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Stability and Stabilization of

Networked Control Systems with

Bounded Packet Dropout
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Abstract In this paper, the stability and stabilization prob-
lems of a class of networked control systems (NCSs) with
bounded packet dropout are investigated. An iterative approach
is proposed to model the NCSs with bounded packet dropout as
Markovian jump linear systems (MJLSs). The transition prob-
abilities of MJLSs are partly unknown due to the complexity
of network. The system under consideration is more general,
which covers the systems with completely known and completely
unknown transition probabilities as two spacial cases. More-
over, both sensor-to-controller and controller-to-actuator packet
dropouts are considered simultaneously. Sufficient conditions for
stochastic stability and stabilization of the underlying systems
are derived via linear matrix inequalities (LMIs) formulation.
Lastly, two illustrative examples are given to demonstrate the
effectiveness of the proposed results.
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Networked control systems (NCSs) are feedback control
systems with control loops closed via digital communica-
tion channels. Compared with the traditional point-to-
point wiring, the use of the communication channels can
reduce the costs of cables and power, simplify the instal-
lation and maintenance of the whole system, and increase
the reliability. The NCSs have many industrial applications
in automobiles, manufacturing plants, aircrafts, and HVAC
systems[1]. However, the insertion of communication net-
works in feedback control loops makes the NCSs analysis
and synthesis complex; see [2−4] and the references therein,
where much attention was paid to the delayed data pack-
ets of an NCS due to network transmissions. In fact, data
packets through networks suffer not only transmission de-
lays, but also, possibly, packet dropout[5−6]; the latter is
a potential source of instability and poor performance in
NCSs because of the critical real-time requirement in con-
trol systems. How such packet dropout affects stability and
performance of NCSs is the focused issue in this paper.

Packet dropout is one of the most important and spe-
cial issues of NCSs. Hence, the effect of packet dropout
on the stability and performance of NCSs has received
great attention[7−12]. Two effective approaches have been
adopted to deal with the packet dropout. The first is asyn-
chronous dynamical systems (ADSs) approach[7−9]. Based
on ADSs theory, a criterion to check whether the NCS is
stable at a certain rate of packet dropout and the maxi-
mum packet dropout rate under which the overall system
remains stable were proposed in [7]. However, the stabil-
ity condition and controller design given in [7] were de-
rived based on the assumption that packet dropout exists
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only in the sensor-to-controller side. Recently, some re-
sults were obtained in [8−9], where ADSs were introduced
to model NCSs with packet dropouts on both sensor-to-
controller and controller-to-actuator sides. The other is
switched system approach[10−11]. The packet dropout pro-
cess was modeled as an arbitrary but finite switching signal
in [10−11]. Based on the switching systems theory, the sta-
bility and stabilization conditions were derived via linear
matrix inequalities (LMIs) formulation.

On the other hand, Markovian jump linear systems
(MJLSs) have been extensively studied in the past

decades[12−16]. An iterative approach was proposed to
model NCSs with Markovian packet dropout processes as
MJLSs in [17−19]. Based on MJLSs theory, the stability
and stabilization conditions were derived via LMIs formu-
lation. As a dominant factor, the transition probabilities
in the jumping process determine the system behavior to a
large extent. The analysis and synthesis results in [17−19]
were based on the assumption of the complete knowledge
of the transition probabilities. However, in almost all types
of communication networks, either the variation of delays
or the packet dropouts are vague and random in different
running periods of networks. Thus, all or part of the el-
ements in the transition probabilities matrix are hard or
costly to obtain. To the best of our knowledge, the sta-
bility and stabilization problems for NCSs with partly un-
known transition probabilities have not been fully investi-
gated to date. Especially, for the case where both sensor-
to-controller and controller-to-actuator packet dropouts are
considered simultaneously, very few results related to NCSs
are available in the existing literature, which motivates the
study of this paper.

In this paper, the stability and stabilization problems of
a class of NCSs with bounded packet dropout are studied.
NCSs with bounded packet dropout are modeled as MJLSs
with partly unknown transition probabilities. The suffi-
cient conditions for stochastic stability and stabilization of
the underlying systems are derived via LMIs formulation.
Lastly, an illustrative example is given to demonstrate the
effectiveness of the proposed results.

This paper is organized as follows. An iterative method
to model NCSs with bounded packet dropout as MJLSs is
proposed in Section 1; the stochastic stability and stabiliza-
tion conditions for NCSs are derived via LMIs in Section 2;
Section 3 provides two numerical examples to illustrate the
effectiveness of our results; Finally, Section 4 gives some
concluding remarks.

1 Problem formulation and preliminaries

A typical NCS as depicted in Fig. 1 consists of three com-
ponents: a nominal plant to be controlled, a network such
as the Internet, and a controller. In this paper, it is as-
sumed that the nominal plant is described by

x(k + 1) = Ax(k) + Bu(k) (1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the input.
A and B are known real constant matrices with appropriate
dimensions.

We make the following assumptions about the NCS:
1) Networks exist between sensor and controller, and be-

tween controller and actuator;
2) The sensor is clock driven, the controller and the ac-

tuator are event driven;
3) The data are transmitted in a single packet at each

time step.
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Fig. 1 Illustration of NCSs over communication network

Let I = {i1, i2, · · · }, which is a subsequence of N =
{1, 2, · · · }, and denote the sequence of time points of suc-
cessful data transmission from sensor to actuator. The
state feedback controller law is

u(k) = Kx(k) (2)

where K ∈ Rm×n is to be designed. From the viewpoint
of the zero-order hold, the control input is

u(l) = u(ik) = Kx(ik), ik ≤ l ≤ ik+1 − 1

Thus, the closed-loop system is

x(l + 1) = Ax(l) + BKx(ik), ik ≤ l ≤ ik+1 − 1 (3)

From the closed-loop system (3), we can obtain

x(ik+1) =


Aik+1−ik +

ik+1−ik−1∑
r=0

ArBK


 x(ik), ik ∈ I

(4)
Define the packet dropout process as follows:

r(ik) = ik+1 − ik (5)

Then, the closed-loop system (4) can be rewritten as an
MJLS:

x(ik+1) =


Ar(ik) +

r(ik)−1∑
r=0

ArBK


 x(ik), ik ∈ I (6)

The packet dropout process {r(ik), ik ≥ 0} is described by
a discrete-time homogeneous Markov chain, which takes
values in the finite state space S = {1, 2, · · · , s} with mode
transition probabilities:

πij = P(r(ik+1) = j|r(ik) = i) ≥ 0, ∀ i, j ∈ S
where

s∑
j=1

πij = 1

and
s = max

ik∈I
(ik+1 − ik)

The transition probabilities matrix is defined as:

Π =




π11 π12 · · · π1s

π21 π22 · · · π2s

...
...

. . .
...

πs1 πs2 · · · πss




Remark 1. It is worth pointing out that the packet
dropout process {r(ik), ik ≥ 0} includes both sensor-
to-controller and controller-to-actuator packet dropouts.
However, the results in [7, 10, 18] were derived based on the

assumption that packet dropout exists only in the sensor-
to-controller side.

It is noticed that the ideal knowledge about the
transition probabilities of the packet dropout process
are definitely expected to simplify the system analysis
and design. However, the likelihood of obtaining such
available knowledge is actually questionable, and the cost
is probably expensive due to the complexity of networks.
Hence, it is necessary to discuss packet dropout process
with partly unknown transition probabilities, i.e., some
elements of matrix Π are unknown. For instant, for system
(6) with s = 4, the transition probabilities matrix Π may
be as

Π =




π11 ◦ π13 ◦
◦ ◦ ◦ π24

π31 ◦ π33 ◦
◦ ◦ π43 π44




where “◦” represents the inaccessible element.
We have the following definitions for the packet dropout

process (5).
Definition 1. Packet dropout process (5) is said to

be partly-Markovian if part of elements of the transition
probabilities matrix Π are unknown.

Definition 2. Packet dropout process (5) is said to be
completely-Markovian if all the elements of the transition
probabilities matrix Π are known.

Definition 3. Packet dropout process (5) is said to be
arbitrary if all the elements of the transition probabilities
matrix Π are unknown.

Denote
S = Si

K + Si
UK, ∀ i ∈ S

with

Si
K = {j : πij is known} (7)

Si
UK = {j : πij is unknown}

If Si
K 6= ∅, it is further described as

Si
K = (Ki

1, · · · ,Ki
m), 1 ≤ m ≤ N (8)

where Ki
m ∈ N represents the m-th known element with

the index Ki
m in the i-th row of matrix Π.

We have the following definition of stochastic stability
for system (6).

Definition 4. System (6) is said to be stochastically
stable if, for any initial condition x0 ∈ Rn and r0 ∈ S, the
following inequality holds

E

{ ∞∑

k=0

‖x(k)‖2|x0, r0

}
< ∞

To this end, the following lemmas will be essential for the
proofs in the next section and their proofs can be found in
the cited references.

Lemma 1[17]. System (6) is stochastically stable if and
only if there exist a set of symmetric and positive definite
matrices Pi, i ∈ S satisfying

s∑
j=1

πij

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
− Pi < 0

where

Bj =

j−1∑
r=0

ArB (9)
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Lemma 2[20]. For any matrices U ∈ Rn×n and V ∈
Rn×n, if the matrix V satisfies V > 0, then we have

UV −1UT ≥ U + UT − V

Lemma 3[11]. For a given symmetric matrix W =[
W11 W12

WT
12 W22

]
, where W11 ∈ Rp×p, W22 ∈ Rq×q, and

W12 ∈ Rp×q, the following three conditions are mutually
equivalent:

1) W < 0;
2) W11 < 0, W22 −WT

12W
−1
11 W12 < 0;

3) W22 < 0, W11 −W12W
−1
22 WT

12 < 0.

2 Main results
In this section, we will develop the stability and stabi-

lization results for the closed-loop NCS (6). The follow-
ing theorem presents a sufficient condition for the stochas-
tic stability of the considered system with partly unknown
transition probabilities.

Theorem 1. Consider the closed-loop NCS (6) with
partly-Markovian packet dropout process. If there exists
matrix Pi > 0, i ∈ S such that

∑

j∈Si
K

πij(A
j + BjK)TPj(A

j + BjK)−

 ∑

j∈Si
K

πij


 Pi < 0

(10)(
Aj + BjK

)T

Pj

(
Aj + BjK

)
−Pi < 0, ∀ j ∈ Si

UK (11)

where Bj is defined in (9), then system (6) is stochastically
stable.

Proof. Based on Lemma 1, we know that system (6) is
stochastically stable if

s∑
j=1

πij

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
− Pi < 0 (12)

Note that ∑
j∈S

πij = 1

Then, we can rewrite the left-hand side of (12) as

Ξi =
∑
j∈S

πij

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
−

(∑
j∈S

πij

)
Pi

Thus, from (7) we have

Ξi =
∑

j∈Si
K

πij

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
+

∑

j∈Si
UK

πij

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
−


 ∑

j∈Si
K

πij


 Pi −


 ∑

j∈Si
UK

πij


 Pi =

∑

j∈Si
UK

πij

((
Aj + BjK

)T

Pj

(
Aj + BjK

)
− Pi

)
+

∑

j∈Si
K

πij

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
−

(∑
j∈Si

K
πij

)
Pi

Since πij ≥ 0, ∀ j ∈ Si
UK, it is straightforward that Ξi < 0

if (10) and (11) hold. Therefore, system (6) is stochastically
stable against the partly unknown transition probabilities
(7). ¤

Remark 2. It is noticed that if Si
UK = ∅, ∀ i ∈ S, the

underlying system is the one with completely known tran-
sition probabilities, which is the Markovian packet dropout
process with known transition probabilities[17−19]. On the
other hand, if Si

K = ∅, ∀ i ∈ S, the underlying system is
the one with completely unknown transition probabilities,
which is an arbitrary packet dropout process[17, 19].

The following theorem gives a sufficient stochastic stabi-
lization condition for discrete-time system (1) controlled by
(3) over network with a partly-Markovian packet dropout
process.

Theorem 2. Consider the closed-loop NCS (6) with
partly-Markovian packet dropout process. If there exists
matrix Xi > 0, i ∈ S, G ∈ Rn×n and Y ∈ Rm×n such
that

[
−G−GT +

(∑
j∈Si

K
πij

)−1

Xi Li
K

∗ −X i
K

]
< 0 (13)

[−G−GT + Xi (AjG + BjY )T

∗ −Xj

]
< 0, ∀ j ∈ Si

UK

(14)
where

Li
K =

[√
πiKi

1
(AK

i
1G + BKi

1
Y )T · · ·

√
πiKi

m
(AK

i
mG + BKi

m
Y )T

] (15)

X i
K = diag

{
XKi

1
, · · · , XKi

m

}
, ∀ j ∈ Si

K (16)

with Ki
1, · · · ,Ki

m described in (8), then NCS (6) is stochas-
tically stable. Moreover, if the LMIs (13) and (14) have
solutions, an admissible controller gain is given by

K = Y G−1 (17)

Proof. From (13), (14), and Lemma 3, we have

∑

j∈Si
K

πij(A
jG + BjY )TPj(A

jG + BjY ) −

G−GT +


 ∑

j∈Si
K

πij



−1

Xi < 0, ∀ j ∈ Si
K

(
AjG + BjY

)T

Pj

(
AjG + BjY

)
−

G−GT + Xi < 0, ∀ j ∈ Si
UK

Denote P−1
i = Xi > 0. By Lemma 2, we can obtain

−GT


 ∑

j∈Si
K

πijPi


 G ≤ −G−GT +


 ∑

j∈Si
K

πij



−1

Xi

−GTPiG ≤ −G−GT + Xi
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Then, we have
∑

j∈Si
K

πij(A
jG + BjY )TPj(A

jG + BjY ) −

GT


 ∑

j∈Si
K

πijPi


 G ≤

∑

j∈Si
K

πij(A
jG + BjY )TPj(A

jG + BjY ) −

G−GT +


 ∑

j∈Si
K

πij



−1

Xi, ∀ j ∈ Si
K

(
AjG + BjY

)T

Pj

(
AjG + BjY

)
−GTPiG ≤

(
AjG + BjY

)T

Pj

(
AjG + BjY

)
−

G−GT + Xi, ∀ j ∈ Si
UK

Therefore,
∑

j∈Si
K

πij(A
jG + BjY )TPj(A

jG + BjY )−

GT


 ∑

j∈Si
K

πijPi


 G < 0, ∀ j ∈ Si

K

(
AjG + BjY

)T

Pj

(
AjG + BjY

)
−

GTPiG < 0, ∀ j ∈ Si
UK

Let Y = KG. Then, we have
∑

j∈Si
K

πij(A
jG + BjKG)TPj(A

jG + BjKG) −

GT


 ∑

j∈Si
K

πijPi


 G < 0, ∀ j ∈ Si

K

(
AjG + BjKG

)T

Pj

(
AjG + BjKG

)
−

GTPiG < 0, ∀ j ∈ Si
UK

which yields

GT


 ∑

j∈Si
K

πij(A
j + BjK)TPj(A

j + BjK)


 G −

GT


 ∑

j∈Si
K

πijPi


 G < 0, ∀ j ∈ Si

K

GT

((
Aj + BjK

)T

Pj

(
Aj + BjK

)
− Pi

)
G < 0,

∀ j ∈ Si
UK

which is equivalent to
∑

j∈Si
K

πij(A
j + BjK)TPj(A

j + BjK)−
∑

j∈Si
K

πijPi < 0

(
Aj + BjK

)T

Pj

(
Aj + BjK

)
− Pi < 0, ∀ j ∈ Si

UK

Thus, if (13) and (14) hold, (10) and (11) will be satisfied
by Theorem 1. In view of Theorem 1, system (6) is stochas-
tically stable. Moreover, the desired controller gain is given
by (17). ¤

Remark 3. From the development in the above the-
orems, one can clearly see that our obtained stability
and stabilization conditions actually cover the results for
completely-Markovian packet dropout process and arbi-
trary packet dropout process.

3 Numerical example
In this section, a numerical example and simulations are

given to illustrate the effectiveness of the proposed meth-
ods. Let us consider the nominal continuous time system
with no disturbance input[21]:

ẋ(t) = Āx(t) + B̄u(t)

where

Ā =



−1 0 −0.5
1 −0.5 0
0 0 0.5


 , B̄ =




0
0
1




When the plant is sampled with a sampling period T =
0.5 s, the discretized system is system (1) with

A =




0.6065 0 −0.2258
0.3445 0.7788 −0.0536

0 0 1.2840


 , B =



−0.0582
−0.0093
0.5681




Both the continuous time system and discretized system
are unstable because the eigenvalues of Ā are −0.5,−1, 0.5
and the eigenvalues of A are 0.7788, 0.6065, 1.2840. Fur-
thermore, we assume that the packet dropout upper bound
is s = 4 and the transition probabilities matrix is as follows:

Π =




0.3 ◦ 0.1 ◦
◦ ◦ 0.3 0.2
◦ 0.1 ◦ 0.3

0.2 ◦ ◦ ◦




Applying Theorem 2, we can obtain

X1 =




0.3242 −0.0532 0.0343
−0.0532 0.4437 0.0472
0.0343 0.0472 0.3594




X2 =




0.3670 −0.0698 0.0498
−0.0698 0.5212 0.0571
0.0498 0.0571 0.3999




X3 =




0.3095 −0.0599 0.0497
−0.0599 0.4339 0.0530
0.0497 0.0530 0.3258




X4 =




0.1671 −0.0280 0.0227
−0.0280 0.2264 0.0280
0.0227 0.0280 0.1814




and
Y =

[−0.0267 −0.0465 −0.5157
]

G =




0.1671 −0.0280 0.0227
−0.0280 0.2264 0.0280
0.0227 0.0280 0.1814




Therefore, the desired controller gain is given by

K = Y G−1 =
[
0.0584 0.0295 −0.9048

]



No. 1 SUN Ye-Guo and QIN Shi-Yin: Stability and Stabilization of Networked Control Systems with · · · 117

Secondly, let us consider the linearized state-space model
of motion about the upward unstable equilibrium position
of a pendulum:

ẋ(t) = Āx(t) + B̄u(t)

where

Ā =




0 1 0 0
63.25 0 0 0

0 0 0 1
−33.31 0 0 0


 , B̄ =




0
−520.72

0
804.13




When the plant is sampled with a sampling period T =
0.005 s, the discretized system is system (1) with

A =




1.0008 0.0050 0.0000 0.0000
0.3163 1.0008 0.0000 0.0000
−0.0004 −0.0000 1.0000 0.0050
−0.1666 −0.0004 0.0000 1.0000




B =




−0.0065
−2.6043
0.0101
4.0210




The packet dropout upper bound is s = 4 and the transition
probabilities matrix is as follows

Π =




0.3 ◦ 0.1 ◦
◦ ◦ 0.3 0.2
◦ 0.1 ◦ 0.3

0.2 ◦ ◦ ◦




Applying Theorem 2, we can obtain the controller gain,
which is given by

K =
[
34.9978 3.5963 18.1167 2.2212

]

4 Conclusions
In this paper, the stability and stabilization problems

of a class of NCSs with bounded packet dropout are in-
vestigated. The main contribution of this paper is that
both sensor-to-controller and controller-to-actuator packet
dropouts have been taken into account. Moreover, the
elements of the transition probabilities matrix are partly
unknown. The system under consideration is more gen-
eral, which covers the systems with completely known and
completely unknown transition probabilities as two spacial
cases. The sufficient conditions for stochastic stability and
stabilization of the underlying systems are derived via LMIs
formulation. Lastly, two illustrative examples are given to
demonstrate the effectiveness of the proposed results.
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