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Multiple Balance Strategies for Humanoid

Standing Control
XING Deng-Peng1 LIU Xu1

Abstract Full-state feedback parametric controllers are proposed for standing balance of humanoid robots in response to impulsive
and constant pushes. Multiple robot models are used to approach multiple strategies in human standing balance. For each model,
we design a parametric controller acting on each state variable and optimize controller parameters for different push sizes, directions,
and locations. The performance of each controller is shown in response to different external pushes. By comparing the capabilities
of handling disturbances in each strategy, the contributions of every joint to standing balance are also explored.
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Research in balancing a robot is fundamental for the sta-
bility of humanoid robot and is also valuable to the robust
motion planning in complex environment. Such investiga-
tions also facilitate to give a deep understanding of how
human reacts to disturbances and pave the way to apply-
ing such ideas in helping elders and disables.

Four strategies are revealed of human to compensate for
perturbations[1]: an ankle strategy, behaving like an in-
verted pendulum for small perturbations; a hip strategy,
employing ankle and hip actuators when the disturbance
increases; a squat strategy, to flex knees and hips to lower
the center of mass (CoM); and a step strategy, if the above
strategies are not sufficient to keep balance. To imitate
these behaviors, Atkeson et al.[2] use multiple strategies for
standing balance arising from the same optimization cri-
terion. Usually the control policies are discussed treating
arms as a part of torso, neglecting the balance roles of up-
per limbs. In fact, arm swinging is important in reacting
to sagittal disturbances and is also a common behavior for
human perturbed standing balance. This paper focuses on
the ankle, hip, squat, and arm swinging strategies without
stepping, and uses them to approach human behaviors.

Many policies have been proposed in perturbed stand-
ing balance. Integral balance controller is proposed by us-
ing linear inverted pendulum model (LIPM) to allow hu-

manoid to recover from large disturbances[3]. A biome-
chanically motivated two-phase strategy, reflex and recov-
ery phases, is presented for robust balance maintenance
under disturbance[4]. An approach using random sampling
state in dynamic programming is investigated in several
simulated robotics problems[5]. By using differential dy-
namic programming (DDP), a trajectory library of opti-
mized control policy is generated for standing balance on
adaptive grid of initial conditions[6]. Kuo uses optimal con-
trol and state estimation to explain selection of control
strategies used by humans, in response to small pertur-
bations to stable upright balance[7]. A linearized model
and linear quadratic regulators (LQR) are used for opti-

mization. Park et al.[8] test human postural responses in
terms of a feedback control system with feedback gains,
which are gradually scaled with perturbation size and can
accommodate biomechanical constraints.

Compared with other methods, parametric controllers
can produce feedback responses with a small number of pa-
rameters, with little need for storage of possible postures
and pushes; with less computational cost, these controllers
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can be applied to complex models and problems. Stand-
ing balance involves geometry constraints and a set of gains
might not handle all possible pushes. This paper is engaged
in optimizing the postural feedback parameters to external
perturbations with a variety of sizes, locations, and direc-
tions.

Most research focuses on instantaneous perturbations
and designs various controllers in response to the impulses
and recovering to the upright state. While, in reality,
some perturbations may act for a period, during which the
push size, direction, and location may also change. Of-
ten policies for impulses cannot handle constant pushes,
so the controllers for both instantaneous and constant dis-
turbances are needed. This paper uses multiple models to
approach multiple strategies in standing balance, designs
feedback controllers which act on each state error for im-
pulsive and constant pushes, respectively, uses an optimiza-
tion approach to access the optimal parametric controllers
of each model for each push sizes, locations, and directions,
and compares the performance of each strategy to explore
the contributions of each joint in standing balance.

1 The one-link model

With small external pushes, human usually takes the an-
kle strategy for balance, fixing other joints and actuating
the ankles. This study uses a one-link inverted pendulum
model, as shown in Fig. 1, with an actuator at the ankle
joint to approach the ankle strategy. The model is fac-
ing to the right, with 1.314m height and 48.97 kg weight.
We assume that when the center of pressure is at the cen-
ter of the foot. The joint limit is −0.52 < θa < 0.79 rad,
with θa = 0 standing for the upright state, and the torque
is bounded by ±50N·m to prevent the foot from tilting.
Robot parameters in this paper are taken from a prelimi-
nary design of a planned humanoid. We use this example
to describe our optimization approach.

1.1 Balance controller

Define the state as ankle angle and angular velocity, and
the robot dynamics are

ẋxx = f (xxx, τ, F, r) (1)

where xxx = (θa, θ̇a)T is the state vector, τ = τa represents
the ankle torque, and F and r are the push size and lo-
cation. We assume no slipping or other change of contact
state during the perturbation.

Consider a feedback controller which acts on the error in
each state variable

τa = −k1∆θa − k2∆θ̇a (2)
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where ∆θa = θa − θa d and ∆θ̇a = θ̇a − θ̇a d represent the
error between actual state and the desired state for the
current push. The torque output from the controller is
limited as described earlier.

Fig. 1 The one-link robot model

1.2 Optimization approach

The one step optimization cost function is defined as a
weighted sum of the squared state error and the joint torque
magnitude

L = T (∆θ2
a + ∆θ̇2

a) + 0.02Tτ2
a (3)

where T is the time step of the simulation (0.01 s) and
0.02 weights the torque penalty relative to the state error.
The total cost is the sum of the one step cost function over
time. We use this cost function as an optimization criterion
to find the minimum total cost for each push, optimizing
the parameters of the feedback controller.

The controller parameters are optimized for both impul-
sive and constant pushes, respectively, with a number of
sizes and locations. All pushes are assumed horizontal, as
vertical pushes have little effect. An impulsive push exists
for a short period of time (0.1 s) and upright state is the
desired state; with the given push location, we choose as
simulation perturbations a set of push sizes which are be-
tween zero and the given magnitude in optimization, rather
than optimizing from one push size. For a constant push,
based on each push size and location, we first calculate
an equilibrium state, which is the posture where the robot
leans into the push and the torque at the ankle is zero. We
use this equilibrium state as the desired state, rather than
the posture of standing straight up. Instead of optimizing
from one initial state of standing vertically, we choose a set
of initial states which lie in the range between the state
of straight up and the desired state. For this strategy, the
equilibrium state is

θa d = arctan
Frl1

m1gl1cm
(4)

SNOPT[9] is a general purpose system for constrained
optimization, using sequential quadratic programming
(SQP). We employ it to optimize controller parameters for
each push, using the LQR gain for standing upright as ini-
tial values for our controller and optimizing the next push
size with the optimized gains of the previous case. For
an impulsive push, with the given location, we choose five
pushes as the simulation perturbations including the given
magnitude. For a constant push, with the given size and
location, we choose five initial states for each joint includ-
ing the posture where the robot stands straight. The cost
of the trajectory from each push size (or initial state) is
combined, with a penalty added for cases violating state
constraints. Optimized parameters can be generated for a

wide range of pushes. The robot looks up the desired state
and feedback gains based on the push force and location.

1.3 Control scheme

Fig. 2 shows the diagram of balance control in robot to
respond to external disturbances, by looking into the push
table and finding the best entry. Online push estimation
continuously observes the robot state to estimate the cur-
rent push information. Since the robot dynamics model
is nonlinear, an extended Kalman filter[10] is employed to
use the current state and torque to estimate the push size
and location. The desired state and feedback gains are de-
termined by looking into the push table and finding the
appropriate entry according to the estimated push infor-
mation. For the impulsive pushes, the controller chosen for
the last detected push is applied for a period of time. With
the state error and feedback gains, joint torques are then
generated by the controller and limited.

Fig. 2 Diagram of feedback balance control

1.4 Results

Fig. 3 shows the angle trajectories and the corresponding
torques of the proposed controller for a range of impulsive
push sizes located at the head. Angles and torques roughly
scale with push magnitude, except for the torque saturation
to larger perturbations. The joints initially grow in nega-
tive direction and approach to zero after reaching the max-
imum negative displacements. The torques initially satu-
rate at 50N·m if that torque is reached, and then smoothly
decrease to zero. The maximum handling ability of the con-
troller to impulsive perturbations is 10N·s, and for higher
impulses the robot will fall down.

(a) Ankle angle (b) Ankle torque

Fig. 3 Angle trajectories for a range of impulsive perturbation
sizes at the head (2.5, 5, 8, 10N·s)

Fig. 4 shows the angle trajectories and the corresponding
torques for a set of constant push sizes at the head. With
the small push sizes, angles gradually scale with push mag-
nitude, quickly reaching to the corresponding equilibrium
states. With the large push sizes, the robot initially takes
small displacements and gradually approaches to the de-
sired states. As the push grows larger, the initial ankle
displacement becomes smaller and the torque saturation
persists longer. For the constant push of 38N and higher
at the head, the controller falls down.
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(a) Ankle angle (b) Ankle torque

Fig. 4 Angle trajectories for a range of constant perturbation
sizes at the head (10, 20, 30, 35, 38N)

2 The two-link model

For bigger pushes, simple ankle strategy is not suitable
for balance and human gets support from hip joint, taking
advantage of large hip flexing. The two-link model simu-
lates this hip strategy, as shown in Fig. 5. The upper link
is the torso, with 0.661m height and 29.5 kg weight, and
the lower link is the leg, with 0.653 m height and 19.5 kg
weight. The hip angle limit is −2.18 < θh < 0.52 rad and
its torque is bounded by ±157 N·m. The angle limit and
torque boundary of the ankle is the same as in the previous
model.

Fig. 5 The two-link robot model

2.1 Controller and optimization

Define the state as ankle and hip angles and angular
velocities, and the feedback controller acts on state errors

τa = −k1∆θa − k2∆θh − k3∆θ̇a − k4∆θ̇h

τh = −k5∆θa − k6∆θh − k7∆θ̇a − k8∆θ̇h

(5)

where

∆θa = θa − θa d, ∆θh = θh − θh d

∆θ̇a = θ̇a − θ̇a d, ∆θ̇h = θ̇h − θ̇h d

represent the error between ankle and hip actual state and
the desired state for the current push.

Define the one step optimization cost function of two-link
model as

L = T (∆θ2
a + ∆θ2

h + ∆θ̇2
a + ∆θ̇2

h) + 0.02T (τ2
a + τ2

h) (6)

where T is the time step of the simulation (0.01 s) and 0.02
weights the torque penalty relative to the state error. We
use the same optimization approach to acquire the con-
troller parameters, according to different push sizes and
locations, as described in the above strategy.

2.2 Results

Fig. 6 shows the angle trajectories and the corresponding
torques of the proposed controller for a range of impulsive
push sizes located at the head. Angles and torques are also
roughly scaled with push magnitude, except ankle torques
saturate for larger perturbations. The hip angle is entirely
negative, reaching the desired state after reaching the max-
imum displacement, and the hip torques smoothly decrease
from positive to zero for the small perturbations, whereas
initially grow and then decline to zero for the large pertur-
bations. Different from the one-link model behaviors, the
ankle joint of hip strategy initially grows in positive direc-
tion, changes to negative shortly after the hip reaches its
maximum, and returns back to zero. With the help of large
hip flexing, hip strategy extends the impulsive handling to
11N·s, where hip joint is close to its negative limit.

(a) Ankle angle (b) Hip angle

(c) Ankle torque (d) Hip torque

Fig. 6 Angle and torque trajectories for a range of impulsive
perturbation sizes at the head (2.5, 5, 8, 10, 11N·s)

Fig. 7 shows the angle trajectories and the corresponding
torques for a set of constant push sizes at the head. With
the small push sizes, ankle and hip angles gradually scale
with push magnitude, reaching to the corresponding equi-
librium states; ankle and hip torques smoothly decrease to
zero, with ankle saturation. With the large push sizes, hip
angle responds negatively at first and moves to the posi-
tive desired posture; compared with the one-link trajecto-
ries, the ankle reacts initially to a big displacement and
moves smoothly to the corresponding desired state; the an-
kle torque saturation persists longer. The maximum dis-
placements of the hip negative angle and the corresponding
ankle angle are proportional to the push size. For pertur-
bations of 47 N and higher at the head, the robot can also
keep balance, but the equilibrium state is out of the joint
limit.

We have designed an LQR controller that optimizes the
same criterion on the two link model. For small pertur-
bations, the performance of LQR controller is almost the
same as the proposed controller; for large push sizes, the
behaviors exhibit much more differences. Fig. 8 shows the
trajectory comparison between the LQR and the proposed
controllers with a range of pushes at the head (the dashed
lines stand for the trajectories of the LQR controller, and
the solid lines for the proposed controller). The horizontal
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and vertical axes are ankle and hip angles, respectively. In
response to perturbations, the robot starts from the initial
state x0, the straight up posture, progressing to the desired
states over each time step. Starting from 20N push, the
trajectories of controllers begin to show differences, which
become more significant as the push size increases. The
trajectories of the LQR controller have the same trend as
before, which starts with negative ankle angles and posi-
tive hip angles and moves to the equilibrium state after the
ankle reaches its maximum displacement. For 35 N, the
largest hip angle is closed to its state constraint. The tra-
jectories of the proposed controller present more changes:
for smaller pushes, it has a similar trend as the LQR con-
troller while exhibiting less joint displacements; for bigger
pushes, the robot moves in an opposite direction, taking
advantage of large hip flexing. For the constant pushes at
the head, the LQR controller can handle [−35N, 35 N] and
falls down for higher perturbations, whereas our controller
can extend to [−40N, 46 N] and even can keep the robot
stable for higher perturbations although the equilibrium
states are outside the joint limits.

(a) Ankle angle (b) Hip angle

(c) Ankle torque (d) Hip torque

Fig. 7 Angle and torque trajectories for a range of constant
perturbation sizes at the head (10, 20, 30, 35, 40N)

Fig. 8 Joint angle trajectories of the LQR and the proposed
controllers for a series of constant pushes at

the head (10, 20, 30, 35 N)

3 The three-link model

With increasing pushes, human employs the squat strat-
egy to lower the CoM, by actuating the knee joints. The
three-link model is used here to approach this squat strat-
egy, as shown in Fig. 9. The leg is divided into the thigh,
0.33m high and 13.7 kg weight, and the shin, 0.33 me-
ters high and 5.78 kg weight. The knee joint is limited as
−0.01 < θk < 1.87 rad and the torque bound is ±245N·m.
The small negative knee angle limit is used to expand the
optimization region. The angle limits and torque bound-
aries of other joints are the same as described before.

Fig. 9 The three-link robot model

Define the state as ankle, knee, and hip angles and an-
gular velocities, and a feedback controller is considered as
acting on the each state error:

τa = −k1∆θa − k2∆θk − · · ·
τk = −k7∆θa − k8∆θk − · · ·
τh = −k13∆θa − k14∆θk − · · ·

(7)

where ∆θi = θi−θi d and ∆θ̇i = θ̇i−θ̇i d represent the error
between ankle, knee, and hip actual state and the desired
state for the current push. The torque outputs from the
controller are limited.

The one step optimization cost function of the three-link
model is defined as

L = T (∆θ2
a + ∆θ2

k + ∆θ2
h + ∆θ̇2

a + ∆θ̇2
k +

∆θ̇2
h) + 0.02 T (τ2

a + τ2
k + τ2

h)

where T is the time step of the simulation (0.01 s) and 0.02
weights the torque penalty relative to the state error. The
same optimization approach in the ankle strategy is also
applied here to obtain the parameters.

Fig. 10 shows the angle trajectories for a set of constant
push sizes at the head. The angles are roughly scaled with
the push magnitude. Knee angles firstly increase to pos-
itive values and then approach to the small equilibrium
states; compared with the two-link model, hip angles have
the same trajectory trend and ankle angles are different:
decrease to negative displacements and move back to pos-
itive desired states. The maximum push handling of the
squat strategy is 14N·s for the impulse and 46N for the
constant push.
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(a) Ankle angle (b) Knee angle

(c) Hip angle

Fig. 10 Angle trajectories for a range of constant perturbation
sizes at the head (10, 20, 30, 40, 45 N)

4 The four-link model

Without taking a step, the arm swinging strategy helps
people dealing with the biggest possible disturbances in
the sagittal plane. It uses appropriate arm swinging mo-
tion with adequate squatting postures to balance external
perturbations. We use a four-link model, including ankle,
knee, hip, and shoulder joints shown in Fig. 11, to explore
this more complex and human-like strategy. The arm is
separated from the torso, with 0.67m high and 8.54 kg
weight; the torso changes to 20.96 kg weight and the lo-
cation of CoM also changes. The leg parameters are the
same as three-link model. The shoulder torque limit is
±150N·m.

Define the state as each angle and angular velocity, and
a feedback controller is considered as acting on the each
state error:

τa = −k1∆θa − k2∆θk − · · ·
τk = −k9∆θa − k10∆θk − · · ·
τh = −k17∆θa − k18∆θk − · · ·
τs = −k25∆θa − k26∆θk − · · ·

(8)

where ∆θi = θi − θi d and ∆θ̇i = θ̇i − θ̇i d represent the
error between ankle, knee, hip, and shoulder actual states
and the desired states for the current push.

The one step optimization cost function is defined as a
weighted sum of the squared state error and on the joint
torque

L = T (∆θ2
a + ∆θ2

k + ∆θ2
h + ∆θ2

s + ∆θ̇2
a + ∆θ̇2

k +

∆θ̇2
h + ∆θ̇2

s) + 0.02 T (τ2
a + τ2

k + τ2
h + τ2

s ) (9)

where T is the time step of the simulation (0.01 s) and 0.02
weights the torque penalty relative to the state error. We
employ the same optimization approach for both impulsive
and constant pushes.

Fig. 11 The four-link robot model

(a) Ankle angle (b) Knee angle

(c) Hip angle (d) Shoulder angle

Fig. 12 Angle trajectories for a range of constant perturbation
sizes (10, 20, 30, 40, 50, 60N)

Fig. 12 shows the angle trajectories for a set of constant
push sizes at the head. For small pushes, shoulder angles
gradually direct to the negative desired states; for large
pushes, the arm moves to large negative displacements and
then approaches to the desired positions. The other joints
have the same trends as the three-link model behaviors,
except for different magnitudes. Compared with the squat
strategy, the arm swinging policy can handle much larger
push sizes.

5 Discussions

We have described the trajectory responses of each model
and compared the joint behaviors among each strategy. We
compare the maximum push handling of optimized para-
metric controllers for each strategy, with push location at
the head, to explore the significance of each joint. Table
1 shows the possible impulsive and constant pushes to the
right of each model. With one actuator at the ankle, the
one-link model can handle up to the 38N constant push
and the 10N·s impulse. For bigger pushes, the robot will
fall down. Adding the hip joint, the hip strategy can extend
the maximum push handling to the 12N·s impulse and the
46 N constant push, by taking advantage of large hip flex-
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ing. With contributions of the knee joint, the squat strat-
egy has little effect on the constant push case but expands
the impulse handling region to the 14N·s, showing the in-
fluence of lowering the CoM. For larger constant pushes,
the hip strategy and squat strategy can also keep robot
stable, but the desired state is out of the joint limit. Due
to the arm swinging compensation, the four-link model can
handle up to the 19 N·s impulse and the 100 N constant
push. With the arm separated from the torso and the ver-
tical desired state of the shoulder joint for constant pushes,
the four-link model can reach the desired state for large
pushes without any feedforward torques.

Table 1 The maximum pushes of optimized
controller for each model

Push types One-link Two-link Three-link Four-link

Impulsive 10N·s 12N·s 14N·s 19N·s
Constant 38N 46N 46N 100N

From Table 1 and the above analysis, every joint con-
tributes in handling external disturbance. Hip joints
change the trajectory of the CoM by varying the relative
posture between the upper and lower bodies, and the large
forward hip flexing improves the handling capability of the
hip strategy. Knees lower the CoM and their big back-
ward bending expands the handling of instantaneous dis-
turbances. The addition of shoulder joints separates arms
from the torso, and balances bigger perturbations by ade-
quately swinging arms to generate reverse moments. For
even bigger pushes which the arm swinging strategy cannot
handle, the robot (human) will have to take a step. It coin-
cides with the observation of human′s responses to distur-
bances: ankles apply torque to the ground; hips and arms
generate horizonal ground forces; knees and hips squat[2].
The above analysis and the trajectory comparison between
different models show that in standing balance arms have
a significant effect, enhancing system stability and increas-
ing stability margin, and should not be ignored simply as
a mass balance.

6 Conclusions and future work

In this paper, full state feedback parametric controllers
in the sagittal plane are designed for standing balance in
response to both impulsive and constant pushes. Multiple
models are used to approach multiple balance strategies.
SNOPT is used to optimize the parametric controllers for
different push sizes, locations, and directions. The perfor-
mance of each strategy is shown with optimized parametric
controllers, and we also illustrate the roles of ankle, knee,
hip and shoulder joints in standing balance.

In future, this work will be extended to test the results
on a robot platform, which needs to deal with imperfect
sensor information and a compliant floor. To compare with
human behaviors is another task; we will also explore the
balance strategy with stepping as a possibility.
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