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PSO with Adaptive Mutation and Inertia

Weight and Its Application in Parameter

Estimation of Dynamic Systems
ALFI Alireza1

Abstract An important problem in engineering is the unknown parameters estimation in nonlinear systems. In this paper, a novel
adaptive particle swarm optimization (APSO) method is proposed to solve this problem. This work considers two new aspects, namely
an adaptive mutation mechanism and a dynamic inertia weight into the conventional particle swarm optimization (PSO) method.
These mechanisms are employed to enhance global search ability and to increase accuracy. First, three well-known benchmark
functions namely Griewank, Rosenbrock and Rastrigrin are utilized to test the ability of a search algorithm for identifying the
global optimum. The performance of the proposed APSO is compared with advanced algorithms such as a nonlinearly decreasing
weight PSO (NDWPSO) and a real-coded genetic algorithm (GA), in terms of parameter accuracy and convergence speed. It is
confirmed that the proposed APSO is more successful than other aforementioned algorithms. Finally, the feasibility of this algorithm
is demonstrated through estimating the parameters of two kinds of highly nonlinear systems as the case studies.
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In recent years, nonlinear systems have drawn much at-
tention to describe spatiotemporal phenomena in mechani-
cal, electrical and chemical systems. To better understand
these phenomena and to bring together experiment and
theory, much has been achieved to model these systems
with partial differential equations. Although information
about the physical properties for many of these systems is
available, normally not all dynamical parameters are known
and therefore, have to be estimated.

The least-squares method is a basic technique often used
for parameters estimation. It has been successfully used to
estimate the parameters in static and dynamical systems,
respectively[1]. But, the least-squares method is only suit-
able for the model structure of system having the property
of being linear in the parameters. Once the form of model
structure is not linear in the parameters, this approach may
be invalid. Heuristic algorithms especially with stochastic
search techniques seem to be a more hopeful approach and
provide a powerful means to solve this problem. They seem
to be a promising alternative to traditional techniques,
since 1) the objective function′s gradient is not required,
2) they are not sensitive to starting point, and 3) they usu-
ally do not get stuck into so called local optima. Because
of these, genetic algorithm (GA) was used for identification

of nonlinear systems[2−5].
Recently, particle swarm optimization (PSO) algorithm

has been becomes available and promising techniques for
real world optimization problems[6−7]. Compared to GA,
PSO takes less time for each function evaluation as it does
not use many of GA operators like mutation, crossover and
selection operator[8]. Due to the simple concept, easy im-
plementation and quick convergence, nowadays PSO has
gained much attention and wide applications in different
fields[9]. But only a couple of applications opted for PSO
in nonlinear parameter estimation[10−13]. Authors of these
papers showed that PSO is a feasible approach to parameter
estimation of nonlinear systems. In [10, 12], a conventional
PSO algorithm was used. In [11] a simple mutation without
adaptation mechanism is incorporated into PSO. Although
PSO has shown some important advances by providing high
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speed of convergence in specific problems, it exhibits some
critical shortages. First, it sometimes is easy to be trapped
in local optimum. Second, the convergence rate decreases
considerably in the later period of evolution; when reach-
ing a near optimal solution, the algorithm stops optimizing,
and thus the achieved accuracy of algorithm is limited[14].

Motivated by the aforementioned researches, the goal of
this paper is to present an adaptive particle swarm op-
timization (APSO) algorithm for unknown parameter es-
timation of nonlinear systems. Two novel modifications
are incorporated into the conventional PSO scheme. First,
an adaptive mutation mechanism is introduced to enhance
the global search ability and convergence speed of PSO. In
this mutation mechanism, when a particle is chosen to mu-
tate, a Gaussian random disturbance is added to its current
position. This disturbance has a variable step size which
dynamically decreases according to current best solution
fitness. Second, a dynamic inertia weight is introduced to
improve the accuracy of PSO. The inertia weigh is set as
a function of current best solution fitness. If the fitness of
current best solution does not improve significantly, the in-
ertia weight decreases slowly since it still needs to globally
explore the search space. On the other hand if the fitness of
current best solution improve significantly, it decreases fast
to facilitate finer local explorations because the algorithm
reaches a near optimum solution.

The results are compared to those obtained by real-coded
GA and nonlinearly decreasing weight PSO (NDWPSO). It
has been demonstrated that APSO has better performance
than GA and NDWPSO in solving the parameter estima-
tion problem of nonlinear systems. In the rest of this paper
whenever it is referred as “GA”, it means “real-coded GA”.

1 Nonlinear system estimation

If we do not have a priori knowledge about the real sys-
tem, then structure identification becomes a difficult prob-
lem and we have to select the structure by trial and error.
Fortunately, we know a great deal about the structures of
most engineering systems and industrial processes; usually
it is possible to derive a specific class of models that can
best describe the real system. As a result, the system iden-
tification problem is usually reduced to that of parameter
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estimation.
In order to explore the problem of parameter estimation

in this paper, the following n-dimensional nonlinear system
is considered:

Ẋ = F (X, X◦, θ) (1)

where X = [x1, x2, · · · , xn]T ∈ Rn is the state vectors, X◦
denotes the initial states, θ = [θ1, θ2, · · · , θn]T ∈ Rm is the
unknown parameters vector and F : Rn × Rm → Rn is
a given nonlinear vector function. In order to estimate the
unknown parameters in (1), an estimated model is defined
below:

˙̂
X = F (X̂, X◦, θ̂) (2)

where X̂ = [x̂1, x̂2, · · · , x̂n] ∈ Rn and θ̂ =

[θ̂1, θ̂2, · · · , θ̂n]T ∈ Rm are the estimated state vector and
the estimated parameter vector, respectively.

Since heuristic algorithms depend only on the objective
function to guide the search, it must be defined before these
algorithms are initialized. In this paper, the mean squared
errors (MSEs) between real and estimated responses for a
number of given samples are considered as fitness of esti-
mated model parameters. Hence, the objective function is
chosen as follows:

MSE =
1

N

N∑

k=1

e2 =
1

N

N∑

k=1

[X(k)− X̂(k)]2 (3)

where N is the sampling number and X(k) and X̂(k) are
real and estimated values at time k, respectively.

The contribution of this paper is to apply the proposed
APSO algorithm to minimizing the MSE value such that
the actual nonlinear system parameters are accurately esti-
mated. Fig. 1 presents a block diagram of nonlinear system
parameter estimation. Considering Fig. 1, the initial state
is given to both the real system and the estimated model.
Then outputs from the real system and its estimated model
are input to the optimization algorithm, where the objec-
tive function (MSE) will be calculated.

Fig. 1 The principle of parameter estimation for

nonlinear systems

2 PSO-based parameter estimation

2.1 Overview of PSO

PSO is an optimization algorithm simulating the social
behavior of flocks of birds. PSO is a population-based
search process where individuals initialized with a popu-
lation of random solutions, called as particles, are grouped

into a swarm. Each particle in the swarm represents a
candidate solution to the optimization problem, and if the
solution is made up of a set of variables, the particle can
correspondingly be a vector of variables.

In PSO, each particle is flown through the multidimen-
sional search space, adjusting its position in the search
space according to its momentum and both individual and
global memories. The particle therefore makes use of the
best position encountered by itself and that of its neighbors
to position itself toward an optimal solution. The fitness of
each particle can be evaluated according to the objective
function of the optimization problem. At each iteration,
the velocity of every particle will be calculated as follows:

vi(t + 1) =ω vi(t) + c1r1(pid − xi(t)) +

c2r2(pgd − xi(t)) (4)

where t is the current step number, ω is the inertia weight,
c1 and c2 are the acceleration constants, r1 and r2 are two
random numbers in the range [0,1], xi(t) is the current po-
sition of the particle, pid is the best one of the solutions
this particle has reached, and pgd is the best one of the so-
lutions all the particles have reached. After calculating the
velocity, the new position of every particle can be worked
out

xi(t + 1) = xi(t) + vi(t + 1) (5)

The PSO algorithm performs repeated applications of
the update equations above until a stopping criterion is
reached.

2.2 APSO

Although PSO has shown some important advances by
providing high speed of convergence in specific problems,
it does exhibit some shortages. It sometimes is easy to
be trapped in local optimum and the convergence rate de-
creases considerably in the later period of evolution[14].
Several approaches have been introduced to cope with these
deficiencies[15−25]. Among them, many approaches were at-
tempted to improve the performance of basic PSO by vari-
able inertia weight. The inertia weight controls the local
and global exploration capabilities of PSO. A large inertia
weight enables the PSO to explore globally, and a small
inertia weight enables it to exploit locally. Based on this,
a PSO with linearly decreasing weight was introduced to
balance the global exploration and the local exploitation
in [20]. Also, many approaches have been used the inertia

weight as a nonlinear function of iteratin[16, 18, 21].
Although, a good inertia weight adaptation can improve

the performance of PSO in terms of accuracy and conver-
gence speed, one can enhance the global search ability of
PSO by using an appropriate mutation mechanism as used
in other evolutionary algorithms. To gain the advantages
of mutation mechanism, some researchers applied the mu-
tation operator to PSO[15, 17, 19]. The PSO algorithm with
mutation operator not only has great advantages of con-
vergence property, but also can avoid the premature con-
vergence problem.

In this paper, to achieve the advantages of both iner-
tia weight and mutation mechanism, two modifications in-
cluding adaptive mutation mechanism and adaptive inertia
weight are introduced. Then, these aspects are combined in
the proposed adaptive particle swarm optimization (APSO)
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algorithm is proposed. In the following, these aspects are
described sorely.

2.2.1 The proposed adaptation of mutation mech-
anism

Considering a variable step size for mutation operator
which decreases as iteration goes on cannot be proper as
done previously[11, 15, 19] in the proposed mutation mech-
anism, when a particle is chosen to mutate, a Gaussian
random disturbance is added to it as follows:

xij = xij + M × βij (6)

where xij is the i-th component of the j-th particle, βij

is a random variable with Gaussian distribution with zero
mean and unit variance, and M is a variable step size which
dynamically decreases according to current best solution
fitness.

Since the initial population in an optimization problem
may locate far away from the real optimal solution, PSO is
very hard to succeed. So the proposed algorithm starts with
a big mutation step size to increase the chance of searching
new areas, in order to enhance the global search ability and
convergence speed of basic PSO. In contrast when current
best solution reaches a near optimum solution, a big step
size may make the population get away from the local con-
vergent solution and it can decrease the possibility of the
convergent accuracy. Hence, in this case a small step size
is used for finer local exploration around the current best
solution. As a result, the value of M is based on current
best solution fitness and defined in t-th iteration as follows:

Mt = xmax × tanh

[
1

α
× F (P t

gd)

]
(7)

where tanh(·) is an abbreviation for hyperbolic tangent and
F (P t

gd) is the fitness of current best solution in t-th itera-
tion. The parameter α needs to be pre-defined. The value
of α can set equal to the fitness of the best particle in the
initial population (α = F (P 1

gd)). In this case, the variable
step size M changes according to the rate of fitness improve-
ment of the best particle. According to (7), since F (P t

gd)
is positive, 0 ≤ tanh(·) ≤ 1 and it can be concluded that
0 ≤ M ≤ xmax. Notice that since tanh(·) is a monotonic
increasing function, it is clearly obvious that the bigger the
fitness of current best solution is, the bigger the mutation
step size is, and vice versa.

2.2.2 The Proposed Adaptation of Inertia Weight

Since the search process of PSO is nonlinear and highly
complicated, linearly and nonlinearly decreasing inertia
weight with no feedback taken from the current best so-
lution fitness cannot truly reflect the actual search process.
So in this paper, the inertia weigh is set as a function of
current best solution fitness in t-th iteration as follows:

ωt = 0.5

{
1 + tanh

[ 1

α
× F (P t

gd)
]}

(8)

It can be concluded that 0.5 ≤ ω ≤ 1. This causes that if
the fitness of current best solution does not improve signifi-
cantly, the inertia weight decreases slowly since it still needs
to globally explore the search space. On the other hand, if
the fitness of current best solution improves significantly,
it decreases fast to facilitate finer local exploration because

the algorithm reaches a near optimum solution. The main
objective is to achieve better solution accuracy.

APSO algorithm is used to find the best system param-
eter, which simulates the behavior of the dynamic system.
Each particle represents all parameters of the estimated
model. The flow chart of the above APSO algorithm for
system parameter estimation is shown in Fig. 2.

Fig. 2 The flow chart of APSO algorithm for

parameter estimation

3 Testing with benchmark problems

3.1 Benchmark functions

From the standard set of benchmark problems available
in the literature, three significant functions: one is uni-
modal (containing only one optimum) and the other two
are multimodal (containing many local optima, but only
one global optimum) are considered to verify and demon-
strate the effectiveness of the proposed APSO algorithm.
Three well-known benchmark functions with asymmetric
initial range settings namely Griewank, Rosenbrock and
Rastrigrin are adopted as the testing functions. The in-
formation of the chosen benchmark functions including the
dimensions, admissible ranges of variables and optima are
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summarized in Table 1. In the following, the characteristics
of these functions are briefly described.

The Griewank function has many widespread local min-
ima regularly distributed[26]. It is a continuous, multi-
modal, scalable, convex, and quadratic test function. It
is represented by

f1(x) =

n∑
i=1

(
x2

i

4 000

)
−

n∏
i=1

cos

(
xi√

i

)
+ 1 (9)

The Rosenbrock function has a significant interaction be-
tween some of the variables. The global minimum is inside
a long, narrow, parabolic-shaped flat valley[27]. Finding a
valley is trivial, however convergence to the global optimum
is difficult and hence this problem has been repeatedly used
in assessing the performance of optimization algorithms. It
is represented by

f2(x) =

n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] (10)

The Rastrigrin function is a fairly difficult problem due
to the large search space and large number of local optima.
The function is highly multimodal and nonlinear such that
the locations of the minima are regularly distributed[27]. It
is given by

f3(x) =

n∑
i=1

[x2
i − 10 cos(2πxi) + 10] (11)

In all benchmark functions, the global minimum is
fi(x

∗) = 0, where x∗ = 0 and i = 1, 2, 3.

3.2 Performance Measurement

To evaluate the algorithm in term of the search capa-
bility, the performance of APSO is compared with PSO,
NDWPSO, and GA using the test functions described in
Table 1. In NDWPSO, the inertia weight is adapted non-
linearly as follows[16]:

ωt = ωmin +

(
itermax − iter

itermax

)n

× (ωmax − ωmin) (12)

where itermax is the maximal number of iterations, and t is
the current number of iterations. So as iterations goes, ω
decreases nonlinearly from ωmax to ωmin and n is the nonlin-
ear modulation index. We illustrated that n = 1.2 showed
encouraging results for several benchmark problems. First
of all, in order to observe the impact of α on the perfor-
mance of APSO, different values of α, 20 particles and 1 000
maximum iterations for three benchmark functions with 10
dimensions were conducted. For each experimental setting,
20 runs of the algorithm were performed. Table 2 listed the
mean best fitness values averaged over 20 runs. It is clear
that the values in range [0.4, 0.7] for α can all lead to ac-
ceptable performance. Based on this, in present paper, α
is set to 0.6.

To compare the proposed APSO with other algorithms,
for each benchmark function, three dimensions were tested:
10, 20 and 30; correspondingly, the maximum numbers of
generations were set as 1 000, 1 500 and 2 000. In addition,
for investigation of the scalability of the algorithms, three
population sizes 20, 40 and 80 were used for each func-
tion with different dimensions. For each experimental set-
ting, 30 runs of the algorithm were performed. Moreover,
to perform fair comparison, the same computational effort
was used in all of PSO, NDWPSO and APSO. Thereby, in
both PSO and APSO, we set c1 = c2 = 2 and Vmax and

Table 1 Properties of the benchmark functions

Function Search space [xmin, xmax] Optimum point Modality

Griewank [−600, 600]n 0 multimodal

Rastrigrin [−5.12, 5.12]n 0 multimodal

Rosenbrock [−30, 30]n 0 unimodal

Table 2 The mean best fitness values with different values of α

α 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Griewank 0.1058 0.1040 0.0989 0.0952 0.0967 0.0955 0.0989 0.1067 0.1008 0.1055

MSE Rastrigrin 5.3145 5.1756 5.2457 5.1587 5.1667 5.1467 5.1708 5.1945 5.3063 5.2625

Rosenbrock 5.9832 5.9378 5.8856 5.8943 5.8526 5.9106 5.8427 5.8479 5.9822 6.0368

Table 3 Mean fitness values for Griewank function

Population size Dimension Generation PSO NDWPSO GA APSO

10 1 000 0.1543 0.1294 0.2253 0.0983

20 20 1 500 0.0636 0.0492 0.1432 0.0237

30 2 000 0.0597 0.0421 0.1053 0.0117

10 1 000 0.1483 0.1187 0.2161 0.0952

40 20 1 500 0.0608 0.0451 0.1296 0.0201

30 2 000 0.0496 0.0293 0.0994 0.0105

10 1 000 0.0972 0.0852 0.1745 0.0689

80 20 1 500 0.0594 0.0418 0.1247 0.0199

30 2 000 0.0361 0.0285 0.0863 0.0102
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Table 4 Mean fitness values for Rastrigrin function

Population size Dimension Generation PSO NDWPSO GA APSO

10 1 000 6.1057 5.7735 7.8546 5.1565

20 20 1 500 23.4572 20.6359 27.9632 16.0456

30 2 000 50.4518 48.9464 55.6473 42.2325

10 1 000 4.1565 3.8095 6.0784 2.9468

40 20 1 500 20.1457 19.0883 24.2374 15.3678

30 2 000 41.1568 39.8539 45.9746 33.7538

10 1 000 2.7325 2.5856 3.0744 2.0457

80 20 1 500 15.0343 14.9647 18.8538 10.0563

30 2 000 32.4578 30.9773 36.9556 25.3473

Table 5 Mean fitness values for Rosenbrock function

Population size Dimension Generation PSO NDWPSO GA APSO

10 1 000 25.3463 20.4258 32.4326 5.8467

20 20 1 500 74.1453 69.1346 88.3457 47.9842

30 2 000 142.3465 126.1235 176.4572 100.4528

10 1 000 22.916 16.1433 29.1276 4.5431

40 20 1 500 59.2419 52.2478 76.2085 38.3464

30 2 000 87.3837 90.7609 122.6792 72.5473

10 1 000 17.4744 14.3463 23.3467 4.1680

80 20 1 500 51.6443 43.6479 68.6724 27.9547

30 2 000 99.4563 74.6156 97.7245 69.0609

Table 6 Analysis results for the benchmark functions for dimension of 10

Griewank Rastrigrin Rosenbrock

Method Population size St.D. Population size St.D. Population size St.D.

20 0.0271 20 0.1973 20 4.1323

PSO 40 0.0168 40 0.1634 40 3.2472

80 0.0148 80 0.1632 80 3.1545

20 0.0248 20 0.1823 20 3.6832

NDWPSO 40 0.0174 40 0.1467 40 2.8573

80 0.0118 80 0.1568 80 2.7435

20 0.3473 20 0.2267 20 9.3247

GN 40 0.2659 40 0.2045 40 6.2466

80 0.1945 80 0.1846 80 6.9367

20 0.0054 20 0.1358 20 1.3471

APSO 40 0.0036 40 0.1064 40 1.2376

80 0.0029 80 0.1084 80 1.1450

Vmin were equal to the length of the search space[6, 22].
Moreover, in NDWPSO the inertia weight ω decreased non-
linearly from 0.9 to 0.4[16] and in APSO, ω was determined
using (8) as described in Section 3.2. Also, in GA, the
crossover probability Pc and the mutation probability Pm

were set to 0.8 and 0.1, respectively[28−29].

The performance measurement for the three functions is
listed in Tables 3∼ 6. The performance results are exhib-
ited in terms of the mean fitness values of the best particle
and the standard deviation (denoted by St.D.). From Ta-
bles 3 ∼ 6, it can be seen that the fitness value of the pro-
posed APSO algorithm is smaller than others across three
test functions. Comparative results shown in Table 6 indi-
cate that the proposed APSO has good global search abil-
ity. During almost every run, the APSO could find the

optimum of the three complex test functions. Ultimately,
from these tables, it is clearly obvious that the proposed
APSO algorithm outperforms other algorithms.

4 Case study
In this section, the proposed APSO algorithm is used

to identify parameters of two nonlinear systems used for
parameter estimation in [2, 10−11]. Those systems are dif-
ficult to describe because even though we could able to
obtain a feasible functional structure modeling the system,
they typically depend on some physical parameters which
are hard to be determined.

The aim is to avoid confusion between the results of
APSO and other algorithms, so only the results of NDW-
PSO which is the better than PSO in terms of convergence
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speed are compared, excluding the PSO results. The pa-
rameters were chosen based on values represented in Sec-
tion 4.2.

Example 1. An unstable nonlinear system is described
by[2]

x1(k + 1) = a1x1(k)x2(k), x1(0) = 1

x2(k + 1) = a2x
2
1(k) + u(k), x2(0) = 1

y(k) = a3x2(k)− a4x
2
1(k) (13)

In this example, the real system parameters of (13) are
assumed to be [a1, a2, a3, a4] = [0.5, 0.3, 1.8, 0.9]. In ad-
dition, the searching ranges are set as follows: 0 ≤ a1 ≤
2 , 0 ≤ a2 ≤ 2, 0 ≤ a3 ≤ 2 and 0 ≤ a4 ≤ 2

To do a fair comparison, the maximum generation and
population sizes are set to 150 and 50, respectively for
GA, NDWPSO and APSO. The optimization process is
repeated 20 times independently. The averages of these
results are provided in Table 7.

Figs. 3 ∼ 7 confirm the success of optimization process by
using APSO algorithm in comparison with the other algo-
rithms for the estimated parameters a1, a2, a3, a4 and ob-
jective function, respectively. These figures are considered
for a middle run of each algorithm. Moreover, to compare
the computational time of these algorithms, a threshold of
10−5 is considered as the stopping condition, in contrast to
a predefined number of generation. Then each algorithm
runs 20 times and the average of the elapsed time is con-
sidered as a criterion for computational time.

Table 8 illustrates the results obtained by APSO, ND-
WPSO and GA algorithms. The results indicate in how
many iterations and necessary time, the convergence of the
solution or success is met.

Fig. 3 Comparison of trajectories of parameter a1 for

a middle run

Fig. 4 Comparison of trajectories of parameter a2 for

a middle run

Fig. 5 Comparison of trajectories of parameter a3 for

a middle run

Fig. 6 Comparison of trajectories of parameter a4 for

a middle run

Fig. 7 Comparison of convergence of objective function for a

middle run in Example 1

Example 2. Lorenz chaotic system
A chaotic system is a nonlinear deterministic system and

its prominent characteristic is the sensitive dependence on
initial conditions. Due to the complexity and unpredictable
behavior of chaotic systems it is difficult to determine pa-
rameters of these systems. So a Lorenz system which is
a known chaotic system is considered to show the perfor-
mance of the proposed algorithm in parameter estimation
of chaotic nonlinear systems. The Lorenz system is de-
scribed by[14]

ẋ1 = θ1 (x2 − x1)

ẋ2 = θ2 x1 − x2 − x1x3

ẋ3 = x1x2 + θ3x3 (14)

where vector parameter θ = [θ1, θ2, θ3]
T =

[10, 28, 2.6667]Tmust be estimated. The searching ranges
are set as follows: 0 ≤ θ1 ≤ 20 , 0 ≤ θ2 ≤ 50, and
0 ≤ θ3 ≤ 5.
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Table 7 A comparison between using GA, NDWPSO and APSO for Example 1

a1 a2 a3 a4 MSE St.D. Elapsed time (s)

Real parameters 0.5000 0.3000 1.8000 0.9000 - - -

GA 0.4945 0.2991 1.7994 0.8885 7.05×10−3 6.85×10−1 11.3619

NDWPSO 0.5001 0.3002 1.8000 0.9002 5.60×10−11 5.45×10−8 3.7612

APSO 0.5000 0.3000 1.8000 0.9000 3.86×10−22 2.83×10−20 3.8367

Table 8 Iterations and time required by GA, NDWPSO and APSO algorithms for Example 1

Best result Average result Worst result

GA NDWPSO APSO GA NDWPSO APSO GA NDWPSO APSO

Iterations 178 95 41 211 119 48 302 133 56

Elapsed time (s) 8.89 2.45 1.08 10.62 3.12 1.26 5.05 3.46 1.47

Table 9 A comparison between using GA, NDWPSO and APSO for Example 2

θ1 θ2 θ3 MSE St.D. Elapsed time (s)

Real parameters 10.0000 28.0000 2.6667 - - -

GA 10.0377 27.9961 2.6603 8.02×10−4 4.61×10−2 14.9254

NDWPSO 10.0022 28.0035 2.6666 1.72×10−9 3.73×10−6 4.9136

APSO 10.0000 28.0000 2.6667 2.66×10−20 8.74×10−19 5.1135

Table 10 Iterations and time required by GA, NDWPSO and APSO algorithms for Example 2

Best result Average result Worst result

GA NDWPSO APSO GA NDWPSO APSO GA NDWPSO APSO

Iterations 191 114 57 232 135 66 345 157 79

Elapsed time (s) 9.59 3.02 1.51 11.58 3.55 1.77 17.15 4.11 3.96

According to (3), in this case, the objective function is
chosen as

MSE =
1

N

N∑

k=1

([x1(k)− x̂1(k)]2 +

[x2(k)− x̂2(k)]2 + [x3(k)− x̂3(k)]2) (15)

where N is the sampling number and x(k) and x̂(k) are real
and estimated values at time k, respectively.

The maximum generation and population sizes are set
to 200 and 50, respectively for GA, NDWPSO and APSO.
Table 9 lists the average results obtained by GA, NDWPSO
and APSO, where each algorithm is implemented 20 times
independently.

Figs. 8 ∼ 11 confirm the success of optimization process
by using APSO algorithm in comparison with GA and ND-
WPSO for the estimated parameters θ1, θ2, θ3 and objec-
tive function, respectively. These figures are considered for
a middle run of each algorithm. Notice that in order to
better show the difference of convergence speed for these
algorithms, Figs. 8∼ 11 are depicted from iteration 1 to it-
eration 80. To compare the computational time of the al-
gorithms, a threshold of 10−6 is considered as the stopping
condition, in contrast to a predefined number of genera-
tions. Then each algorithm runs 20 times and the average
of elapsed time is considered as a criterion for computa-
tional time. Table 10 illustrates the results obtained by
APSO, NDWPSO and GA algorithms.

From the above two examples, the results presented
demonstrate that a good optimal performance can be

achieved by the proposed APSO algorithm. From Tables 7
and 9, it can be seen that there is obviously difference be-
tween the different parameter estimation algorithms in the
MSE and standard deviation denoted by St.D. Then, it is
clearly apparent that more accurate and robust parameter
estimation can be implemented using APSO in comparison
to GA and NDWPSO for both nonlinear dynamical sys-
tems. In addition, as Figs. 3∼ 11 shown, the trajectories of
the estimated parameters asymptotically converge to their
actual values. Again, it is clearly obvious that APSO con-
verges much faster than GA and NDWPSO. Also, from
Tables 8 and 10, it is confirmed that the proposed algo-
rithm spends extremely fewer iterations and less compu-
tational time to reach a predefined threshold as compared
with other algorithms.

Fig. 8 Comparison of trajectories of parameter θ1 for

a middle run
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Fig. 9 Comparison of trajectories of parameter θ2 for

a middle run

Fig. 10 Comparison of trajectories of parameter θ3 for

a middle run

Fig. 11 Comparison of convergences of objective functions for

a middle run in Example 2

5 Conclusions

An adaptive particle swarm optimization (APSO) was
proposed by incorporating two novel modifications into the
conventional PSO. An adaptive mutation mechanism was
introduced to enhance the global search ability and conver-
gence speed of PSO. Idem, a dynamic inertia weight was ap-
plied to improve the accuracy of PSO. The proposed APSO
was introduced to solve the parameter estimation problem
for nonlinear systems. The simulation results depicted that
the proposed APSO has much better potential in terms of
solution accuracy and better convergence speed in compar-
ison with real coded GA and NDWPSO when applied to
system parameter estimation.
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