
Vol. 36, No. 12 ACTA AUTOMATICA SINICA December, 2010

Robust Exponential

Admissibility of Uncertain

Switched Singular Time-delay

Systems

LIN Jin-Xing1, 2 FEI Shu-Min1

Abstract This paper investigates the problem of robust ex-
ponential admissibility for a class of continuous-time uncertain
switched singular systems with interval time-varying delay. By
defining a properly constructed decay-rate-dependent Lyapunov
function and the average dwell time approach, a delay-range-
dependent sufficient condition is derived for the nominal system
to be regular, impulse free, and exponentially stable. This con-
dition is also extended to uncertain case. The obtained results
provide a solution to one of the basic problems in continuous-
time switched singular time-delay systems, that is, to identify
a switching signal for which the switched singular time-delay
system is regular, impulse free, and exponentially stable. Nu-
merical examples are given to demonstrate the effectiveness of
the obtained results.
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Switched systems have drawn considerable attention
since 1990s, due to their great flexibility in modeling of
event-driven systems, logic-based systems, parameter- or
structure-varying systems, and so on; for details, see [1−2]
and the references therein. Switched systems are a class of
hybrid systems, which consist of a collection of continuous-
or discrete-time subsystems and a switching rule that spec-
ifies the switching between them. It is commonly recog-
nized that there are three basic problems in stability anal-
ysis and design of switched systems[3]: 1) find conditions
for stability under arbitrary switching; 2) identify the lim-
ited but useful class of stabilizing switching signals; and
3) construct a stabilizing switching signal. Many effec-
tive methods have been presented to tackle these three
basic problems, such as the multiple Lyapunov function
approach[4], the piecewise Lyapunov function approach[5],
the switched Lyapunov function approach[6], and the dwell-
time or average dwell-time scheme[3, 7−10]. On the other
hand, time-delay is commonly encountered in many prac-
tical systems and is frequently a source of instability and
poor performance[11]. Therefore, the stability analysis of
switched time-delay systems has received more and more
attention in recent years[12−20].

As far as we know, singular systems also provide a nat-
ural framework for modeling of dynamic systems and de-
scribe a larger class of systems than state-space models[21].
Recently, many efforts have been done to the study of
switched singular systems and a great number of results
on stability and stabilization[22−25], reachability[26], and fil-
tering problem[27] have been obtained. For switched singu-
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lar time-delay (SSTD) systems, due to the coupling be-
tween the switching and the time-delay and because of
the algebraic constraints in singular model, the behavior
of such systems is much more complicated than that of
regular switched time-delay systems or switched singular
systems. To date, there are only a few results reported
on the SSTD systems. In [28], the robust stability and
H∞ control problems for discrete-time uncertain SSTD sys-
tems under arbitrary switching were discussed by using the
switched Lyapunov function method. In [29], a switching
signal was constructed to guarantee the asymptotic stabil-
ity of continuous-time SSTD systems. However, the afore-
mentioned results are focused on the basic problem 1)[28]

and problem 3)[29] for SSTD systems. Problem 2) is to
identify stabilizing switching signals on the premise that
all the individual subsystems of the switched systems are
stable. Basically, we will find that stability is ensured if
the switching is sufficiently slow[3], and it is well-known
that dwell time and average dwell time are two simple but
effective tools to define slow switching signals. In [7], it
was shown that if all the individual subsystems are expo-
nentially stable and that the dwell time of the switching
signal is not smaller than a certain lower bound, then the
switched system is exponentially stable. This result was ex-
tended to both continuous-time switched linear time-delay
systems[14] and discrete-time cases[15]. Unfortunately, so
far, to the best of the authors′ knowledge, solving the basic
problem 2) for SSTD systems via the dwell time or average
dwell time scheme remains open and unsolved. This forms
the motivation of this paper.

In this paper, we are concerned with the robust admis-
sibility problem for a class of continuous-time uncertain
switched singular systems with interval time-varying delay.
More precisely, a class of slow switching signals specified by
the average dwell time is identified to guarantee the expo-
nential admissibility of the considered system. In terms of
linear matrix inequalities (LMIs), a delay-range-dependent
sufficient condition, which is dependent on the switching
signal, is first derived for the nominal system to be regular,
impulse free, and exponentially stable by using a properly
constructed decay-rate-dependent Lyapunov function and
the average dwell time approach. Then, this condition is
extended to uncertain case. The effectiveness of the ob-
tained results is finally demonstrated by two illustrative
examples.

Notations. P > 0 (P ≥ 0) means that matrix P is pos-
itive definite (semi-positive definite). λmin(P ) (λmax(P ))
denotes the minimum (maximum) eigenvalue of symmetric
matrix P . Cn,d = C([−d, 0],Rn) denotes the Banach space
of continuous vector functions mapping the interval [−d, 0]
to Rn. Let xxxt ∈ Cn,d be defined by xxxt = xxx(t+θ), θ ∈ [−d, 0].
‖ · ‖ denotes the Euclidean norm of a vector and induced
norm of a matrix and ‖xxxt‖d = sup−d≤θ≤0‖xxx(t + θ)‖. The
superscript “T” represents matrix transposition, and the
symmetric terms in a matrix are denoted by “∗”.

1 Problem formulation
Consider a class of SSTD systems of the form:





Eẋxx(t) = (Aσ(t) +4Aσ(t))xxx(t) + (Adσ(t)+
4Adσ(t))xxx(t− d(t))

xxx(t) = φφφ(t), t ∈ [−d1 − d2, 0]
(1)

where xxx(t) ∈ Rn is the state, φφφ(t) ∈ Cn,d1+d2 is a compat-
ible vector valued initial function. σ(t) : [0, +∞) → I =
{1, 2, · · · , N} with integer N > 1 is the switching signal.
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The matrix E ∈ Rn×n may be singular and it is assumed
that rankE = r ≤ n. d(t) is a time-varying continuous
function that satisfies:

d1 ≤ d(t) ≤ d1 + d2, ḋ(t) ≤ µ (2)

where d1 ≥ 0, d2 > 0, and 0 ≤ µ < 1 are constants. For
each possible value σ(t) = i, i ∈ I, Ai and Adi are con-
stant real matrices with appropriate dimensions, and 4Ai

and 4Adi are unknown matrices representing parameter
uncertainties, and are assumed to be of the form

[ 4Ai 4Adi ] = MiFi[ Nai Ndi ] (3)

where Mi, Nai, and Ndi are known real constant matrices,
and Fi is the uncertain matrix satisfying

FT
i Fi ≤ I, i ∈ I (4)

Since rankE = r ≤ n, there exist non-singular matrices P ,

Q ∈ Rn×n such that PEQ =
[

Ir 0
0 0

]
. In this paper,

without loss of generality, let

E =

[
Ir 0
0 0

]
(5)

Corresponding to the switching signal σ(t), we denote the
switching sequence by S = {(i0, t0), · · · , (ik, tk)|ik ∈ I, k =
0, 1, · · · } with t0 = 0, which means that the ik-th subsys-
tem is activated when t ∈ [tk, tk+1).

Definition 1[30, 14]. For the switching signal σ(t) and
any delay d(t) satisfying (2), the nominal part of system
(1)

{
Eẋxx(t) = Aσ(t)xxx(t) + Adσ(t)xxx(t− d(t))
xxxt0(θ) = xxx(t0 + θ), θ ∈ [−d1 − d2, 0]

(6)

is said to be
1) regular if det(sE−Ai) is not identically zero for each

σ(t) = i, i ∈ I;
2) impulse free if deg(det(sE − Ai)) = rankE for each

σ(t) = i, i ∈ I;
3) exponentially stable under the switching signal σ(t)

if the solution xxx(t) of system (6) satisfies ‖xxx(t)‖ ≤
ιe−λ(t−t0)‖xxxt0‖d1+d2 , ∀t ≥ t0, where λ > 0 and ι > 0 are
called the decay rate and decay coefficient, respectively;

4) exponentially admissible if it is regular, impulse free,
and exponentially stable under the switching signal σ(t).

Definition 2[1]. For the switching signal σ(t) and any
T2 > T1 ≥ 0, let Nσ(T1, T2) denotes the number of switch-
ing of σ(t) over (T1, T2). If Nσ(T1, T2) ≤ N0 +(T2−T1)/Ta

holds for Ta > 0, N0 ≥ 0, then Ta is called average
dwell time. As commonly used in the literature, we choose
N0 = 0.

The problem to be addressed in this paper can be for-
mulated as follows: given the SSTD system (1), identify a
class of switching signal σ(t) such that the system is expo-
nentially admissible under the switching signal σ(t).

Lemma 1. For any constant matrix Z ∈ Rn×n,
Z = ZT > 0, positive scalar α, and vector function
ẋxx : [−τ,∞) → Rn such that the following integration is
well defined, then

eατ − 1

α

∫ t

t−d(t)

eα(s−t)ẋxxT(s)ETZEẋxx(s)ds ≥
(∫ t

t−d(t)

Eẋxx(s)ds

)T

Z

(∫ t

t−d(t)

Eẋxx(s)ds

)
, t ≥ 0

where 0 ≤ d(t) ≤ τ .
Proof. Using Schur complement, we have

[
eα(s−t)ẋxxT(s)ETZEẋxx(s) ẋxxT(s)ET

∗ eα(t−s)Z−1

]
≥ 0

Integrating it from t− d(t) to t, we get




∫ t

t−d(t)

ẋxxT(s)ETZEẋxx(s)ds

∫ t

t−d(t)

ẋxxT(s)ETds

∗ (eατ − 1)Z−1

α


 ≥ 0

Using Schur complement again, we find that Lemma 1
holds. ¤

Lemma 2[31]. Given matrices Ω, Γ, and Ξ with ap-
propriate dimensions and with Ω symmetrical, then Ω +
ΓFΞ + ΞTFTΓT < 0 holds for any F satisfying FTF ≤
I, if and only if there exists a scalar ε > 0 such that
Ω + εΓΓT + ε−1ΞTΞ < 0.

In the following, for representation simplicity, we let

d̄2 = d1 + d2

2 Main results
First, we apply the average dwell time approach and the

piecewise Lyapunov function technique to investigate the
exponential admissibility for the SSTD system (6), and give
the following result.

Theorem 1. For prescribed scalars α > 0, d1 ≥ 0,
d2 > 0, and 0 ≤ µ < 1, if for each i ∈ I, there exist ma-
trices Qil > 0, Zil > 0, l = 1, 2, and Pi of the following
form

Pi =

[
Pi11 0
Pi21 Pi22

]
(7)

with Pi11 ∈ Rr, Pi11 > 0, and Pi22 being invertible, such
that

Φi =




Φi11 PT
i Adi Φi13 Φi14 Φi15

∗ Φi22 Φi23 Φi24 Φi25

∗ ∗ Φi33 0 0
∗ ∗ ∗ −Zi1 0
∗ ∗ ∗ ∗ −Zi2


 < 0 (8)

where c1 = (αd1)/(eαd1 − 1), c2 = (αd2)/(eαd2 − 1),

Φi11 = PT
i Ai + AT

i Pi +
∑2

l=1 Qil + αETPi − c1E
TZi1E,

Φi13 = c1E
TZi1E, Φi14 = d1A

T
i Zi1, Φi15 = d2e

1
2 αd1AT

i Zi2,

Φi22 = −(1− µ)e−αd̄2Qi2 − c2E
TZi2E, Φi23 = c2E

TZi2E,

Φi24 = d1A
T
diZi1, Φi25 = d2e

1
2 αd1AT

diZi2, and Φi33 =
−e−αd1Qi1 − c1E

TZi1E − c2E
TZi2E. Then, system (6)

with d(t) satisfying (2) is exponentially admissible for any
switching sequence S with average dwell time Ta ≥ T ∗a =
(ln β)/α, where β ≥ 1 satisfies

Pi11 ≤ βPj11, Qil ≤ βQjl, Zil ≤ βZjl,

l = 1, 2, ∀i, j ∈ I (9)

Moreover, an estimate on the exponential decay rate is
λ = 1

2
(α− (ln β)/Ta).

Proof. The proof is divided into three parts: 1) to show
the regularity and non-impulsiveness; 2) to show the expo-
nential stability of the differential subsystem; 3) to show
the exponential stability of the algebraic subsystem.
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Part 1): regularity and non-impulsiveness. According to
(5), for each i ∈ I, denote

Ai =

[
Ai11 Ai12

Ai21 Ai22

]
, Zi1 =

[
Zi111 Zi112

ZT
i112 Zi122

]
(10)

where Ai11 ∈ Rr and Zi111 ∈ Rr. From (8), it is easy to
see that Φi11 < 0, i ∈ I. Noting Qil > 0 and Zil > 0,
l = 1, 2, we get PT

i Ai + AT
i Pi + αETPi − c1E

TZi1E < 0.
Substituting Pi, Ai, Zi1, and E given as (7), (10), and (5)
into this inequality and using Schur complement, we have
AT

i22Pi22 + PT
i22Ai22 < 0, which implies that Ai22, i ∈ I, is

non-singular. Then by [21] and Definition 1, system (6) is
regular and impulse free.

Part 2): exponential stability of the differential subsys-
tem. Define the piecewise Lyapunov functional candidate
for system (6) as follows:

V (xxxt) = Vσ(t)(xxxt) =

xxxT(t)ETPσ(t)xxx(t) +
∫ t

t−d1

eα(s−t)xxxT(s)Qσ(t)1xxx(s)ds +

∫ t

t−d(t)

eα(s−t)xxxT(s)Qσ(t)2xxx(s)ds +

d1

∫ 0

−d1

∫ t

t+θ

eα(s−t)(Eẋxx(s))TZσ(t)1(Eẋxx(s))dsdθ +

d2

∫ −d1

−d̄2

∫ t

t+θ

eα(s−t+d1)(Eẋxx(s))TZσ(t)2(Eẋxx(s))dsdθ

(11)

Then, along the solution of system (6) for a fixed σ(t) = i,
i ∈ I, we have

V̇i(xxxt) + αVi(xxxt) ≤
2xxxT(t)PT

i Eẋxx(t) + xxxT(t)Qi1xxx(t)−
e−αd1xxxT(t− d1)Qi1xxx(t− d1) +

xxxT(t)Qi2xxx(t) + αxxxT(t)ETPixxx(t)−
(1− µ)e−αd̄2xxxT(t− d(t))Qi2xxx(t− d(t)) +

(Eẋxx(t))T(d2
1Zi1 + d2

2e
αd1Zi2)(Eẋxx(t))−

d1

∫ t

t−d1

eα(s−t)(Eẋxx(s))TZi1(Eẋxx(s))ds−

d2

∫ t−d1

t−d(t)

eα(s−t+d1)(Eẋxx(s))TZi2(Eẋxx(s))ds

By replacing Eẋxx(t) with Aixxx(t) + Adixxx(t− d(t)) and using
Lemma 1 and Schur complement, LMI (8) yields

V̇i(xxxt) + αVi(xxxt) < 0 (12)

As mentioned earlier, the ik-th subsystem is activated when
t ∈ [tk, tk+1). Integrating (12) from tk to tk+1 gives

V (xxxt) = Vσ(t)(xxxt) ≤ e−α(t−tk)Vσ(tk)(xxxtk ), t ∈ [tk, tk+1) (13)

Let xxx(t) =
[

xxx1(t)
xxx2(t)

]
, where xxx1(t) ∈ Rr and xxx2(t) ∈ Rn−r.

From (5) and (7), it can be seen that for each σ(t) = i,
i ∈ I, xxxT(t)ETPixxx(t) = xxxT

1 (t)Pi11xxx1(t). In view of this,
and using (9) and (11), at switching instant ti, we have

Vσ(ti)(xxxti) ≤ βV
σ(t−i )

(xxx
t−i

), i = 1, 2, · · · (14)

where t−i denotes the left limitation of ti. Then, it follows
from (13), (14), and the relation k = Nσ(t0, t) ≤ (t−t0)/Ta

that

Vσ(t)(xxxt) ≤ e−α(t−tk)βV
σ(t−i )

(xxx
t−i

) ≤ · · · ≤
e−α(t−t0)βkVσ(t0)(t0) ≤
e
−(α− ln β

Ta
)(t−t0)

Vσ(t0)(xxxt0) (15)

According to (11) and (15), we obtain

λ1‖xxx1(t)‖2 ≤ Vσ(t)(t), Vσ(t0)(xxxt0) ≤ λ2‖xxxt0‖2d̄2
(16)

where λ1 = min∀i∈I λmin(Pi11), and λ2 =
max∀i∈I λmax(Pi11) + 1

α
(1 − e−αd1)max∀i∈I λmax(Qi1) +

1
α
(1 − e−αd̄2)max∀i∈I λmax(Qi2) + d1

α2 (αd1 − 1 +

e−αd1)max∀i∈I(2λmax(Zi1)(‖Ai‖ + ‖Adi‖)) + 1
α2 (−d2 +

αd2
2e

αd1 + d2e
−αd2)max∀i∈I(2λmax(Zi2)(‖Ai‖ + ‖Adi‖)).

Then, combining (15) with (16) yields

‖xxx1(t)‖ ≤
√

λ2

λ1
e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(17)

Part 3): exponential stability of the algebraic subsystem.

Set Gi =

[
Ir −Ai12A

−1
i22

0 A−1
i22

]
and H =

[
Ir 0
0 In−r

]
. It

is easy to get

Ê = GiEH =

[
Ir 0
0 0

]

Âi = GiAiH =

[
Âi11 0

Âi21 In−r

]
(18)

P̂i = G−T
i PiH =

[
P̂i11 0

P̂i21 P̂i22

]

where Âi11 = Ai11−Ai12A
−1
i22Ai21, Âi21 = A−1

i22Ai21, P̂i11 =

Pi11, P̂i21 = AT
i12Pi11 + AT

i22Pi21, and P̂i22 = AT
i22Pi22. Ac-

cording to (18), denote

Âdi = GiAdiH =

[
Âdi11 Âdi12

Âdi21 Âdi22

]

Q̂il = HTQilH =

[
Q̂il11 Q̂il12

Q̂il21 Q̂il22

]
(19)

Ẑil = G−T
i ZilG

−1
i =

[
Ẑil11 Ẑil12

Ẑil21 Ẑil22

]
, l = 1, 2

Let ξξξ(t) =
[

ξξξ1(t)
ξξξ2(t)

]
= H−1xxx(t) = xxx(t), where ξξξ1(t) ∈ Rr

and ξξξ2(t) ∈ Rn−r. Then, for any σ(t) = i, i ∈ I, system
(6) is restricted system equivalent (r.s.e.) to

ξ̇ξξ1(t) = Âi11ξξξ1(t)+

Âdi11ξξξ1(t− d(t)) + Âdi12ξξξ2(t− d(t)) (20)

−ξξξ2(t) = Âi21ξξξ1(t)+

Âdi21ξξξ1(t− d(t)) + Âdi22ξξξ2(t− d(t)) (21)

From (8), we have

[
Φi11 PT

i Adi

∗ Φi22

]
< 0. Pre- and

post-multiplying this inequality by diag{HT, HT} and
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diag{H, H}, respectively, noting the expressions in (18) and
(19), and using Schur complement, we have


 P̂T

i22 + P̂i22 +
2∑

l=1

Q̂il22 P̂T
i22Âdi22

∗ −(1− µ)e−αd̄2Q̂i222


 < 0

Pre- and post-multiplying this inequality by [−ÂT
di22 I]

and its transpose, respectively, and noting Q̂i122 > 0 and

0 ≤ µ < 1, we obtain ÂT
di22Q̂i222Âdi22 − e−αd̄2Q̂i222 < 0.

Then, according to Lemma 7 in [32], we can deduce that
there exist constants ~i > 1 and ηi > 0 such that

‖(e 1
2 αd̄2Âdi22)

l‖ ≤ ~ie
−ηil, l = 0, 1, · · · (22)

Define

t0 = t, tj = tj−1 − d(tj−1), j = 1, 2, · · · (23)

‖Â21‖ = max
∀i∈I

‖Âi21‖, ‖Âd21‖ = max
∀i∈I

‖Âdi21‖,

‖Âd22‖ = max
∀i∈I

‖Âdi22‖, ∀i ∈ I (24)

As mentioned above, for t ∈ [tk, tk+1), the ik-th subsystem
is activated. Then, from (21) and (23), we have

ξξξ2(t) = −Âik21ξξξ1(t
0)− Âdik21ξξξ1(t

1)− Âdik22ξξξ2(t
1) (25)

Similarly, it can be obtained that ξξξ2(t
1) =

−Âik21ξξξ1(t
1) − Âdik21ξξξ1(t

2) − Âdik22ξξξ2(t
2). Substitut-

ing this into (25), we get ξξξ2(t) = (−Âdik22)
2ξξξ2(t

2) −∑1
j=0 (−Âdik22)

j(Âik21ξξξ1(t
j) + Âdik21ξξξ1(t

j+1)). Contin-

uing in the same manner and noting that tj < tj−1, then
there exists a finite positive integer Tik such that

ξξξ2(t) = (−Âdik22)
Tik ξξξ2(t

Tik )−
Tik

−1∑
jik

=0

(−Âdik22)
jik×

(Âik21ξξξ1(t
jik ) + Âdik21ξξξ1(t

jik
+1)) (26)

where tTik ∈ (tk−1, tk] and tTik → tk. When t ∈ [tk−1, tk),
the ik−1-th subsystem is activated. Then, following a sim-
ilar procedure as the above, there exists a finite positive
integer Tik−1 such that

ξξξ2(t
Tik ) = (−Âdik−122)

Tik−1ξξξ2(t
Tik

+Tik−1 ) −
Tik

+Tik−1−1∑
jik−1=Tik

(−Âdik−122)
jik−1−Tik×

(Âik−121ξξξ1(t
jik−1 ) + Âdik−121ξξξ1(t

jik−1+1
))

where t
Tik

+Tik−1 ∈ (tk−2, tk−1] and t
Tik

+Tik−1 → tk−1.
After k-times iterative manipulations, t belongs to [t0, t1),
and there exists a finite positive integer Ti0 such that

ξξξ2(t
Tik

+···+Ti1 ) = (−Âdi022)
Ti0ξξξ2(t

Tik
+···+Ti0 )−

Tik
+···+Ti0−1∑

ji0=Tik
+···+Ti1

(−Âdi022)
ji0−Tik

−···−Ti1×

(Âi021ξξξ1(t
ji0 ) + Âdi021ξξξ1(t

ji0+1))

where tTik
+···+Ti0 ∈ (−d̄2, t0] and tTik

+···+Ti0 → t0. By a
simple induction, we have

ξξξ2(t) =

[
k∏

j=0

(−Âdij22)
Tij

]
ξξξ2(t

Tik
+···+Ti1+Ti0 ) −

Tik
−1∑

jik
=0

(−Âdik22)
jik Âik21ξξξ1(t

jik ) −

Tik
−1∑

jik
=0

(−Âdik22)
jik Âdik21ξξξ1(t

jik
+1) −

k∑
p=1

[
k∏

q=p

(−Âdiq22)
Tiq

]
×

Tik
+···+Tip−1−1∑

jip−1=Tik
+···+Tip

(ϕϕϕ1(t) + ϕϕϕ2(t)) (27)

where

ϕϕϕ1(t) = (−Âdip−122)
jip−1−Tik

−···−Tip Âip−121ξξξ1(t
jip−1 )

ϕϕϕ2(t) = (−Âdip−122)
jip−1−Tik

−···−Tip Âdip−121ξξξ1(t
jip−1+1

)

Therefore, from (24) and (27), and noting tTik
+···+Ti0 ∈

(−d̄2, t0], we obtain

‖ξξξ2(t)‖ ≤ ∆1 + ∆2 + ∆3 + ∆4 + ∆5 (28)

where

∆1 =

[
k∏

j=0

‖(Âdij22)
Tij ‖

]
‖xxxt0‖d̄2

∆2 = Â21

Tik
−1∑

jik
=0

‖(Âdik22)
jik ‖‖ξξξ1(t

jik )‖

∆3 = Âd21

Tik
−1∑

jik
=0

‖(Âdik22)
jik ‖‖ξξξ1(t

jik
+1)‖

∆4 = Â21

k∑
p=1

{[
k∏

q=p

‖(Âdiq22)
Tiq ‖

]
ϕ′1

}

∆5 = Âd21

k∑
p=1

{[
k∏

q=p

‖(Âdiq22)
Tiq ‖

]
ϕ′2

}

with

ϕ′1 =

Tik
+···+Tip−1−1∑

jip−1=Tik
+···+Tip

‖(Âdip−122)
jip−1−Tik

−···−Tip ‖ ×

‖ξξξ1(t
jip−1 )‖

ϕ′2 =

Tik
+···+Tip−1−1∑

jip−1=Tik
+···+Tip

‖(Âdip−122)
jip−1−Tik

−···−Tip ‖ ×

‖ξξξ1(t
jip−1+1

)‖
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Note

t0 ≥ tTik
+···+Ti0 = t−

Tik
+···+Ti0−1∑

j=0

d(tj) ≥

t− (Tik + · · ·+ Ti0)d̄2

Using (22) and the relation Ta ≥ T ∗a = (ln β)/α, the first
term in (28) can be estimated as

∆1 =

[
k∏

j=0

‖(e 1
2 αd̄2Âdij22)

Tij ‖e− 1
2 α(Tik

+···+Ti0 )d̄2

]
×

‖xxxt0‖d̄2
≤

[
k∏

j=0

~ij e
−ηij

Tij

]
e−

1
2 α(t−t0)‖xxxt0‖d̄2

≤
[

k∏
j=0

~ij e
−ηij

Tij

]
e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
=

χ1e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(29)

By (17) and (22) ∼ (24), we get

‖(Âdik22)
jik ‖‖ξξξ1(t

jik )‖ ≤

‖(Âdik22)
jik ‖

√
λ2

λ1
e
− 1

2 (α− ln β
Ta

)(t
jik−t0)×

‖xxxt0‖d̄2
≤

√
λ2

λ1
‖e 1

2 αd̄2(Âdik22)
jik ‖×

e
− 1

2 (α− ln β
Ta

)(t
jik

−1−t0)‖xxxt0‖d̄2
≤ · · · ≤

√
λ2

λ1
‖(e 1

2 αd̄2Âdik22)
jik ‖×

e
− 1

2 (α− ln β
Ta

)(t0−t0)‖xxxt0‖d̄2
≤

√
λ2

λ1
~ike−ηik

jik e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(30)

Then, the second term in (28) can be estimated as

∆2 ≤ Â21

√
λ2

λ1




Tik
−1∑

jik
=0

~ike−ηik
jik


×

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
≤

~ik Â21

√
λ2

λ1

eηik

eηik − 1
×

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
=

χ2e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(31)

Similarly, the third term in (28) can be bounded by

∆3 ≤ ~ike
1
2 αd̄2Âd21

√
λ2

λ1

eηik

eηik − 1
×

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
=

χ3e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(32)

On the other hand, following a similar deduction as that in

(30), we obtain

ϕ′1 ≤
√

λ2

λ1
(e

1
2 αd̄2)Tik

+···+Tip (~ip−1 ×

e
−ηip−1 (jip−1−Tik

−···−Tip )
)×

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2

Then, considering this and (22), the fourth term in (28)
can be estimated as

∆4 ≤ Â21

√
λ2

λ1

k∑
p=1

[
k∏

q=p

‖(e 1
2 αd̄2Âdiq22)

Tiq ‖
]
×

Tik
+···+Tip−1−1∑

jip−1=Tik
+···+Tip

~ip−1e
−ηip−1 (jip−1−Tik

−···−Tip ) ×

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
≤

Â21

√
λ2

λ1

k∑
p=1

~ip−1

[
k∏

q=p

~iqe−ηiq Tiq

]
×

e
ηip−1

e
ηip−1 − 1

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
=

χ4e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(33)

Similarly, the fifth term in (28) can be bounded by

∆5 ≤ e
1
2 αd̄2Âd21

√
λ2

λ1
×

k∑
p=1

{
~ip−1

[
k∏

q=p

~iqe−ηiq Tiq

]
e

ηip−1

e
ηip−1 − 1

}
×

e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
=

χ5e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(34)

Therefore, using (29), (31)∼ (34), ‖ξξξ2(t)‖ can be estimated
as

‖ξξξ2(t)‖ ≤ (χ1 + χ2 + χ3 + χ4 + χ5)×
e
− 1

2 (α− ln β
Ta

)(t−t0)‖xxxt0‖d̄2
(35)

Combining (17) and (35) yields that system (6) is expo-
nentially stable for any switching sequence S with average
dwell time Ta ≥ T ∗a = (ln β)/α. ¤

Remark 1. In terms of LMIs, Theorem 1 presents a
delay-range-dependent exponential admissibility condition
for the switched singular systems with interval time-varying
delay. It is noted that this condition is obtained by us-
ing the integral inequality (Lemma 1); no free-weighting
matrices are introduced in the derivation of Theorem 1.
Therefore, the condition proposed here involves much less
decision variables than those obtained by using the free-
weighting matrices method[14, 17, 19−20] if the same Lya-
punov function is chosen. It is also noted that the Lyapunov
function (11) not only makes use of the information on the
time-delay upper bound d̄2, but also uses the information
on the time-delay lower bound d1 and the time-delay inter-
val d2. Therefore, the stability condition in Theorem 1 is
expected to be less conservative.

Remark 2. Equation (27) plays an important role in
analyzing the exponential stability of the algebraic subsys-
tem, which can be seen as a generalization of the iterative
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Table 1 Comparison of allowable upper bound d̄2 for different d1 in Example 1

Methods d̄2 Number of variables

Lemma 1[19] 1.130 (d1 = 0.1) 1.099 (d1 = 0.3) 1.084 (d1 = 0.7) 84

Theorem 1[20] 1.130 (d1 = 0.1) 1.099 (d1 = 0.3) 1.084 (d1 = 0.7) 84

Theorem 1 1.134 (d1 = 0.1) 1.133 (d1 = 0.3) 1.133 (d1 = 0.7) 30

equation in [30] for non-switched singular time-delay sys-
tem to SSTD system.

Remark 3. If β = 1 in Ta ≥ T ∗a = (ln β)/α, which leads
to Pi11 ≡ Pj11, Qil ≡ Qjl, Zil ≡ Zjl, l = 1, 2, ∀i, j ∈ I, and
T ∗a = 0, then system (6) possesses a common Lyapunov
function and the switching signals can be arbitrary.

Now, extending Theorem 1 to uncertain system (1) yields
the following theorem.

Theorem 2. For prescribed scalars α > 0, d1 ≥ 0,
d2 > 0, and 0 ≤ µ < 1, if for each i ∈ I, there exist matri-
ces Pi of (7), Qil > 0, Zil > 0, l = 1, 2, and scalar εi > 0,
such that




Φi Γi εiΞ
T
i

∗ −εiI 0
∗ ∗ −εiI


 < 0 (36)

where Φi follows the same definition as that in Theorem 1,

Γi = [ MT
i Pi 0 0 d1M

T
i Zi1 d2e

1
2 αd1MT

i Zi2 ]T and

Ξi = [ Nai Ndi 0 0 0 ]. Then, system (1) with d(t)
satisfying (2) is robustly exponentially admissible for any
switching sequence S with average dwell time Ta ≥ T ∗a =
(ln β)/α, where β ≥ 1 satisfies (9). Moreover, an estimate
on the exponential decay rate is λ = 1

2
(α− (ln β)/Ta).

Proof. By Theorem 1 and Lemma 2 and using the idea
of generalized quadratic stability, Theorem 2 can be easily
proved. So the proof is omitted. ¤

Remark 4. In this paper, the derivative matrix E is as-
sumed to be switch-mode-independent. If E is also switch-
mode-dependent, then E is changed to Ei, i ∈ I, and
the transformation matrices P and Q should become Pi

and Qi so that PiEiQi =

[
Iri 0
∗ 0

]
. In this case, the

state of the transformed system becomes x̃xx(t) = Q−1
i (t) =

[x̃xxT
i1(t) x̃xxT

i2(t)]
T with x̃xxT

i1(t) ∈ Rri and x̃xxT
i1(t) ∈ Rn−ri ,

which means that there does not exist one common state
space coordinate basis for different subsystems; thus it
is rather complicated to discuss the transformed system.
Hence, some assumptions for Ei (for example, Ei, i ∈ I,

have the same right zero subspace[22]) should be given so
that Qi remains the same; in this case, the method pre-
sented in this paper is also valid. Nonetheless, the general
case with E being switch-mode-dependent is an interesting
problem for future investigation via other methods.

3 Numerical examples
Example 1. Consider the switched system (6) with

E = I, N = 2, and the following parameters, which are
borrowed from[19]

A1 =

[ −2 0
0 −0.9

]
, Ad1 =

[ −1 0
0 −1

]

A2 =

[ −2 0
0 −0.7

]
, Ad2 =

[ −1 0
−1 −1

]

For µ = 0.4, α = 0.5, and β = 1.1, employing the LMIs
in [19−20] and those in Theorem 1 yields an allowable up-
per bound d̄2 of the delay d(t) that guarantees the stability

of system (6). Table 1 shows the values of d̄2 for various
d1 and the number of involved variables by using different
methods. It is clear that Theorem 1 of this paper not only
gives better results than the criteria in [19−20] but also
reduces the computational complexity to some extent.

Example 2. Consider the switched system (1) with
N = 2 and the following parameters:

E =

[
1 0
0 0

]

A1 =

[
0.73 0
0 −1

]
, Ad1 =

[ −1.1 1
0 0.5

]

M1 =

[
0.1
0.1

]
, Na1 = [ 0.1 1 ], Nd1 = [ 0.1 0.1 ]

A2 =

[
0.4 0
−0.1 −1

]
, Ad2 =

[ −1 0.1
0 0.1

]

M2 =

[ −0.2
0.2

]
, Na2 = [ 0.2 0.5 ], Nd2 = [ 0.1 0.2 ]

and d1 = 0.1, d2 = 0.1, µ = 0.3, and α = 0.4. It can be
checked that the above two subsystems are both stable in-
dependently. Let β = 1; by simulation, it can be found that
there is no feasible solution to this case, which means that
there is no common Lyapunov function for all subsystems
(see Remark 3). Now, we consider the average dwell time
scheme. By analysis, it can be found that the allowable
minimum of β is βmin = 1.19 when α = 0.4 is fixed; in this
case T ∗a = (ln βmin)/α = 0.4349.

4 Conclusions
In this paper, the problem of robust exponential admis-

sibility for a class of continuous-time uncertain switched
singular systems with interval time-varying delay has been
investigated. A class of switching signals has been iden-
tified for the switched singular time-delay systems to be
robustly exponentially admissible under the average dwell
time scheme. Numerical examples have been provided to
demonstrate the effectiveness of the obtained results.
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