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Robust Stabilization of Nonholonomic Chained Form

Systems with Uncertainties
LIANG Zhen-Ying1, 2 WANG Chao-Li3

Abstract A summary of recent developments concerning robust stabilization problems for the nonholonomic chained form systems
with uncertainties is provided. Firstly, various models, main approaches, and results over past ten years for the uncertain chained
form systems are presented. Then, several new exciting uncertain chained form models of special interest are proposed for the
nonholonomic wheeled mobile robots. They are obtained by using the state and input transformations based on the visual servoing
feedback. Finally, the novel robust regulation controllers are addressed for some new uncertain chained models by using two-steps
technology, visual feedback, state-scaling and switching strategy. It is expected that this investigation will provide a good introduction
about the development of robust stabilization for uncertain chained form systems.
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The term “nonholonomic system” has been widely ac-
cepted as “Lagrange system with linear constraints be-
ing non-integrable”. There is an extensive list of re-
search papers devoted to the study of stability of nonholo-
nomic systems[1−17]. Mobile robots with velocities con-
straints are well-known nonholonomic nonlinear mechan-
ical systems[18]. As explained and illustrated in [19−20]
and references therein, many systems with nonholonomic
constraints on velocities can be transformed, either locally
or globally, to chained (form) systems by using coordinate
and state-feedback transformations. Therefore, the mod-
els of nonholonomic wheeled mobile robots (NWMR) can

be transformed into chained forms[11, 19−21]. Researchers
have been attracted to search for an array of new con-
trol strategies around the important nonholonomic chained
models[8−17]. However, in the control of nonholonomic sys-
tems, it is usually assumed that the robot states are avail-
able using sensor measurements. But in practice, some
ideal conditions cannot be satisfied. There exist uncertain-
ties in the nonholonomic systems[22−51] such as possible
modeling errors, unknown parameters[22−27], external dis-
turbances, uncertainties in the kinematic models, mechan-
ical limitations and so on. For instance, there are unmod-
elled dynamics with small enough magnitude in the non-
linear chained systems in [29]. A dynamic nonholonomic
mobile cart with unknown geometric and inertia parame-
ters was considered in [40]. In this paper, we will mainly
discuss the nonholonomic chained systems with uncertain-
ties (uncertain chained systems).

For the stabilization of uncertain chained systems, many
control models and strategies have been developed[28−51].
In [28], a global adaptive output feedback control strat-
egy was presented for a class of nonholonomic systems in
generalized chained form with drift nonlinearity and un-
known virtual control parameters. Adaptive technology is
an important method for the stabilization of the kinematic
systems with uncertainties. The control design in [30] was
applicable to solve the adaptive regulation of the parking
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problem of the robot in the presence of angle measurement
errors. An interesting hybrid feedback algorithm based on
Morse′s pioneering work in supervisory adaptive control
was presented to globally asymptotically stabilize a wheeled
mobile robot with parametric uncertainty[31]. In [32−35]
and some references therein, adaptive global stabilization
of nonholonomic systems with strong nonlinear drifts were
investigated by using input-to-state scaling technology and
adaptive state feedback control. Some new adaptive out-
put feedback switching control strategies with time varying
matrix observer, state estimator, or parametric estimator
had been proposed[34, 37−38]. Exponential convergence is
a desired performance for practical applications. The ex-
ponentially stabilizing and regulating problems have been
investigated[40−43] for classes of uncertain chained systems
in recent ten years. In [40], a smooth time-varying con-
trol scheme was developed, guaranteeing the convergence
of the state variables to the desired set point exponentially
despite unknown parameters. In [41], the globally expo-
nentially converging robust dynamic output feedback law
was proposed in perturbed chained form and with uncertain
drift nonlinearity. This class of uncertain chained systems
was motivated by the robust redesign of low-dimensional
nonholonomic mechanical systems. A kind of exponen-
tial stabilization feedback control laws, or globally expo-
nentially converging robust dynamic output feedback laws
were obtained[42−43] by the use of switching algorithm and
the input/state scaling. Finite time stabilization for an
uncertain chained system was discussed in [44]. A novel

switching control strategy[44] was proposed with the help of
homogeneity, time-rescaling, and Lyapunov-based method.

Visual feedback[52−58] is also an important approach to
improve the control performance of manipulators in the
control procedure since it mimics the human sense of vi-
sion and allows operation on the basis of non-contact mea-
surement and an unstructured environment. The adaptive
tracking controller via visual servoing was developed for
a mobile robot when the camera is onboard[53]. If a mo-
bile robot with nonholonomic constraints is equipped with
uncalibrated camera, we find that, uncertain kinematic sys-
tems in image plane can be obtained and they can also be
transformed into chained systems with uncalibrated param-
eters. Therefore, several exciting new uncertain chained
models for NWMR can be deduced by using coordinate
and input transformations. They will be presented in Ex-
ample 2 and Section 3. It is of interest to note that the
models are different from the uncertain chained systems
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mentioned above. The uncertain nonlinearities do not sat-
isfy triangularity conditions (see Subsection 2.2.1). In order
to stabilize the uncertain chained systems, the equivalent
uncertain system for type (2, 0) robot[18] was investigated

at first[45−48]. Then, the robust regulation and tracking
problems were solved for this mobile robot. Further, ro-
bust stabilizing controllers[49−50] are designed for uncertain
chained systems of type (1, 1) and type (1, 2) robots[18] in
particular case.

The main contribution of this paper is threefold. Firstly,
we introduce the developments of robustly stabilizing
classes of uncertain chained systems. The uncertain
chained models, approaches, and main results over past
ten years are presented. Secondly, based on visual servo-
ing feedback, a series of new uncertain chained models and
several general uncertain chained models are proposed by
using the state and input transformations. They are differ-
ent from those models studied in the past years. Finally,
the novel time-varying controllers are presented to stabilize
the uncertain chained systems by exploiting a new two-step
technique or using switching scheme for type (2, 0), type
(1, 1) and type (1, 2) robots.

The rest paper is organized as follows. In Section 1,
two motivating practical examples are given for the uncer-
tain chained models. Section 2 addresses a few important
uncertain chained models, schemes and some results which
have been proposed over past decade. In Section 3, the spe-
cial new exciting nonholonomic uncertain chained models
and several new general uncertain chained models are pre-
sented for NWMR. Section 4 addresses novel time-varying
controllers to stabilize the uncertain chained systems for
three types of robots. Conclusions and future work are
presented in the last section.

1 Examples

In practice, there are many interesting motivating exam-
ples which stimulate researchers to expand them into broad
classes and further investigated them. In this section, we
introduce two nonholonomic kinematic examples with un-
certainties.

1.1 Example 1

A simple tricycle-type mobile robot (see Fig. 1) with non-
holonomic constraints on the linear velocity has often been
used as a benchmark example in nonholonomic control sys-
tems design[2, 41]. This robot is called type (2, 0) robot. It
has two fixed front wheels with one axis and a rear cas-
tor wheel which prevents the robot from tipping over as it
moves on a plane. The nonholonomic constraint is defined
by

Fig. 1 Tricycle-type mobile robot

ẋ sin θ − ẏ cos θ = 0

where (x, y) denotes the position P of the center of mass,
which is also located in the middle of the axis of the two
front wheels, θ is the angle between the L1 axis and the
X1 axis with a positive anticlockwise direction. Using this
formula, the kinematics of the robot can be modeled by the
following differential equations[2]





ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(1)

where v is the forward velocity while ω is the angular ve-
locity of the robot.

For (1), by taking the following state and input trans-
formation 




x0 = x
x1 = y
x2 = tan θ
u0 = v cos θ
u1 = (sec θ)2ω

we obtain 



ẋ0 = u0

ẋ1 = x2u0

ẋ2 = u1

(2)

System (2) is so-called canonical chained form with three-
order and two control inputs. However, it only represents
the modeling of the robot in the ideal case. In [31], Hes-
panha and his co-authors addressed the parking problem
for a mobile robot of the unicycle type in the presence of
parametric uncertainties.





ẋ = p∗1v cos θ
ẏ = p∗1v sin θ

θ̇ = p∗2ω
(3)

where p∗1 and p∗2 are (unknown) positive parameters deter-
mined by the radius of the front wheels and the distance
between them. Taking the following change of coordinates
and feedback





x0 = θ
x1 = x sin θ − y cos θ
x2 = x cos θ + y sin θ
u0 = ω
u1 = v

system (3) can be transformed into




ẋ0 = p∗2u0

ẋ1 = p∗2x2u0

ẋ2 = p∗1u1 − p∗2x1u0

(4)

comparing (2) with (4), the first terms on the right side
of corresponding equations are identical except the un-
known parameters p∗1 and p∗2. So, system (4) is an uncertain
chained system.

1.2 Example 2

The second interesting example is from [45, 53]. In Fig. 2,
it is assumed that a pinhole camera is fixed to the ceiling.
The mobile robot mentioned in Example 1 is under the
camera. There are three coordinate frames, namely the in-
ertial frame X-Y -Z, the camera frame x-y-z, and the image
frame u-o1-v. C is the intersection point of the optical axis
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of the camera with the X-Y plane. Its coordinate relative
to the X-Y plane is (cx, cy). The coordinate of the original
point of the camera frame with respect to the image frame
is defined by (Oc1, Oc2). (x, y) is the coordinate of the mass
center P of the robot with respect to the X-Y plane. Sup-
pose that (xm, ym) is the coordinate of (x, y) relative to the
image frame. The pinhole camera model yields
[

xm

ym

]
=

[
α1 0
0 α2

]
R

[[
x
y

]
−

[
cx

cy

]]
+

[
Oc1

Oc2

]

(5)

where α1, α2 are constants[53], which are dependent on the
depth information, focal length, and scalar factors along
the u axis and v axis, respectively.

R =

[
cos θ0 sin θ0

− sin θ0 cos θ0

]

where θ0 denotes the angle between the u axis and the X
axis with a positive anticlockwise orientation.

Fig. 2 Wheeled mobile robots with monocular camera

Then, we have
[

ẋm

ẏm

]
=

[
α1 0
0 α2

] [
cos θ0 sin θ0

− sin θ0 cos θ0

] [
ẋ
ẏ

]
(6)

Considering the mobile robot described by (1) with monoc-
ular camera, the kinematic model in the image frame is




ẋm

ẏm

θ̇


 =




α1v cos(θ − θ0)
α2v sin(θ − θ0)

ω


 (7)

Taking the following state and input transformation





x0 = xm

x1 = ym

x2 = tan θ
u0 = v cos θ
u1 = (sec θ)2ω

we obtain the uncertain chained system




ẋ0 = (α1 cos θ0)u0 + (α1 sin θ0)x2u0

ẋ1 = (α2 cos θ0)x2u0 − (α2 sin θ0)u0

ẋ2 = u1

(8)

where α1, α2, and θ0 are three unknown parameters (in
practice, they are usually uncalibrated). By using the same
methods, a series of new exciting uncertain chained mod-
els about NWMR can be obtained, which are presented in
Section 3 in this paper.

2 Control models and methodologies
for uncertain chained systems

As indicated in introduction, many researchers have
been investigating the stabilization problems for uncertain
chained systems. In this section, we will present the im-
portant classes of uncertain chained models and the main
control methodologies about adaptive stabilization, expo-
nential stabilization, and finite settling time stabilization
developed in the past ten years.

2.1 Adaptive stabilization

In this subsection, the main results of adaptive state
feedback control[31−35] and adaptive output feedback
control[38] for different classes of uncertain chained systems
are presented.

2.1.1 Adaptive state feedback stabilization

In 2002, the following perturbed canonical nonholonomic
system was studied by Do et al.[32]





ẋ0 = u0 + ϕ0(x0)
Tθ

ẋi = u0xi+1 + ϕi(x0, u0, x1, · · · , xi)
Tθ, 1 ≤ i ≤ n− 1

ẋn = u1 + ϕn(x0, u0, x)Tθ
(9)

where ϕ0(x0) ∈ Rp, ϕi(x0, u0, x1, · · · , xi) ∈ Rp, x = [x1,
· · · , xn]T, and θ ∈ Rp is a vector of unknown bounded
constant parameters.

For (9), by using input-to-state scaling, backstepping
technique, and switching scheme in two separate stages,
the new adaptive controller was designed which made the
uncertain chained system adaptive and globally stabilized.

In 2003, Ge et al.[34] investigated another class of uncer-
tain chained system. A novel adaptive switching technique
was employed to overcome the uncontrollability problem.
Other researchers such as Wang et al.[35] and Gao et al.[36]

also discussed different classes of uncertain chained system.
By using parameter separation, state scaling, backstepping
technique or switching strategy, adaptive asymptotic regu-
lation of the closed-loop system was achieved.

2.1.2 Adaptive output feedback stabilization

The adaptive output feedback stabilization had been in-
vestigated for different uncertain chained systems in many
papers[34, 37−38].

In [34], Ge et al. considered the output feedback model
expressed by





ẋ0 = u0 + c0x0

ẋi = u0xi+1 + φT
i (u0, x0, x̄i)θ, 1 ≤ i < n, n ≥ 2

ẋn = u1 + φT
n (u0, x0, x)θ

y = (x0, x1)
T

(10)
where c0 is known, [x0, x

T] = [x0, x1, · · · , xn], x̄i = [x1,
· · · , xi]

T ∈ Ri, φi(u0, x0, x̄i) ∈ Rl, 1 ≤ i ≤ n, θ ∈ Rl is a
vector of unknown bounded constant parameters.

For (10), it is assumed that for each i (1 ≤ i ≤ n ) there
is a known smooth function vector φ̄i which is a function
of u0 and the available states x0 and x1 such that

φi(u0, x0, x̄i) = x1φ̄i(u0, x0, x1)

In [34], a filtered observer rather than the traditional lin-
ear observer was used to handle the technical problem due
to the presence of unavailable states in the regressor ma-
trix. The proposed control strategies can steer the system
states converging to the origin globally while the estimated
parameters remain bounded.
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In 2009, a new nonholonomic system with strong non-
linear drifts was developed[38] by Zheng et al.. The model
is with modeled nonlinear dynamics, unmodeled dynamics,
and unknown parameters. A novel observer and estimator
were introduced for states and parameter estimates, respec-
tively. A constructive procedure of design for an output
feedback adaptive controller was given by using the inte-
grator backstepping approach which was based on the pro-
posed observer and parameter estimator. Then, the system
discussed was globally asymptotically stable.

In [39], Wang and her co-authors dealt with another class
of uncertain chained system. The robust adaptive NN con-
trol laws were developed using state scaling and backstep-
ping in two separate stages. The system states have been
proved to converge to a small neighborhood of zero by ap-
propriately choosing the design parameters while all other
signals in the closed-loop have been guaranteed to be uni-
formly ultimately bounded.

2.2 Exponential stabilization

In 2000, motivated by Example 1, Jiang[41] proposed a
perturbed version of the chained form and investigated ex-
ponential stabilization in three cases. They are global ex-
ponential regulation, global dynamic extension regulation,
and output feedback regulation. In recent years, Xi et
al.[42−43] also considered classes of uncertain chained sys-
tems and then investigated their global exponential sta-
bilization and output feedback exponential stabilization
problems. The main results are presented below.

2.2.1 Global exponential regulation (GER)

In [41], the discussed uncertain chained system is





ẋ0 = d0(t)u0 + φd
0(t, x0)

ẋ1 = d1(t)x2u0 + φd
1(t, x0, x, u0)

...
ẋn−2 = dn−2(t)xn−1u0 + φd

n−2(t, x0, x, u0)
ẋn−1 = dn−1(t)u + φd

n−1(t, x0, x, u0)

(11)

where x = (x1, · · · , xn−1) ∈ Rn−1, the functions di(·) and
φd

i (·) (i = 0, 1, · · · , n − 1) denote the possible modeling
error and neglected dynamics, which include uncertain drift
terms.

It is assumed that

ci1 ≤ di(t) ≤ ci2, 0 ≤ i ≤ n− 1, ∀ t ≥ 0
∣∣φd

0(t, x0)
∣∣ ≤ c03 |x0| , c03 > 0

∣∣φd
i (t, x0, x, u0)

∣∣ ≤ |(x1, · · · , xi)|φi(x0, x1, · · · , xi, u0)
(12)

where φi (i = 1, · · · , n−1) are known smooth non-negative
functions, and (t, x0, x, u0) ∈ R+ × R × Rn−1 × R. It is
worth noting that assumption (12) imposes the uncertain
nonlinearities φd

i (i = 1, · · · , n − 1) to satisfy the triangu-
larity condition.

For (11), a discontinuous state scaling transformation
was first introduced to obtain a scalar system and a sim-
pler disturbed low dimensional system. Then, the well-
known backstepping method was used to design a robust
global exponential stabilizer for the transformed lower-size
system. Finally a robust nonlinear state feedback law was
proposed and the global exponential regulation problems
were solved[41].

In [41], Jiang also discussed the following dynamic ex-
tension:





u̇0 = v0

ẋ0 = u0 + c0x0

ẋ1 = d1(t)x2u0 + φd
1(t, x0, x, u0)

...
ẋn−2 = dn−2(t)xn−1u0 + φd

n−2(t, x0, x, u0)
ẋn−1 = dn−1(t)u + φd

n−1(t, x0, x, u0)
u̇ = dn(t)v + φd

n(t, x0, x, u0, u)

(13)

where x = (x1, · · · , xn−1) ∈ Rn−1, di(·) and φd
i (·) (i =

1, 2, · · · , n) denote the possible modeling error and ne-
glected dynamics. v0 and v are considered as the (torque)
control input, the constant c0 is assumed to be known.

It is assumed that there exist a positive constant cn and
a smooth non-negative function φn such that

cn ≤ dn(t)
∣∣φd

n(t, u0, x0, x, u)
∣∣ ≤ |(x, u)|φn(u0, x0, x, u)

(14)

Under assumptions (12) and (14), Jiang proposed the back-
stepping based controller and switching control strategy
such that system (13) is GER.

In 2003, Xi et al. investigated another uncertain chained
system[42]. A novel switching control strategy was pro-
posed involving the use of input/state scaling and integra-
tor backstepping. The new controllers can make the uncer-
tain system Lyapunov stable and globally κ-exponentially
convergent.

In 2005, Ma designed a new time-varying robust con-
troller to yield global exponential convergence of cart′s po-
sition and orientation to the desired point[40].

2.2.2 Output-feedback regulation

In 2007, Xi et al. dealt with output feedback system
with uncertain chained form[43] described by





ẋ0 = u0 + x0φ0(t, x0)
ẋ1 = x2u0 + φd

1(t, x0, x1, u0)
...

ẋn−2 = xn−1u0 + φd
n−2(t, x0, x1, u0)

ẋn−1 = u + φd
n−1(t, x0, x1, u0)

y = (x0, x1)
T

(15)

where x = (x1, · · · , xn−1) ∈ Rn−1, the functions φd
i (·) de-

note the possible modeling error and neglected dynamics,
and φ0(t, x0) is a known smooth function.

It is assumed that for every 1 ≤ i ≤ n − 1 and all
(t, x0, x, u0) ∈ R+ × R × Rn−1 × R, there are (known)
smooth non-negative functions φi such that

∣∣∣φd
i (t, x0, x1, u0)

∣∣∣ ≤ |x1|φi(t, y, u0)

For (15), a systematic control design procedure to con-
struct a robust nonlinear output feedback control law was
presented. Furthermore, two special cases were considered
which do not use the observer gain filter. By using a par-
ticular input-state scaling, the backstepping technique, the
switching scheme and observer gain filter to design a dy-
namic output feedback controller, both robust global ex-
ponential regulation and Lyapunov stability with output
feedback were obtained for a class of disturbed nonlinear
chained systems (15).

In [41], Jiang also extended the state feedback results
to the output-feedback case. By using the modified recur-
sive design scheme, the dynamic output-feedback control
law was proposed with suitable design parameters along
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with the switching control strategy. The uncertain chained
system was globally exponentially regulated at the origin.

2.3 Finite time stabilization

In [44], Hong et al. investigated an uncertain chained
system given by





ẋ0 = q0u0

ẋ1 = q1x2u0

...
ẋn−1 = qn−1xnu0

ẋn = qnu + ψn(x)

(16)

where x = (x1, · · · , xn)T ∈ Rn, qi > 0 (i = 0, · · · , n)
are uncertain parameters but they are located in known
intervals (i.e., 0 < qi ∈ [qmin

i , qmax
i ]).

It is assumed that ψn(x) is an uncertain function satis-
fying

|ψn(x)| ≤ M

n∑
i=1

|xi| , M > 0 (17)

For (16), a novel control design procedure was proposed
to construct a switching nonlinear control scheme that
solved the problem of finite time convergence and Lya-
punov stability for these nonholonomic systems, where a
time-rescaling technique was employed in stabilizing these
controlled systems within any given settling time. By using
homogeneity, time-rescaling and Lyapunov function tech-
niques, a finite-time stabilizing feedback law was designed
to guarantee both Lyapunov stability and finite time con-
vergence in any given settling time for the closed-loop sys-
tem.

To sum up, many control strategies were developed to
stabilize the uncertain chained systems. However, it is ob-
viously seen that most of the unknown nonlinear functions
of uncertain chained systems mentioned in this section sat-
isfy triangularity conditions. Motivated by Example 2, a
series of new exciting uncertain chained models for NWMR
are obtained which do not satisfy the so-called triangularity
conditions. They are presented in the next section.

3 New uncertain chained models of
NWMR

In Example 2 of Section 1, the uncertain nonholonomic
kinematic systems with visual feedback were considered for
type (2, 0) robot. As indicated in [18], all nonholonomic
mobile robots can be classified into four types called type
(2, 0), type (2, 1), type (1, 1) and type (1, 2). A car towing
a single trailer or towing n trailers is also a nonholonomic
system. By using the same method as Example 2, we can
obtain the following new uncertain chained models based
on visual feedback and the state-input transformations.

3.1 Uncertain chained models of type (2, 0) robot

For the nonholonomic system of type (2, 0) robot, two
different uncertain chained models can be obtained by using
two different transformations.

3.1.1 Uncertain chained model 1

For type (2, 0) robot[18], the posture kinematic model is
described by 




ẋ = −v sin θ
ẏ = v cos θ

θ̇ = ω
(18)

where θ denotes the angle between the X axis and the
heading direction of the robot with a clockwise direction.

Considering formula (6), we have




ẋm

ẏm

θ̇


 =



−α1v sin(θ − θ0)
α2v cos(θ − θ0)

ω


 (19)

Taking the state-input transformation





x0 = θ
x1 = xm cos θ + ym sin θ
x2 = −xm sin θ + ym cos θ
u0 = ω
u1 = v − x1u0

we obtain the following system





ẋ0 = u0

ẋ1 = x2u0 +
1

2
(x1u0 + u1)(α12s0 + α21sΘ)

ẋ2 = u1 +
1

2
(x1u0 + u1)(α12c0 + α21cΘ − 2)

(20)

where

α12 = α1 + α2, s0 = sin θ0, sΘ = sin(2x0 − θ0)
α21 = α2 − α1, c0 = cos θ0, cΘ = cos(2x0 − θ0)

(21)
(20) cannot be regarded as a special case of the models in
Section 2, because the second term on the right side of the
second equation is dependent on u1. It does not satisfy
the triangularity condition in (12). Therefore (20) is a new
uncertain chained system.

3.1.2 Uncertain chained model 2

For system (19), by taking another state-input transfor-
mation 




x0 = ym

x1 = −xm

x2 = tan θ
u0 = v cos θ
u1 = (sec θ)2ω

one can obtain another uncertain chained model as follows




ẋ0 = (α2 cos θ0)u0 + (α2 sin θ0)x2u0

ẋ1 = (−α1 cos θ0)x2u0 + (α1 sin θ0)u0

ẋ2 = u1

(22)

Expression (22) also cannot be regarded as a special case
of the models discussed previously because the second term
on the right side of the first equation is dependent on x2.
The triangularity condition is not satisfied.

3.2 Uncertain chained model of type (2, 1) robot

For type (2, 1) robot[18], the posture kinematic model is
of the form 




ẋ = −v1 sin(θ + β)
ẏ = v1 cos(θ + β)

θ̇ = v2

β̇ = v3

(23)

Taking the transformations ϕ = θ + β and v = v2 + v3,
we can convert (23) into (18). Except for another variables
that can be controlled by an independent control input,
there is nothing new. But it is a system with three inputs,
and may be regarded as an expansion of (18).
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3.3 Uncertain chained model of type (1, 1) robot

For type (1, 1) robot[18], its equation of the posture kine-
matic model can be expressed by





ẋ = −Lv sin θ sin β
ẏ = Lv cos θ sin β

θ̇ = v cos β

β̇ = ω

(24)

Considering formula (6), we have




ẋm

ẏm

θ̇

β̇


 =




−Lvα1 sin β sin(θ − θ0)
Lvα2 sin β cos(θ − θ0)

v cos β
ω




Take the state-input transformation





x0 = θ
x1 = xm cos θ + ym sin θ
x2 = −xm sin θ + ym cos θ
x3 = L tan β − xm cos θ − ym sin θ
u0 = v cos β
u1 = Lω sec2 β − x2v cos β

and note that

sin θ cos(θ − θ0) =
1

2
(s0 + sΘ), x3 = L tan β − x1

cos θ cos(θ − θ0) =
1

2
(c0 + cΘ), Lv sin β = (x1 + x3)u0

where s0, c0, sΘ, cΘ are defined in (21). The uncertain
chained form system is obtained as follows





ẋ0 = u0

ẋ1 = x2u0 +
1

2
(x1 + x3)(α12s0 + α21sΘ)u0

ẋ2 = x3u0 +
1

2
(x1 + x3)(α12c0 + α21cΘ − 2)u0

ẋ3 = u1 − 1

2
(x1 + x3)(α12s0 + α21sΘ)u0

(25)
It is obviously seen that the second terms on the right side
of the second and third equations of (25) are dependent on
x3, so the triangularity conditions cannot be satisfied. This
means that (25) also cannot be regarded as a special case
of the models in Section 2.

3.4 Uncertain chained model of type (1, 2) robot

The posture kinematic equation of type (1, 2) robot[18]

can be given by





ẋ = −Lv1[sin β1 sin(θ + β2) + sin β2 sin(θ + β1)]
ẏ = Lv1[sin β1 cos(θ + β2) + sin β2 cos(θ + β1)]

θ̇ = v1 sin(β2 − β1)

β̇1 = v2

β̇2 = v3

(26)
where v1, v2, v3 denote the virtual velocity of robot and two
angular velocities of steering wheels respectively.

For system (26), take the state and input transforma-
tions as follows





x0 = θ
x1 = xc + ys

x2 = −xs + yc− 2L
s1s2

s21
x3 = xs− yc

x4 = xc + ys− L
s12

s21



u0 = v1s21

u1 = −x4v1s21 − 2Lv2
s2
2

s2
21

+ 2Lv3
s2
1

s2
21

u2 = x2v1s21 − Lv2
sin(2β2)

s2
21

+ Lv3
sin(2β1)

s2
21

where s21 6= 0, and

s = sin θ, s1 = sin β1, s12 = sin(β1 + β2)

c = cos θ, s2 = sin β2, s21 = sin(β2 − β1)
(27)

The following system yields[20]





ẋ0 = u0

ẋ1 = x2u0

ẋ2 = u1

ẋ3 = x4u0

ẋ4 = u2

(28)

This is commonly called canonical chained form with
two chains and three inputs. If (x, y) is measured using
a camera with uncalibrated visual parameters, the uncer-
tain chained form of type (1, 2) robot can be obtained by
means of the same method employed for type (1, 1) robot.

For system (26), by using formula (6) we have



ẋm

ẏm

θ̇

β̇1

β̇2




=




−α1Lv1(s1s∆2 + s2s∆1)
α2Lv1(s1c∆2 + s2c∆1)

v1s21

v2

v3


 (29)

where s1, s2 and s21 are denoted in (27), and

s4i = sin(θ − θ0 + βi), c4i = cos(θ − θ0 + βi), i = 1, 2

Taking the following state and input transformations




x0 = θ
x1 = xmc + yms

x2 = −xms + ymc− 2L
s1s2

s21
x3 = xms− ymc

x4 = xmc + yms− L
s12

s21

(30)





u0 = v1s21

u1 = −x4v1s21 − 2Lv2
s2
2

s2
21

+ 2Lv3
s2
1

s2
21

u2 = x2v1s21 − Lv2
sin(2β2)

s2
21

+ Lv3
sin(2β1)

s2
21

(31)

and noting that θ = x0,

cc41 =
1

2
c10 +

1

2
cΛ1, s1s20 + s2s10 = 2s1s2c0 − s0s12

cc42 =
1

2
c20 +

1

2
cΛ2, s1c20 + s2c10 = 2s1s2s0 + c0s12

sc41 =−1

2
s10+

1

2
sΛ1, s1sΛ2 + s2sΛ1 =2s1s2cΘ+s12sΘ

sc42 =−1

2
s20+

1

2
sΛ2, s1cΛ2 + s2cΛ1 =−2s1s2sΘ+s12cΘ
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where s0, c0, α12, α21, sΘ, and cΘ are defined in (21), and
for i = 1, 2,

si0 = sin(βi − θ0), sΛi = sin(2θ − θ0 + βi)

ci0 = cos(βi − θ0), cΛi = cos(2θ − θ0 + βi)

we have the following uncertain chained form[50]





ẋ0 = u0

ẋ1 = x2u0 +
1

2
(x1 − x4)(α12s0 + α21sΘ)u0 −

1

2
(x2 + x3)(2− α12c0 + α21cΘ)u0

ẋ2 = u1 − 1

2
(x2 + x3)(α12s0 − α21sΘ)u0 −

1

2
(x1 − x4)(2− α12c0 − α21cΘ)u0

ẋ3 = x4u0 +
1

2
(x2 + x3)(α12s0 − α21sΘ)u0 +

1

2
(x1 − x4)(2− α12c0 − α21cΘ)u0

ẋ4 = u2 +
1

2
(x1 − x4)(α12s0 + α21sΘ)u0 −

1

2
(x2 + x3)(2− α12c0 + α21cΘ)u0

(32)

In contrast to the canonical chained model (28), three new
parameters α1, α2, and θ0 exist in (32) which are usually
uncalibrated. So, model (32) is an uncertain chained form
with two chains and three inputs. It is obvious that states
x2, x3, and x4 appear in the second and third terms on
the right side of four equations in (32). The triangularity
conditions cannot be satisfied. So, (32) is different from
every class of the previous models in Section 2.

3.5 Uncertain chained model of a car with a single
trailer

The model of kinematic motion of a car towing a single
trailer[11] can be described by





ẋc = v cos β0

ẏc = v sin β0

φ̇ = ω

β̇0 =
1

l
v tan φ

β̇1 =
1

d1
v sin(β0 − β1)

(33)

If the state and input transformations shown in [11] are
used, two-input and five-order canonical chained system
can be obtained. However, by using formula (6), we can
convert system (33) into




ẋm

ẏm

φ̇

β̇0

β̇1




=




α1v cos(β0 − θ0)
α2v sin(β0 − θ0)

ω
1

l
v tan φ

1

d1
v sin(β0 − β1)




(34)

Let

sφ = sin φ, cφ = cos φ, tβi = tan βi

sβi = sin βi, cβi = cos βi, s01 = sin(β0 − β1)
sei = sec βi, tφ = tan φ, c01 = cos(β0 − β1)

where i = 0, 1, and then take the following state-input
transformation




x0 = xm

x1 = ym − d1 log

(
1 + sβ1

cβ1

)

x2 = tβ1

x3 =
1

d1
se0s01se

2
1

x4 =
1

d1l
se3

0se1tφ +
1

d2
1

se2
0s

2
01sβ1se

3
1 − 1

d2
1

se0s01se
3
1

v = (se0)u0

ω = λ1(φ, β0, β1)u0 + λ2(φ, β0, β1)u1

where

λ1 = − 3

l
se0sβ0s

2
φ −

(
1

d1
+

2

d1
sβ0se1s01

)
se0s01tβ1sφcφ−

2

(
1

d1
sφcφ − l

d2
1

s01c
2
φ

)
sβ1se

2
1s01c01−

l

d2
1

(s01 + 3s01t
2
β1 − 3cβ0tβ1se1)se1c

2
φs2

01+

1

d1
se2

1cβ1sφcφ − 1

d2
1

cβ0se
2
1s01c01c

2
φ

λ2 = ld1c
3
β0cβ1c

2
φ

We obtain the uncertain chained system of a car towing a
single trailer as follows




ẋ0 = (α1c0)u0 + α1s0(x2 +
d1x3√
1 + x2

2

)u0

ẋ1 = x2u0 + [(α2c0 − 1)(x2 +
d1x3√
1 + x2

2

)− (α2s0)]u0

ẋ2 = x3u0

ẋ3 = x4u0

ẋ4 = u1

(35)
It is obviously seen that the second terms on the right side
of the first and second equations of (35) are functions with
respect to states x2 and x3. Thus, the triangularity condi-
tions are not satisfied.

3.6 Uncertain chained model of a car with nnn trail-
ers

The kinematic model of a car with n trailers[19] was given
by 




ẋ = vn cos βn

ẏ = vn sin βn

β̇n =
1

dn
vn−1 sin(βn−1 − βn)

...

β̇i =
1

di
vi−1 sin(βi−1 − βi)

...

β̇1 =
1

d1
v0 sin(β0 − β1)

β̇0 = ω

(36)

Take the coordinate and feedback transformations pre-
sented in [19]. We can change (36) into canonical chained
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form. However, by using (6), we have

[
ẋm

ẏm

]
=

[
α1 0
0 α2

] [
cos θ0 sin θ0

− sin θ0 cos θ0

] [
vn cos βn

vn sin βn

]

Let βn+1 = 0 and denote

β
i
= [βi, · · · , βn]T

pi(β
i
) =

n∏
j=i

cos(βj − βj+1)

τi(β
i−1

) =
∂xi+1

∂β
i

f
i
(β

i−1
)

ci(β
i−1

) = p2
i−1(βi−1

)

n∏
j=i−1

djpj(β
j
)

fi(β
i−1

) =
1

di

tan(βi−1 − βi)

pi(β
i
)

f
i
(β

i−1
) = [fi(β

i−1
), · · · , fn(β

n−1
)]T

where i ∈ {0, · · · , n}. Then, by taking the following state-
input transformation





x0 = xm

x1 = ym

x2 = tan βn

x3 =
tan(βn−1 − βn)

dn cos3 βn

x4 =
tan(βn−2 − βn−1)

cn(β
n−1

)
+ τn(β

n−1
)

...

xn+2 =
tan(β0 − β1)

c2(β
1
)

+ τ2(β
1
)

u0 = p0(β
0
)v0

u1 =
1

cos2(β0 − β1)c2(β
1
)
ω + τ1(β

0
)p0(β

0
)v0

we obtain uncertain chained system as follows





ẋ0 = (α1 cos θ0)u0 + (α1 sin θ0)x2u0

ẋ1 = (α2 cos θ0)x2u0 − (α2 sin θ0)u0

ẋ2 = x3u0

...
ẋn+1 = xn+2u0

ẋn+2 = u1

(37)

In (37), the second term on the right side of the first equa-
tion is dependent on x2. The triangularity condition is not
satisfied.

3.7 New general uncertain models of NWMR

In addition to the models (9)∼ (11), (13), (15), and (16),
we will show several new general uncertain chained models
deduced from the explicit NWMR models in Subsection 3.1
∼ 3.6.

3.7.1 General uncertain chained model 1

From systems (22) and (37), we can deduce the following
general uncertain chained form





ẋ0 = d0(t)u0 + φd
0(t, x2)u0

ẋ1 = d1(t)x2u0 + φd
1(t)u0

ẋ2 = x3u0

...
ẋn−2 = xn−1u0

ẋn−1 = u1

(38)

where the functions di(·) and φd
i (·) (i = 0, 1) denote the

possible modeling error, neglected dynamics, or unknown
functions. It may be assumed that for every i = 0, 1 there
are (known) positive ci1 and ci2 such that ci1 ≤ di(t) ≤ ci2

for all t ≥ 0. φd
0(t, x2) is a linear function with respect to

x2, φd
1(t) is bounded for all t ≥ 0.

3.7.2 General uncertain chained model 2

From systems (22), (35), and (37), we can deduce





ẋ0 = d0(t)u0 + φd
0(t, x2, x3, · · ·xn−1)u0

ẋ1 = d1(t)x2u0 + φd
1(t, x2, x3, · · ·xn−1)u0

ẋ2 = x3u0

...
ẋn−2 = xn−1u0

ẋn−1 = u1

(39)

where the functions di(·) and φd
i (·) (i = 0, 1) denote the

possible modeling error, neglected dynamics, or unknown
functions. It may be assumed that for every i = 0, 1 there
are (known) positive ci1 and ci2 such that ci1 ≤ di(t) ≤ ci2

for all t ≥ 0.

3.7.3 General uncertain chained model 3

From system (25), we have the following model





ẋ0 = u0

ẋi = xi+1u0 + fi(x)φd
i (t, x0)u0,

1 ≤ i ≤ n− 2

ẋn−1 = u1 + fn−1(x)φd
n−1(t, x0)u0

(40)

where x = (x1, · · · , xn−1)
T, the functions φd

i (·) denote the
possible modeling error, neglected dynamics or unknown
functions, fi(x) are linear functions with respect to x (i =
1, · · · , n−1). It may be assumed that φd

i (·) (i = 1, · · · , n−
1) are bounded for all t ≥ 0.

3.7.4 General uncertain chained model 4

Consider (32) and expand it to multi-input cases. We
can obtained the uncertain chained model as follows





ẋ0 = u0

ẋ1
i = x1

i+1u0 +
m∑

j=1

f1
ij(x)φd1

ij (t, x0)u0,

1 ≤ i ≤ r1 − 1

ẋ1
r1 = x1

r1+1u1 +
m∑

j=1

f1
r1j(x)φd1

r1j(t, x0)u0

...

ẋm
i = xm

i+1u0 +
m∑

j=1

fm
ij (x)φdm

ij (t, x0)u0,

1 ≤ i ≤ rm − 1

ẋm
rm

= um +
m∑

j=1

fm
rmj(x)φdm

rmj(t, x0)u0

(41)
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where x = (x1, · · · , xrm)T, the functions d0(t), φ
dk
ij (t, x0) (i

= 1, · · · , rk) (k, j = 1, · · · , m) denote the possible modeling
error, neglected dynamics, or unknown functions. fk

ij(x)
are linear functions with respect to x. It may be assumed
that for every (i = 1, · · · , rk) (j, k = 1, · · · , m), there are

(known) positive Ak
ij and Bk

ij such that Ak
ij ≤ φ

dk
ij (t, x0) ≤

Bk
ij for all t ≥ 0.
Summing up, there exist a lot of uncertain chained mod-

els which can be derived from practice. One of our tasks is
to discover them and then discuss their stabilization prob-
lems.

4 Robust stabilization for the uncer-
tain chained systems of NWMR

For the uncertain chained systems of NWMR mentioned
in the last section, Wang et al.[45−48] first considered the
stabilization problems for the uncertain system (7) of type
(2, 0) robot which is the equivalent system of (20). Then,
the robust stabilization problems in particular case are dis-
cussed for the uncertain chained systems of type (1, 1)[49]

and type (1, 2)[50] robots, respectively. The main results
are addressed in this section.

4.1 Robust regulation and tracking control for un-
certain chained system of type (2, 0) robot

In this subsection, the robust regulation (or stabiliza-

tion)[45−47] and dynamic feedback tracking control[48] for
(7) are introduced simply.

4.1.1 Robust regulation

In order to robustly regulate (7)[45−46], three cases were
discussed as follows

1) θ0 known, α1 and α2 unknown;
2) θ0 unknown, α1 and α2 known;
3) θ0 unknown, α1 = α2 = α unknown.
In each case, the controller was obtained by using differ-

ent coordinate transformations and exploiting a new two-
step technique. For example, in the case of 3), it was as-
sumed that 0 < α ≤ ᾱ. Taking the following coordinate
transformation from (xm, ym) to (z1, z2)

[46]

[
z1

z2

]
=

[
cos θ sin θ
sin θ − cos θ

] [
xm

ym

]
(42)

one obtains 



ż1 = −z2ω + αv cos θ0

ż2 = z1ω + αv sin θ0

θ̇ = ω

Step 1. Taking the control input
{

v = k1z1 + k2z2

ω = ω (constant)
(43)

where k1, k2 are given in three cases respectively: 0 ≤ θ0 ≤
π
2
; π

2
≤ θ0 ≤ π; σ ≤ θ0 ≤ π−σ (σ is a known small positive

number), we can design the controller such that z1(t), z2(t)
converge to zero as t →∞.

Step 2. When the absolute values of z1(t) and z2(t) are
made as small as desired, the following controller is used

v = 0, ω = −aθ (44)

where a is a positive gain. Then, θ(t) converges to zero.
Summing up, system (7) can be robustly regulated by

using the controllers (43) and (44)[46]. The other two cases
were discussed in [45].

In [47], the time varying smooth dynamic feedback ro-
bust regulation was investigated for (7). It was assumed
that

1) θ0 known and α1 = α2 = α unknown;
2) α ≤ α ≤ ᾱ, α and ᾱ are positive known parameters.
Then, the dynamic feedback regulation system can be

described as 



ż1 = −z2ω + αv
ż2 = z1ω

θ̇ = ω
ω̇ = u1

v̇ = u2

(45)

where u1 and u2 are the generalized force and generalized
torque, respectively.

In order to solve the dynamic feedback regulation prob-
lem for system (45), a new two-step technique[47] was used
to design the controllers. The first step is to design u1 such
that ω remains a non-zero constant and then design u2 to
make z1, z2 and v as small as desired in a limited time.
The second step is to design u1 such that θ and ω converge
to zero as t goes to infinity, while u2 is designed to keep z1,
z2 and v to have smaller variation.

Remark 1. Under the assumptions in [47], system (7)
can be converted into the following system by substituting
θ − θ0 for θ and using (42)





ż1 = −z2ω + αv
ż2 = z1ω

θ̇ = ω
(46)

For (46), time-varying smooth regulation controllers were
proposed in [45]. The controllers are velocities of kinematic
systems. However, the design of generalized force and gen-
eralized torque is much more practical. So, the dynamic
feedback regulation problem was investigated in [47].

4.1.2 Dynamic feedback tracking control

For system (7), the dynamic feedback tracking control
problem was discussed in [48]. Taking the coordinate
transformation from (xm, ym, θ) to (x1, x2, x3), then letting
ei = xi − xid (i = 1, 2, 3), we have




ė1

ė2

ė3


 =




d(v − vd) + e2ω + x2d(ω − ωd)
−e1ω − x1d(ω − ωd)

ω − ωd


 (47)

where vd, ωd are the respective linear and angular velocities
of the desired WMR and x1d, x2d, x3d are the desired states.

It was assumed that the desired trajectory was generated
from a prerecorded set of images taken by the fixed camera
and

1) θ0 known, α1 = α2 = d unknown;
2) vd and ωd are bounded, x1d, x2d, x3d and their deriva-

tives and the second derivative of x1d are bounded. There
exists a known positive number Vd such that |vd(t)| ≤ Vd;

3) ẋ1d 9 0 as t →∞.

By choosing the feedback controller[48] as




ṗ
ω
v


 =



−k2p− e3 + e2x1d − e1x2d

ωd + p
−k1e1 − Vd sgn e1


 (48)

and using the Barbalat theorem and Lyapunov technique,
we can make the states of the closed-loop system consisting
of (47) and (48) converge to zero as t goes to infinity if d
and vd are unknown.
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4.2 Robust exponential regulation for uncertain
chained system of type (1, 1) robot

As shown in Section 3, the uncertain chained system of
type (1, 1) robot was described as (25). In order to solve

its stabilization problem[49], it was assumed that
1) θ0 = 0 and γ1 = γ2 = α unknown;
2) For positive unknown visual parameter α, there exist

known positive numbers α and ᾱ such that α ≤ α ≤ ᾱ.
For (25), if x0(0) 6= 0, by using the strategy of state-

scaling

y1 =
x1

x2
0

, y2 =
x2

x0
, y3 = x3 (49)

and then choosing the controller as

{
u0 = −λ0x0

u1 = k1y1 + k2y2 + k3y3
(50)

(25) can be rewritten as the following compact matrix form

Ẏ = [A + B(t)]Y (51)

where

A =




2λ0 −λ0 0
0 λ0 −λ0α
k1 k2 k3




B(t) =




0 0 0
0 0 −λ0x

2
0(α− 1)

0 0 0




By using Lemma 1 (see Section 4.3) and the Routh-

Hurwits stability criterion[59], (51) can be exponentially
stabilized if k1, k2, k3 satisfy the following group of inequal-
ities 




λ0 > 0

k3 + 3λ0 < 0

3k3 + αk2 + 2λ0 > 0

2k3 + 2αk2 + αk1 > 0

(k3 + 3λ0)(3k3 + αk2 + 2λ0) <
λ0(2k3 + 2αk2 + αk1)

(52)

If x0(0) = 0, take u0 = k (non-zero constant). Then,
x0(t) = kt holds. x0(t) will be not zero after a time limit T
(T > 0). Hence, system (51) can be stabilized exponentially
by switching to (50) and (52).

To sum up, choose λ0, k1, k2, k3 such that (52) holds and
design the controller as (50). System (25) can be expo-

nentially stabilized[49] by using state-scaling and switching
technology under the assumptions in this subsection.

4.3 Robust exponential regulation for uncertain
chained system of type (1, 2) robot

The uncertain chained system of type (1, 2) robot can
be described as (32). Our objective is to design u0, u1,
and u2 to make (32) exponentially stabilizable under two
assumptions below.

Assumption 1. θ0 = 0 and α1 = α2 = r unknown;
Assumption 2. For positive unknown visual parameter

r, there exist known positive r1 and r2 such that

r1 ≤ r ≤ r2 (53)

Under the Assumptions 1 and 2, (32) can be rewritten
as





ẋ0 = u0

ẋ1 = [rx2 + (r − 1) x3]u0

ẋ2 = u1 + [(r − 1) x1 + (1− r)x4]u0

ẋ3 = [(1− r) x1 + rx4]u0

ẋ4 = u2 + [(r − 1) x2 + (r − 1)x3]u0

(54)

In order to discuss the stabilization of system (54), we
need to introduce the following lemmas.

Lemma 1. Consider time-varying linear system[60] de-
fined by

ẋ = (A + B(t))x (55)

where x ∈ Rn is the state vector. If A ∈ Rn×n is a Hurwitz
matrix, and for every element in B(t) ∈ Rn×n, it satisfies
bij(t) → 0 (t → ∞) exponentially (i, j = 1, 2, · · · ). Then,
system (55) is exponentially stable.

Lemma 2. If A ∈ R4×4, the characteristic polynomial
of matrix A is specified as follows

|λI −A| = λ4 + a1λ
3 + a2λ

2 + a3λ + a4 (56)

A is a Hurwitz matrix[59] if and only if a1 > 0, a3 > 0, a4

> 0 and ∆3 = a1a2a3 − a2
1a4 − a0a

2
3 > 0.

Remark 2. It is worth noting that Lemma 1 is a corol-
lary of the conclusion on [60]. Lemma 2 is a direct applica-

tion of the well known Routh-Hurwitz stability criterion[59].

4.3.1 Controller design

Now, let us consider the controller design for (54).
Under the assumptions in this subsection, choose control

input
u0 = −λ0x0

where λ0 is a positive parameter. We have

ẋ0 = −λ0x0

x0(t) = x0(0)e−λt, t ≥ 0
(57)

where x0(0) is the initial value of x0(t) when t = 0.
If x0(0) = 0, take u0 = k (non zero constant). Then

x0(t) = kt. x0(t) will be not zero after a time limit T .
If x0(0) 6= 0, then x0(t) 6= 0 holds by (57). Let





y1 =
x1

x0
y2 = x2

y3 =
x3

x0
y4 = x4

(58)

We have




ẏ1 = λ0y1 − rλ0y2 + (1− r)λ0x0y3

ẏ2 = u1 + (1− r)λ0x
2
0y1 + (r − 1)λ0x0y4

ẏ3 = (r − 1)λ0x0y1 + λ0y3 − rλ0y4

ẏ4 = u2 + (1− r)λ0x0y2 + (1− r)λ0x
2
0y3

(59)

Take control inputs u1 and u2 as follows,
{

u1 = k1y1 + k2y2 + k3y3 + k4y4

u2 = p1y1 + p2y2 + p3y3 + p4y4

and then substitute them into (59). We have

Ẏ = [A + B(t)]Y (60)
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where

A =




λ0 −rλ0 0 0
k1 k2 k3 k4

0 0 λ0 −rλ0

p1 p2 p3 p4




B(t) =




0 0 b13 0
b21 0 0 −b13

−b13 0 0 0
0 b13 b21 0




Y = [y1, y2, y3, y4]
T, b13 = (1 − r)λ0x0, b21 = (1 − r)λ0x

2
0,

ki and pi (i = 1, 2, 3, 4) are parameters to be designed.
Lemma 3. For system (60), choose ki, pi (i = 1, 2, 3, 4)

and a, b, c, d to satisfy the following conditions

k1 = aλ0, k2 = bλ0, k3 = k4 = 0
p3 = cλ0, p4 = dλ0, p1 = p2 = 0

(61)

b < −1, d < −1, a >
−b

r1
, c >

−d

r1
(62)

Then, A is a Hurwitz matrix, and system (60) is exponen-
tially stabilizable.

Proof. For system (60), denote the characteristic poly-
nomial of matrix A as (56). With the choice of (61) and
(62), it is obviously seen that

a >
−b

r1
>
−b

r
, c >

−d

r1
>
−d

r

Denote
Q = ar + b > 0, B = b + 1 < 0
C = cr + d > 0, D = d + 1 < 0

Then, we have

a1 = −(b + d + 2)λ0 = −(B + D)λ0 > 0

a2 = [(ar + b) + (cr + d) + (b + 1)(d + 1)]λ2
0 =

[Q + C + BD]λ2
0 > 0

a3 = −[(ar + b)(d + 1) + (cr + d)(b + 1)]λ3
0 =

−[QD + BC]λ3
0 > 0

a4 = [(ar + b)(cr + d)λ4
0 = QCλ4

0 > 0

∆3 = [(B + D)(Q + C + BD)(QD + BC) −
(B + D)2QC − (QD + BC)2]λ6

0 =

BD[(Q− C)2 + QBD + B2C +

QD2 + CBD]λ6
0 > 0

Hence, A is a Hurwitz matrix. Because bij(t) in B(t)
converges to zero exponentially as t goes to infinity, system
(60) is exponentially stabilized by Lemma 1. ¤

To sum up, we have the following main result.
Theorem 1. In view of the assumptions and lemmas

above, system (54) can be exponentially stabilized if the
controller is chosen as





u0 = −λ0x0

u1 = k1y1 + k2y2 + k3y3 + k4y4

u2 = p1y1 + p2y2 + p3y3 + p4y4

(63)

where λ0 > 0, ki and pi (i = 1, 2, 3, 4) satisfy (61) and (62)
respectively.

Proof. If x0(0) 6= 0, by the arguments above and
Lemma 3, x0 and y1, y2, y3, y4 converge to zero expo-
nentially as t goes to infinity for system (60). (58) can be

used to deduce that x1, x2, x3, x4 converge to zero expo-
nentially too as t goes to infinity. Then, system (54) can
be stabilized exponentially.

If x0(0) = 0, take u0 = k (nonzero constant), then x0(t)
= kt. It is obvious that x0(t) will be not zero after a time
limit T . Hence, switch to (63), (61) and (62). System (54)
can be stabilized finally.

Therefore, system (54) can be exponentially stabilized
by using state-scaling and switching strategies. ¤

4.3.2 Simulation

The simulations are conducted for systems (29) and (54).
For system (54), let the initial value is [x0(0), x1(0),

x2(0), x3(0), x4(0)] = [0.7854 rad, −0.8247 cm, −0.5 cm,
0.5498 cm, 0.6 cm]. Because x0(0) = 0.7854 6= 0, so x0 =
x0(t) 6= 0 due to formula (57). Take state transformation
(58) and choose control input ui (i = 0, 1, 2) as (63). ki

and pi (i = 1, 2, 3, 4) satisfy (61) and (62) with parameters
λ0 = 1, k1 = 5, k2 = −2, p3 = 6, p4 = −3, r1 = 1, r2 = 3,
r = 1.5. Then, the trajectories of states xi (i = 0, 1, 2, 3, 4)
are obtained. They are shown in Figs. 3 and 4 below. The
trajectories of control inputs ui (i = 0, 1, 2) can also be
obtained which are shown in Fig. 5.

For system (29), the trajectories of xm, ym, θ, β1, and β2

with respect to time are obtained by using (30), (31) and
the results or method above. They are shown in Figs. 6 ∼ 8
respectively. Simulation results illustrate that all trajecto-
ries converge to the origin smoothly and rapidly in a short
time. This demonstrate the effectiveness of the proposed
control strategy and robust exponential stabilization.

Fig. 3 The trajectories of state x0, x1, x2 with respect to time

Fig. 4 The trajectories of state x3 and x4 with respect to time
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Fig. 5 The trajectories of input u0, u1, u2 with respect to time

Fig. 6 The trajectories of xm and ym with respect to time

Fig. 7 The trajectory of θ with respect to time

5 Conclusions and future work

In this paper, we provide a summary of recent develop-
ment of the robust stabilizing problems with uncertainties.
It consists of the various uncertain chained models, control
methodologies, and results proposed over past ten years.
Based on the visual feedback, we obtain a few new ex-
citing uncertain chained models by using the state and in-
put transformations for nonholonomic kinematic systems of
four types of NWMR, a car towing a single trailer and tow-
ing n trailers. Then, several new general uncertain chained

Fig. 8 The trajectories of β1 and β2 with respect to time

models are proposed in addition. Novel time-varying con-
trollers are presented to stabilize the uncertain chained sys-
tems by exploiting a kind of new two-step technique or us-
ing switching technology for type (2, 0), type (1, 1), and
type (1, 2) robots. Simulation results demonstrate the ef-
fectiveness of the proposed control strategy and robust ex-
ponential stabilization for type (1, 2) robot.

As presented in Section 3, it is obviously seen that there
are a lot of uncertain chained systems in practice. They do
not satisfy the triangularity conditions. For type (1, 1) and
type (1, 2) robots, the stabilization problems in Section 4
are only discussed in particular case. As for other cases such
as θ0 6= 0 and α1 6= α2 unknown, they will be discussed in
the future. The stabilizing problems of systems (38)∼ (41)
are still open.
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