t) = −σâ + γ
ϕ(xxx)2‖BTPxxx‖2

ϕ(xxx)‖BTPxxx‖+ ε
, σ > 0, γ > 0 (13a)

In this case, we have the following ultimately uniformly
bounded (UUB) stabilization result.

Remark 6. It is worth mentioning that none of the
upper bounds on EEE(t), ddd(xxx, t), ξξξ(xxx), and µ(t − tf )ηηη(xxx, t)
need to be analytically estimated by the designer, and the
algorithms automatically update them.

Theorem 3. Consider the nonlinear system (1). Let the
Assumptions 1∼ 3 hold. If the following robust adaptive
control is applied

uuu(t) = −(K0 + K̂(t))xxx (13b)

where K0 is chosen such that A−BK0 is Hurwitz, matrix

and K̂(t) is generated by

K̂(t) =
â(t)ϕ(xxx)2BTP

‖BTPxxx‖ϕ(xxx) + ε
(13c)

and â is updated by (13a), then the system is ensured to
UUB stable.

Proof. The result can be established by using the
method similar to that as [18]. ¤

Remark 7. It is worth mentioning that the proposed
fault-tolerant control does not involve parameters α and
β as in [16], nor the iterative procedure in [7], thus no
additional information on the fault model is required in
control design and implementation.

3 Simulation verification

We conducted simulation on two numerical systems to
test the effectiveness of the proposed method. The first one
is a system with actuator failures, external disturbances,
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and uncertain nonlinearities. The second one is a nonlinear
system with both failures from actuator and component.

3.1 Simulation 1

The nonlinear model considered is of the form (1) with
the following system parameters

A =




0 1 0
0 −1 −2
0 1 −2


 , B =




0 0
1 0.6

0.5 1




which is unstable but controllable. The system nonlineari-
ties come from

ξξξ(xxx) =

[
ω1x1x2 sin(x1 + x2)
ω2x2x3 cos(x2 + x3)

]

with uncertain parameters ω1 = 3 sin(t) ∈ [−3, 3], ω2 =
6(1 + sin(t)) ∈ [0, 12], and thus ψξ = |x1x2| + |x2x3|.
The state dependent disturbance simulated is of the form
ddd(xxx, t) = [0.14 sin(t)x2

1, 0.12 cos(0.5t)x2
3]

T (thus ψd = x2
1 +

x2
3), and the initial system states are xxx(0) = [1.4,−1, 2.1]T.

The uncontrollable portion of the actuator output is chosen
as EEE(t) = [0.1 sin(0.3t), 0.15 cos(0.6t)]T.

The actuator efficiency variables for each of the two con-
trol channels simulated are as follows

ρ1(t) =





1, 0 ≤ t ≤ 5
15− t

10
, 5 < t ≤ 11

0.4, 11 < t ≤ 14

0.7, 14 < t ≤ 20

0.5, t > 20

ρ2(t) =





1, 0 ≤ t ≤ 4

0.85 + 0.15 cos(t− 4), 4 < t ≤ 10

0.5 + 0.1 sin(t− 10), 10 < t ≤ 15

0.8 + 0.02(t− 20), 15 < t ≤ 22

0.75, t > 22

as illustrated in Fig. 2.

Fig. 2 Actuator failures from both control channels

It is noted that the actuator undergoes severe failures
during the control process in that both channels lose ef-
fectiveness by over 50% at some time, and the fault are
time-varying. The FTC in (13) is used, where it is readily

obtained that

ϕ(·) = 1 + ‖K0xxx‖+ |x1x2|+ |x2x3|+ x2
1 + x2

3

The simulation results presented in Fig. 3 correspond to
â(0) = 0, γ = 5, σ = 0.02, ε = 0.01, and

K0 =

[ −5.1429 −6 −6.8571
8.5714 10 6.4286

]

Fig. 4 is the estimated controller parameter â(t), which
is updated automatically online. It is observed that with
the proposed control scheme, good control performance is
achieved and the result confirms the theoretical prediction.

Fig. 3 Nonlinear system stabilization under actuator failures
and state dependent growth external disturbances

Fig. 4 Response curve of â(t)

3.2 Simulation 2

The second simulation tests the effectiveness of the pro-
posed fault-tolerant control scheme when applied to aircraft
altitude stabilization[19], as shown in Fig. 5.
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Fig. 5 Dynamic characteristics of an aircraft

The aircraft′s moment of inertia about the center of mass
CG is denoted by J , and r is the distance between the cen-
ter of mass and the center of lift (positive r meaning that
the center of mass is ahead of the center of lift). To con-
trol the vertical motion of the aircraft, one needs to adjust
the elevator (a small surface located at the aircraft tail)
by an angle ua. This generates aerodynamic force LE on
the elevator, and thus a torque about CG. This torque
leads to a rotation of the aircraft about CG, measured by
an angle x. The sum of the lift forces applied on the air-
craft wings and body is equivalent to a single lift force LW ,
applied at the “center of lift” CL. The lift force LW ap-
plied on the wings is proportional to x, i.e., LW = CZW x,
where CZW is the aerodynamic coefficient. Similarly, LE

is proportional to the angle between the horizontal and the
elevator, i.e., LE = CZE(ua − x), and CZE is the aerody-
namic coefficient. Furthermore, various aerodynamic forces
create friction torques and aerodynamic drag of the form
k(ẋ)ẋ.

In summary, a simplified model of the aircraft vertical
motion can be written into

Jẍ + k(ẋ)ẋ + (CZEl + CZW (x)r)x =

CZEl(ua + x sin(t) + µ(t− tf )η(·))
or

ẍ = − k(ẋ)

J
ẋ− CZEl + CZW (x)r

J
x +

CZEl

J
(ua + x sin(t) + µ(t− tf )η(·))

which can be converted into the form of (1) with

A =

[
0 1
0 0

]
, B =

[
0

CZEl

J

]

and

ξ(x, ẋ) =
J

CZEl

(
−k(ẋ)

J
ẋ− CZEl + CZW (x)r

J
x

)

d(x, t) = x sin(t)

It is noted that in practice precise information of the
aerodynamic coefficients and the aerodynamic drag is not
available. To reflect this fact, we consider the case that
uncertainties are involved in k and CZE , i.e.,

k(ẋ) = 4 + ẋ2 cos(t), CZW (x) = 5 + 0.02 sin(x), r = 0.2

with J = 1, CZE = 1, l = 3. Assume that the actuator
suffers from losing its effectiveness so that the elevator is
partially adjustable in that uuua(t) = ρ(t)uuu(t) + EEE(t) with
ρ1(t) denoting the degree of actuation failure, and EEE(t)
being the uncontrollable portion of the elevator angle.

Also, we consider that a subsystem failure occurs at
tf = 10 (s) at which an additional term of the form

η(·) = x3 sin(t) is added to the system. Note that this is a
nonlinear system with state dependent growth disturbance
and subsystem failures, the control schemes developed in
[18] are inapplicable. However, it can be easily dealt with
by the proposed control scheme (9), where the control pa-
rameters can be chosen quite arbitrarily as

K0 = [2, 3], â(0) = 0, γ = 2, σ = 0.013

and
ψ(x, ẋ) = 2|x|+ |ẋ|+ |ẋ3|+ |x3|

The fault function used for simulation takes the form of

µ(t− tf ) =

{
1− e−υ(t−tf ), t ≥ tf

0, otherwise

where υ ∈ [0,∞) , as illustrated in Fig. 6. It is seen that
υ = 0 is the case where there is no subsystem fault and
υ →∞ corresponds to a jump fault.

Fig. 6 Fault function profile

Fig. 7 Angle of attack stabilization of aircraft with actuator/
subsystem faults and state dependent growth disturbances

The system response under the control of the proposed
strategy (9) is shown in Fig. 7 and the control parameter
â(t) is used is online updated as indicated in Fig. 8, where
υ = 2. One can observe that satisfactory control perfor-
mance is achieved with the proposed control scheme in the
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presence of faults from actuator and subsystem as well as
state dependent growth disturbance.

Fig. 8 Update of â(t)

4 Conclusion

This paper presents a method for fault-tolerant control
of a class of nonlinear systems with actuator and subsys-
tem failures coupled with external disturbances. The re-
sult presented here is an extension and improvement of the
work in [16, 17] in that it is more straightforward to design
and implement the proposed control scheme, and the faults
that can be coped with include both actuator and subsys-
tem failures. The effectiveness of the developed approach
is validated and confirmed by numerical simulations.
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