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Delayed-state-feedback Exponential Stabilization of

Stochastic Markovian Jump Systems with

Mode-dependent Time-varying State Delays
MA Li1, 2 DA Fei-Peng1 WU Ling-Yao1

Abstract In this paper, an improved mean-square exponential stability condition and delayed-state-feedback controller for stochas-
tic Markovian jump systems with mode-dependent time-varying state delays are obtained. First, by constructing a modified
Lyapunov-Krasovskii functional, a mean-square exponential stability condition for the above systems is presented in terms of linear
matrix inequalities (LMIs). Here, the decay rate can be a finite positive constant in a range and the derivative of time-varying
delays is only required to have an upper bound which is not required to be less than 1. Then, based on the proposed stability
condition, a delayed-state-feedback controller is designed. Finally, numerical examples are presented to illustrate the effectiveness of
the theoretical results.
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In practice, many dynamical systems have different
structures due to random and abrupt variations, such as
random failures of the components, changes in the intercon-
nection of subsystems, sudden environment changes, and so
on[1−2]. As we know, Markovian jump systems, which are
firstly introduced in [3] and modeled by a set of subsystems
with transitions among all the modes governed by a Markov
chain taking values in a finite set, are often employed to de-
scribe the above dynamical systems. This class of systems
can be regarded as a special case of hybrid systems, since
the states take continuous values and the jumping param-
eters take discrete values in a system simultaneously. A
great deal of attention has been devoted to the study of
Markovian jump systems. Among various research sub-
jects, the stability and control of Markovian jump systems
are significant research areas[4−13].

It has been recognized that time delays, which are fre-
quently encountered in practical systems, are the main
cause of instability and unsatisfactory performance[14].
Therefore, the study on Markovian jump systems with
time-delays has attracted much attention in the past years.
The stabilization problem of Markovian jump systems with
time-delays is studied in [1, 6, 12, 15]. It can be clearly
seen that the time delays are independent of the system
modes in the afore-mentioned references. As a matter of
fact, in many engineering applications, random delays are
unavoidably encountered, for instance, the utilization of a
multi-user network with random demands affecting the net-
work traffic could result in random delays in the feedback
loop[16]. Thus, the mode-dependent time delays should be
taken into account for Markovian jump systems. The prob-
lem of stabilization for discrete-time and continuous-time
Markovian jump systems with mode-dependent time-delays
has been considered in [2, 17] and [16, 18−20], respectively.

On the other hand, in many branches of science and in-
dustry, the signal transmission is usually a noisy process
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which happens as a result of random fluctuations due to
probabilistic reasons[21−23]. Hence, Markovian jump sys-
tems with time-delays are often corrupted by the noise
which can be approximated by Brownian motion. Re-
cently, this class of systems, that is stochastic Markovian
jump systems with time-delays, has received much atten-
tion. As far as the stability problem is concerned, many
results for Markovian jump systems with time-delays have
been extended to the stochastic case[4, 24−28]. The sufficient
condition of asymptotic stability is presented in [4] by us-
ing convergence theorem of nonnegative semimartingales.
Moreover, [24−28] investigate the problem of mean-square
exponential stability. In addition, due to the time spent
in transmissions, state-feedback controller is usually sub-
ject to delays. Therefore, the stabilization problem under
this case has received considerable attention. Recently, [29]
considers this problem for stochastic systems with constant
time-delays.

Although the afore-mentioned results are shown to be ef-
fective when solving the mean-square exponential stability
problem, the decay rate usually needs to satisfy some con-
straints. Then, under these restricted conditions, the decay
rate can be obtained by the following two steps. First, by
solving linear matrix inequalities (LMIs), one can achieve
the Lyapunov-Krasovskii functional matrices. Second, by
using the knowledge of Lyapunov-Krasovskii functional ma-
trices to solve a transcendental equation or several inequali-
ties, the value of decay rate can thus be obtained[20, 24−29].
Consequently, due to the inherent property of the corre-
sponding transcendental equation, the equation on decay
rate has only one unique solution. Therefore, the decay
rate will be a fixed value and cannot be adjusted to cater
design specifications[20, 24−28]. For the case when the decay
rate satisfies several inequalities, the computation process
aiming to obtain the decay rate is very complex[29]. Ref-
erences [30−31] also observe this problem and propose a
new method to achieve the exponential stability criterion
for time delay systems. However, this proposed approach
cannot be applied to systems with time-varying delays. Be-
sides, the derivative of time-varying delays is constrained
to be less than 1 in [12, 24−25, 27, 29]. As a result, the
obtained results in [12, 24−25, 27, 29] are invalid when the
derivative of time-varying delays equals to or is greater than
1. To the best of the authors′ knowledge, there is rela-
tively little attention paid to the problem of delayed-state-
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feedback exponential stabilization for stochastic Markovian
jump systems with mode-dependent time-varying state de-
lays.

Motivated by the above observations, in this paper, we
will not only deal with the mean-square exponential stabil-
ity problem, but will also design a delayed-state-feedback
controller for stochastic Markovian jump systems with
mode-dependent time-varying delays. In order to relax con-
straints on the decay rate and the derivative of time-varying
delay, by choosing a novel Lyapunov-Krasovskii functional
and making full use of the information of both the lower and
upper bound of time-varying delay, we develop an approach
to simultaneously weaken the above-mentioned constraints
on the decay rate and the derivative of time-varying delay.
Then, the sufficient conditions for mean-square exponen-
tial stability and delayed-state-feedback controller design
are proposed in terms of LMIs. Here, the derivative of
mode-dependent time-varying delays only needs to have an
upper bound which is not required to be less than 1. The
decay rate can be finite positive value in a range. Moreover,
the suboptimal upper bound of the decay rate can also be
computed by convex optimization algorithm conveniently
from the obtained LMIs. Finally, two numerical examples
are provided to verify the validity of the results obtained
in this paper.

Notations. Throughout this paper, Rn denotes the n
dimensional Euclidean space. The superscript “T” denotes
matrix transposition and “−1” denotes inverse matrix. “∗”
denotes transpose of the corresponding sub-matrix. The
notation X > Y , where X and Y are symmetric matrices,
means that X−Y is positive definite. |·| denotes Euclidean
norm of vectors and ‖·‖ denotes the spectral norm of matri-
ces. a∨b denotes max{a, b}. L2[0,∞) is the space of square-
integrable vector functions over [0,∞). (Ω,F , {Ft}t≥0, P )
is a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions (i.e., it is right continu-
ous and F0 contains all P -null sets). E{·} is the math-
ematical expectation with respect to probability measure
P . C([a, b];Rn) denotes the family of continuous functions
from [a, b] to Rn. Cb

F0([a, b];Rn) denotes the family of all
bounded, F0-measurable and C([a, b];Rn)-valued random
variables, where a ≤ b. If x(t) is a Rn-valued stochastic
process on t ∈ [−τ̄ ,∞), we let xt = {x(t+θ) : −τ̄ ≤ θ ≤ 0}
for t ≥ 0, which is regarded as a C([−τ̄ , 0];Rn)-valued
stochastic process.

1 Problem formulation

Consider the following class of stochastic Markovian
jump systems with mode-dependent time-varying state de-
lays:
dx(t) = [A(rt)x(t) + Ad(rt)x(t− τ(rt, t)) + C(rt)u(t)]dt +

[B(rt)x(t) + Bd(rt)x(t− τ(rt, t))]dω(t)

x(t) = φ(t), t ∈ [−τ̄ , 0] (1)

where x(t) ∈ Rn is the state, ω(t) is a one-dimensional
Brownian motion defined on probability space (Ω,F , P )

with E(ω(t)) = 0, E(ω2(t)) = t[32], u(t) ∈ Rp is the control
input, {rt}t≥0 is a continuous-time Markov chain taking
values in a finite set S = {1, 2, · · · , N}. Let Π = {πij :
i, j ∈ S} be the density matrix of Markov chain {rt}t≥0.

Thus, πij ≥ 0 for i 6= j and πii = −∑N
j=1,j 6=i πij . Further-

more, the transition probability of Markov chain {rt}t≥0

can be described as

P{rt+4 = j|rt = i} =

{
πij4+ o(4), i 6= j
1 + πii4+ o(4), i = j

where 4 > 0 and lim4→0(o(4)/4) = 0. τ(rt, t) denotes
the mode-dependent time-varying delay when the mode is
in rt. When rt = i, i ∈ S, τ(rt, t) is denoted by τi(t),
which satisfies 0 ≤ τ i ≤ τi(t) ≤ τ̄i < ∞ and τ̇i(t) ≤ di.

In (1), τ̄ = max{τ̄i, i ∈ S}, φ(t) ∈ Cb
F0([−τ̄ , 0];Rn) is

the initial data. In addition, we assume that Markov
chain {rt}t≥0 is independent of Brownian motion ω(t).
A(rt), Ad(rt), C(rt), B(rt), and Bd(rt) are known real ma-
trix functions of rt with appropriate dimensions.

In order to avoid complicated notations, for each possible
rt = i, i ∈ S, a matrix N(rt) will be denoted by Ni.
For example, A(rt) and Ad(rt) are denoted by Ai and Adi,
respectively.

Throughout this paper, we adopt the following defini-
tion.

Definition 1. The stochastic Markovian jump system
(1) is said to achieve mean-square exponential stability with
decay rate β if, when u(t) = 0, any φ(t) ∈ Cb

F0([−τ̄ , 0];Rn)
and initial mode r0 ∈ S, there exist constant scalars b > 0
and β > 0 such that

E{|x(t, φ, r0)|2} ≤ b sup
−τ̄≤θ≤0

|φ(θ)|2e−βt

where x(t, φ, r0) denotes the solution of system (1) at time
t under the initial conditions φ(·) and r0, and β is called
the decay rate.

It is well known that {xt, rt}t≥0 is a C([−τ̄ , 0];Rn)×S-

valued Markov process[25]. Its weak infinitesimal generator
L, acting on functional V (·, ·, ·) : C([−τ̄ , 0];Rn)×S×R+ →
R+, is defined by the following formula:

LV (xt, i, t) = lim
∆→0+

1

∆
{E[V (xt+∆, rt+∆, t + ∆)|xt, rt = i]−

V (xt, i, t)}
The main purpose of the rest of this paper is to obtain

sufficient conditions such that the following two require-
ments are satisfied:

1) The stochastic Markovian jump system (1) is mean-
square exponentially stable.

2) Design a delayed-state-feedback controller

u(t) = K(rt)x(t− τ(rt, t)) (2)

which can mean-square exponentially stabilize system (1),
where K(rt) is a controller gain matrix function to be de-
termined later.

For simplicity, let us introduce some notations as follows:

τ = min{τ i, i ∈ S}, η = max{|πii|, i ∈ S}
ϕ(t) = A(rt)x(t) + Ad(rt)x(t− τ(rt, t))

ψ(t) = B(rt)x(t) + Bd(rt)x(t− τ(rt, t))

Before giving the main results, we first present the fol-
lowing lemmas, which are important for the proof of main
theorems.

Lemma 1[33]. If for any constant matrix M ∈ Rn×n,
M = MT > 0, scalars b > a > 0, and vector function
f(·) : [a, b] → Rn, the integrations in the following are well
defined, then one has the following inequality:

{
∫ b

a

f(s)ds}TM{
∫ b

a

f(s)ds} ≤ (b− a)

∫ b

a

fT(s)Mf(s)ds

Lemma 2[32]. For any a, b ∈ R, a ≤ b and f(s) ∈
L2[a, b], we have

E

∫ b

a

f(s)dω(s) = 0



No. 11 MA Li et al.: Delayed-state-feedback Exponential Stabilization of · · · 1603

E{(
∫ b

a

f(s)dω(s))T(

∫ b

a

f(s)dω(s))} = E

∫ b

a

|f(s)|2ds

Lemma 3 (Gronwall-Bellman lemma)[34]. Let v(t)
and w(t) be real functions of t, Let w(t) ≥ 0 and c be

a real constant. If v(t) ≤ c +
∫ t

0
w(s)v(s)ds, then v(t) ≤

ce
∫ t
0 w(s)ds.

2 Main results

In this section, we first present a delay-range-dependent
and decay-rate-dependent sufficient condition, which guar-
antees the mean-square exponential stability for the follow-
ing system:

dx(t) = [A(rt)x(t) + Ad(rt)x(t− τ(rt, t))]dt +

[B(rt)x(t) + Bd(rt)x(t− τ(rt, t))]dω(t)

x(t) = φ(t), t ∈ [−τ̄ , 0] (3)

Theorem 1. For given finite constants β > 0, τ̄ > τ ≥
0, η > 0, and di, i ∈ S, if there exist matrices Q > 0, Q1 >
0, Q2 > 0, R > 0, Pi > 0 and any appropriately dimensional
matrices M1i, M2i, Nki, k = 1, 2, 3, for each i ∈ S, such that
the following LMI holds:



Θ1i Θ2i NT
3i −M1i −M1i −N1i

∗ Θ3i −NT
3i −M2i −M2i −N2i

∗ ∗ −e−βτQ1 0 0 −N3i

∗ ∗ ∗ −e−βτ̄Q2 0 0

∗ ∗ ∗ ∗ − 1

τ̄ − τ
R 0

∗ ∗ ∗ ∗ ∗ − 1

τ̄
R

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

BT
i Pi AT

i R BT
i M1i N1i

BT
diPi AT

diR BT
di M2i N2i

0 0 0 0 N3i

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−Pi 0 0 0 0

∗ − β

eβτ̄ − 1
R 0 0 0

∗ ∗ − β

eβτ̄ − 1
I 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I




< 0

(4)

where

Θ1i =

N∑
j=1

πijPj + βPi + PiAi + AT
i Pi + eβτ̄Q +

η

β
(eβ(2τ̄−τ) − eβτ̄ )Q + NT

1i + N1i + Q1 + Q2

Θ2i = PiAdi + M1i −N1i + NT
2i

Θ3i = [(di − 1) ∨ ((di − 1)eβ(τ̄−τ))]Q−NT
2i −N2i +

MT
2i + M2i

then system (3) is mean-square exponentially stable with
decay rate β.

Proof. Firstly, we choose a Lyapunov-Krasovskii func-
tional candidate for any t ≥ τ̄ as follows:

V (xt, rt, t) =

eβtV1(xt, rt) + V2(xt, rt, t) + V3(xt, rt, t) +

V4(xt, rt, t) + V5(xt, rt, t) + V6(xt, rt, t) (5)

where

V1(xt, rt) =xT(t)P (rt)x(t)

V2(xt, rt, t) =

∫ t

t−τ(rt,t)

eβ(s+τ̄)xT(s)Qx(s)ds

V3(xt, rt, t) =

∫ 0

−τ̄

∫ t

t+θ

eβ(s−θ)(ϕT(s)Rϕ(s) +

ψT(s)ψ(s))dsdθ

V4(xt, rt, t) = η

∫ −τ

−τ̄

∫ t

t+θ

eβ(s−θ−τ+τ̄)xT(s)Qx(s)dsdθ

V5(xt, rt, t) =

∫ t

t−τ

eβsxT(s)Q1x(s)ds

V6(xt, rt, t) =

∫ t

t−τ̄

eβsxT(s)Q2x(s)ds

For each rt = i, i ∈ S, by Itô formula[32] and the definition
of weak infinitesimal generator, it can be verified that

dV (xt, i, t) = LV (xt, i, t)dt + 2eβtxT(t)Piψ(t)dω(t) =

[βeβtV1(xt, i) + eβtLV1(xt, i) + LV2(xt, i, t) +

LV3(xt, i, t) + LV4(xt, i, t) + LV5(xt, i, t) +

LV6(xt, i, t)]dt + 2eβtxT(t)Piψ(t)dω(t) (6)

with

LV1(xt, i) = xT(t)(

N∑
j=1

πijPj +2PiAi)x(t)+2xT(t)PiAdi×

x(t−τi(t))+[Bix(t)+Bdix(t−τi(t))]
TPi×

[Bix(t) + Bdix(t− τi(t))]

LV2(xt, i, t) =

N∑
j=1

πij

∫ t

t−τj(t)

eβ(s+τ̄)xT(s)Qx(s)ds +

eβ(t+τ̄)xT(t)Qx(t)− eβ(t−τi(t)+τ̄)(1−τ̇i(t))×
xT(t− τi(t))Qx(t− τi(t))

LV3(xt, i, t) =
eβ(t+τ̄) − eβt

β
[ϕT(t)Rϕ(t) + ψT(t)ψ(t)]−

∫ t

t−τ̄

eβt[ϕT(s)Rϕ(s) + ψT(s)ψ(s)]ds

LV4(xt, i, t) =
η(eβ(t+2τ̄−τ) − eβ(t+τ̄))

β
xT(t)Qx(t)−

η

∫ t−τ

t−τ̄

eβ(t−τ+τ̄)xT(s)Qx(s)ds

LV5(xt, i, t) = eβtxT(t)Q1x(t)−
eβ(t−τ)xT(t− τ)Q1x(t− τ)

and

LV6(xt, i, t) = eβtxT(t)Q2x(t)−
eβ(t−τ̄)xT(t− τ̄)Q2x(t− τ̄)
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By using Lemma 1, we can get

−
∫ t

t−τ̄

ϕT(s)Rϕ(s)ds = −
∫ t−τi(t)

t−τ̄

ϕT(s)Rϕ(s)ds−
∫ t

t−τi(t)

ϕT(s)Rϕ(s)ds ≤

− 1

τ̄ − τ
(

∫ t−τi(t)

t−τ̄

ϕ(s)ds)TR(

∫ t−τi(t)

t−τ̄

ϕ(s)ds)−

1

τ̄
(

∫ t

t−τi(t)

ϕ(s)ds)TR(

∫ t

t−τi(t)

ϕ(s)ds) (7)

Noting πij ≥ 0, for j 6= i and πii ≤ 0, we have

N∑
j=1

πij

∫ t

t−τj(t)

eβ(s+τ̄)xT(s)Qx(s)ds =

∑

j 6=i

πij

∫ t

t−τj(t)

eβ(s+τ̄)xT(s)Qx(s)ds−

|πii|
∫ t

t−τi(t)

eβ(s+τ̄)xT(s)Qx(s)ds ≤
∑

j 6=i

πij

∫ t

t−τ̄

eβ(s+τ̄)xT(s)Qx(s)ds−

|πii|
∫ t

t−τ

eβ(s+τ̄)xT(s)Qx(s)ds =

|πii|
∫ t−τ

t−τ̄

eβ(s+τ̄)xT(s)Qx(s)ds ≤

ηeβ(t−τ+τ̄)

∫ t−τ

t−τ̄

xT(s)Qx(s)ds (8)

Moreover, by using

−(1− τ̇i(t))e
β(t+τ̄−τi(t)) ≤
{(di − 1) ∨ [(di − 1)eβ(τ̄−τ)]}eβt

where {(di−1) ∨ [(di−1)eβ(τ̄−τ)]} = max{(di − 1), (di −
1)eβ(τ̄−τ)}, combining with (6)∼ (8), we obtain

LV (xt, i, t) ≤

eβt{xT(t)[βPi +

N∑
j=1

πijPj + 2PiAi + Q1 + Q2+

BT
i PiBi + eβτ̄Q +

η(eβ(2τ̄−τ) − eβτ̄ )

β
Q +

eβτ̄ − 1

β
×

(AT
i RAi + BT

i Bi)]x(t) + 2xT(t)[PiAdi + BT
i PiBdi+

eβτ̄ − 1

β
(AT

i RAdi + BT
i Bdi)]x(t− τi(t)) + xT(t− τi(t))×

[
eβτ̄ − 1

β
(AT

diRAdi + BT
diBdi) + [(di − 1) ∨ ((di − 1)×

eβ(τ̄−τ))]Q + BT
diPiBdi]x(t− τi(t))− e−βτxT(t− τ)Q1×

x(t− τ)−e−βτ̄xT(t− τ̄)Q2x(t− τ̄)−
∫ t

t−τ̄

ψT(s)ψ(s)ds−

1

τ̄ − τ
(

∫ t−τi(t)

t−τ̄

ϕ(s)ds)TR(

∫ t−τi(t)

t−τ̄

ϕ(s)ds)−

1

τ̄
(

∫ t

t−τi(t)

ϕ(s)ds)TR(

∫ t

t−τi(t)

ϕ(s)ds)} (9)

On the other hand, from (3), it is clear that

[xT(t)M1i + xT(t− τi(t))M2i][x(t− τi(t))− x(t− τ̄)−
∫ t−τi(t)

t−τ̄

ϕ(s)ds−
∫ t−τi(t)

t−τ̄

ψ(s)dω(s)] = 0 (10)

and

[xT(t)N1i + xT(t− τi(t))N2i + xT(t− τ)N3i][x(t)−

x(t− τi(t))−
∫ t

t−τi(t)

ϕ(s)ds−
∫ t

t−τi(t)

ψ(s)dω(s)] = 0

(11)

In addition, we can also have the following two estimates

− 2[xT(t)M1i + xT(t− τi(t))M2i]

∫ t−τi(t)

t−τ̄

ψ(s)dω(s) ≤

[xT(t)M1i + xT(t− τi(t))M2i][M
T
1ix(t) + MT

2ix(t−

τi(t))] + (

∫ t−τi(t)

t−τ̄

ψ(s)dω(s))T
∫ t−τi(t)

t−τ̄

ψ(s)dω(s) (12)

and

− 2[xT(t)N1i + xT(t− τi(t))N2i + xT(t− τ)N3i]×∫ t

t−τi(t)

ψ(s)dω(s) ≤

[xT(t)N1i + xT(t− τi(t))N2i + xT(t− τ)N3i][N
T
1ix(t)+

NT
2ix(t− τi(t)) + NT

3ix(t− τ)]+

(

∫ t

t−τi(t)

ψ(s)dω(s))T
∫ t

t−τi(t)

ψ(s)dω(s) (13)

For the second terms in (12) and (13), using Lemma 2, we
also have

E(

∫ t−τi(t)

t−τ̄

ψ(s)dω(s))T
∫ t−τi(t)

t−τ̄

ψ(s)dω(s)+

E(

∫ t

t−τi(t)

ψ(s)dω(s))T
∫ t

t−τi(t)

ψ(s)dω(s) =

E

∫ t−τi(t)

t−τ̄

ψT(s)ψ(s)ds + E

∫ t

t−τi(t)

ψT(s)ψ(s)ds =

E

∫ t

t−τ̄

ψT(s)ψ(s)ds (14)

Substituting (10) ∼ (13) and (14) into (9) yields

ELV (xt, i, t) ≤

Eeβt{xT(t)[βPi +

N∑
j=1

πijPj + 2PiAi + Q1 + Q2 +

BT
i PiBi + eβτ̄Q +

η(eβ(2τ̄−τ) − eβτ̄ )

β
Q +

eβτ̄ − 1

β
×

(AT
i RAi + BT

i Bi)]x(t) + 2xT(t)[PiAdi + BT
i PiBdi+

eβτ̄ − 1

β
(AT

i RAdi + BT
i Bdi)]x(t− τi(t)) + xT(t−

τi(t))[B
T
diPiBdi +

eβτ̄ − 1

β
(AT

diRAdi + BT
diBdi)+
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[(di − 1) ∨ ((di − 1)eβ(τ̄−τ))]Q]x(t− τi(t))−
e−βτxT(t− τ)Q1x(t− τ)− e−βτ̄xT(t− τ̄)Q2x(t− τ̄)−
∫ t

t−τ̄

ψT(s)ψ(s)ds− 1

τ̄ − τ
(

∫ t−τi(t)

t−τ̄

ϕ(s)ds)TR×
∫ t−τi(t)

t−τ̄

ϕ(s)ds− 1

τ̄
(

∫ t

t−τi(t)

ϕ(s)ds)TR

∫ t

t−τi(t)

ϕ(s)ds +

2[xT(t)M1i + xT(t− τi(t))M2i][x(t− τi(t))−

x(t− τ̄)−
∫ t−τi(t)

t−τ̄

ϕ(s)ds−
∫ t−τi(t)

t−τ̄

ψ(s)dω(s)]+

2[xT(t)N1i + xT(t− τi(t))N2i + xT(t− τ)N3i][x(t)−

x(t− τi(t))−
∫ t

t−τi(t)

ϕ(s)ds−
∫ t

t−τi(t)

ψ(s)dω(s)]} ≤

EeβtξT(t)Γiξ(t)

where

Γi =




Θ̂1i Θ̂2i NT
3i + N1iN

T
3i −M1i

∗ Θ̂3i −NT
3i + N2iN

T
3i −M2i

∗ ∗ −e−βτQ1 + N3iN
T
3i 0

∗ ∗ ∗ −e−βτ̄Q2

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
−M1i −N1i

−M2i −N2i

0 −N3i

0 0
− 1

τ̄−τ
R 0

∗ − 1
τ̄
R




ξ(t) = [xT(t), xT(t− τi(t)), x
T(t− τ), xT(t− τ̄),

(

∫ t−τi(t)

t−τ̄

ϕ(s)ds)T, (

∫ t

t−τi(t)

ϕ(s)ds)T]T

Θ̂1i =Θ1i + M1iM
T
1i + N1iN

T
1i + BT

i PiBi+

eβτ̄ − 1

β
(AT

i RAi + BT
i Bi)

Θ̂2i =Θ2i + M1iM
T
2i + N1iN

T
2i + BT

i PiBdi+

eβτ̄ − 1

β
(AT

i RAdi + BT
i Bdi)

Θ̂3i =Θ3i + M2iM
T
2i + N2iN

T
2i + BT

diPiBdi+

eβτ̄ − 1

β
(AT

diRAdi + BT
diBdi)

By employing Schur complement and (4), it follows that
E(LV (xt, i, t)) < 0 for each i ∈ S.

For all t ≥ τ̄ , the Dynkin′s formula[32] provides

E

∫ t

τ̄

LV (xs, rs, s)ds = EV (xt, rt, t)− EV (xτ̄ , rτ̄ , τ̄)

So, from (5), it is clear that

EV (xt, rt, t) ≤ EV (xτ̄ , rτ̄ , τ̄) =

E{eβτ̄xT(τ̄)P (rτ̄ )x(τ̄) +

∫ τ̄

τ̄−τ(rτ̄ ,τ̄)

eβ(s+τ̄)xT(s)Q×

x(s)ds +

∫ 0

−τ̄

∫ τ̄

τ̄+θ

eβ(s−θ)(ϕT(s)Rϕ(s) + ψT(s)×

ψ(s))dsdθ + η

∫ −τ

−τ̄

∫ τ̄

τ̄+θ

eβ(s−θ−τ+τ̄)xT(s)Qx(s)dsdθ +

∫ τ̄

τ̄−τ

eβsxT(s)Q1x(s)ds +

∫ τ̄

0

eβsxT(s)Q2x(s)ds} (15)

For t > 0, following from system (3), we obtain

x(t) = x(0) +

∫ t

0

ϕ(s)ds +

∫ t

0

ψ(s)dω(s)

Let

µ1 = max
i∈S

{‖Ai‖}, µ2 = max
i∈S

{‖Bi‖}
µ3 = max

i∈S
{‖Adi‖}, µ4 = max

i∈S
{‖Bdi‖}

From Lemma 2, we have the following formulae:

ExT(0)

∫ t

0

ψ(s)dω(s) = 0 (16a)

E[

∫ t

0

ψ(s)dω(s)]T[

∫ t

0

ψ(s)dω(s)] = E

∫ t

0

|ψ(s)|2ds (16b)

By combining (16) and Lemma 1, for 0 < t ≤ τ̄ , it is not
difficult to check that

E|x(t)|2 =

E|x(0) +

∫ t

0

ϕ(s)ds +

∫ t

0

ψ(s)dω(s)|2 ≤

E{|x(0)|2 + |
∫ t

0

ϕ(s)ds|2 +

∫ t

0

|ψ(s)|2ds + |x(0)|2+

|
∫ t

0

ϕ(s)ds|2 + |
∫ t

0

ϕ(s)ds|2 +

∫ t

0

|ψ(s)|2ds} ≤

2E|x(0)|2 + 3τ̄E

∫ t

0

|ϕ(s)|2ds + 2E

∫ t

0

|ψ(s)|2ds ≤

2 sup
−τ̄≤θ≤0

|φ(θ)|2 + 2(3µ2
3τ̄ + 2µ2

4)τ̄ sup
−τ̄≤θ≤0

|φ(θ)|2+

2

∫ t

0

(3µ2
1τ̄ + 2µ2

2)E|x(s)|2ds =

2(1 + 3µ2
3τ̄

2 + 2µ2
4τ̄) sup

−τ̄≤θ≤0
|φ(θ)|2+

2

∫ t

0

(3µ2
1τ̄ + 2µ2

2)E|x(s)|2ds (17)

By using Gronwall-Bellman lemma, for 0 < t ≤ τ̄ , it follows
from (17) that

E|x(t)|2 ≤ b1 sup
−τ̄≤θ≤0

|φ(θ)|2 (18)

where b1 = 2(1 + 3µ2
3τ̄

2 + 2µ2
4τ̄)e2τ̄(3µ2

1τ̄+2µ2
2).

Moreover, from (15) and (18), we also have

EV (xt, rt, t) ≤
eβτ̄ max

i∈S
{‖Pi‖}b1 sup

−τ̄≤θ≤0
|φ(θ)|2 +

b1‖Q‖ sup
−τ̄≤θ≤0

|φ(θ)|2
∫ τ̄

τ̄−τ(rτ̄ ,τ̄)

eβ(s+τ̄)ds +

2(µ2
1b1‖R‖+ µ2

3‖R‖+ µ2
2b1 + µ2

4) sup
−τ̄≤θ≤0

|φ(θ)|2×
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∫ 0

−τ̄

∫ τ̄

τ̄+θ

eβ(s−θ)dsdθ + b1‖Q1‖ sup
−τ̄≤θ≤0

|φ(θ)|2×
∫ τ̄

τ̄−τ

eβsds + b1‖Q2‖ sup
−τ̄≤θ≤0

|φ(θ)|2
∫ τ̄

0

eβsds +

ηb1‖Q‖ sup
−τ̄≤θ≤0

|φ(θ)|2
∫ −τ

−τ̄

∫ τ̄

τ̄+θ

eβ(s−θ−τ+τ̄)dsdθ =

eβτ̄ (max
i∈S

{‖Pi‖}b1 + b1‖Q‖eβτ̄ − eβ(τ̄−τ(rτ̄ ,τ̄))

β
+

2(µ2
1b1‖R‖+ µ2

3‖R‖+ µ2
2b1 + µ2

4)
eβτ̄ − 1− βτ̄

β2
+

b1
1− e−βτ

β
‖Q1‖+ b1

1− e−βτ̄

β
‖Q2‖+ ηb1‖Q‖×

eβ(τ̄−τ) eβτ̄ − eβτ − β(τ̄ − τ)

β2
) sup
−τ̄≤θ≤0

|φ(θ)|2

In addition, we observe

EV (xt, rt, t) ≥ 1

max
i∈S

{‖P−1
i ‖}eβtE|x(t)|2

Hence, for t > τ̄ , it can be concluded that

E|x(t)|2 ≤ e−βt max
i∈S

{‖P−1
i ‖}eβτ̄ b2 sup

−τ̄≤θ≤0
|φ(θ)|2 (19)

where b2 = maxi∈S{‖Pi‖}b1 + b1‖Q‖eβτ̄ − eβ(τ̄−τ(rτ̄ ,τ̄))

β
+

2(µ2
2b1 + µ2

1b1‖R‖ + µ2
3‖R‖ + µ2

4)
eβτ̄ − 1− βτ̄

β2
+

ηb1‖Q‖eβ(τ̄−τ) eβτ̄ − eβτ − β(τ̄ − τ)

β2
+ b1

1− e−βτ

β
‖Q1‖ +

b1
1− e−βτ̄

β
‖Q2‖.

For 0 < t ≤ τ̄ , we also have

E|x(t)|2 ≤ e−βteβτ̄ b1 sup
−τ̄≤θ≤0

|φ(θ)|2 (20)

Evidently, for t > 0, taking (19) and (20) into account, we
conclude that

E|x(t)|2 ≤ b sup
−τ̄≤θ≤0

|φ(θ)|2e−βt

where b = max{eβτ̄ maxi∈S{‖P−1
i ‖}b2, e

βτ̄ b1}
Therefore, system (3) is mean-square exponentially sta-

ble with decay rate β. ¤
Remark 1. In Theorem 1, the derivative of time-varying

delay τi(t) only has an upper bound di, where di can be
any finite constant. It is more general than the assumptions
on time-varying delays in [12, 24−25, 27, 29]. Furthermore,
the decay rate in many literatures needs to satisfy two con-
straints: LMI and transcendental equation or LMI and a set
of inequalities[20,24−29]. As pointed out in the introduction
section, the decay rate satisfying transcendental equation
will be a fixed constant and cannot be chosen conveniently
according to practical design specifications. And the con-
straint satisfying a set of inequalities adds more difficulty
and complexity in the process of computing. Moreover, the
obtained results in both of the cases cannot or are very dif-
ficult to tell us whether the system can possess a larger
and suboptimal decay rate than the computed value. Here,
decay rate β in Theorem 1 only needs to satisfy LMI (4)

and there is no additional equation or multi-inequality con-
straint. Since the obtained sufficient condition is not only
delay-range-dependent but also decay-rate-dependent, the
suboptimal upper bound of decay rate β can be computed
by convex optimization algorithm conveniently. This will
introduce more flexibility when choosing decay rate β. In
Example 1, we will compute the suboptimal upper bound
of decay rate β.

Remark 2. In this paper, the time-varying delay τi(t)
is assumed to be interval time-varying delay and the lower
bound τ i is not less than 0. This hypothesis on τi(t) is
more general. Furthermore, when τ i = 0, the obtained
sufficient condition in Theorem 1 has less conservatism than
the existing results in [15, 24, 35], which can be verified by
Example 1. In addition, when the mode-dependent time-
varying delay τi(t) ≡ τ(t), for any i ∈ S, Theorem 1 is
also effective for stochastic Markovian jump systems with
time-varying delays.

Now, based on the result obtained in Theorem 1, the
following theorem is devoted to designing a delayed-state-
feedback controller of form (2) that can exponentially sta-
bilize system (1).

Theorem 2. For given finite constants β > 0, τ̄ > τ ≥
0, η > 0, di, i ∈ S and tuning matrices M̃1i, M̃2i, Ñki, k =
1, 2, 3, if there exist matrices Q̃ > 0, Q̃1 > 0, Q̃2 > 0, R̃ >
0, Xi > 0, Yi, for each i ∈ S, satisfying LMI (21) as shown
at the top of next page, where

Θ̃1i = πiiXi + βXi + AiXi + XiA
T
i + Ñ1iXi + XiÑ

T
1i

Θ̃2i = AdiQ̃ + CiYi + M̃1iQ̃− Ñ1iQ̃ + XiÑ
T
2i

Θ̃3i = [(di − 1) ∨ ((di − 1)eβ(τ̄−τ))]Q̃− Q̃ÑT
2i − Ñ2iQ̃+

Q̃M̃T
2i + M̃2iQ̃

Φi = [
√

πi1Xi, · · · ,
√

πii−1Xi,
√

πii+1Xi, · · · ,
√

πiNXi,

Xi, Xi, Xi]

Ψi = diag{X1, · · · , Xi−1, Xi+1, · · · , XN

β

ηeβ(2τ̄−τ) − ηeβτ̄
Q̃, Q̃1, Q̃2}

then the closed-loop system consisting of (1) and (2) is
mean-square exponentially stable. Moreover, the gain ma-
trix Ki can be chosen as Ki = YiQ̃

−1 for each i ∈ S.
Proof. From system (1) and controller (2), the closed-

loop system can be presented as follows:

dx(t) = [A(rt)x(t) + (Ad(rt) + C(rt)K(rt))×
x(t− τ(rt, t))]dt + [B(rt)x(t)+

Bd(rt)x(t− τ(rt, t))]dω(t) (21)

By Schur complement, LMI (22) implies that the following
LMI holds:



Λi Θ̃2i XiÑ
T
3i −M̃1iQ̃2 −M̃1iR̃ −Ñ1iR̃

∗ Θ̃3i −Q̃ÑT
3i −M̃2iQ̃2 −M̃2iR̃ −Ñ2iR̃

∗ ∗ −e−βτ Q̃1 0 0 −Ñ3iR̃

∗ ∗ ∗ −e−βτ̄ Q̃2 0 0

∗ ∗ ∗ ∗ − 1
τ̄−τ

R̃ 0

∗ ∗ ∗ ∗ ∗ − 1
τ̄
R̃

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
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


Θ̃1i Θ̃2i XiÑ
T
3i −M̃1iQ̃2 −M̃1iR̃ −Ñ1iR̃ XiB

T
i XiA

T
i XiB

T
i M̃1i Ñ1i Φi

∗ Θ̃3i −Q̃ÑT
3i −M̃2iQ̃2 −M̃2iR̃ −Ñ2iR̃ Q̃BT

di Q̃AT
di + Y T

i CT
i Q̃BT

di M̃2i Ñ2i 0

∗ ∗ −e−βτ Q̃1 0 0 −Ñ3iR̃ 0 0 0 0 Ñ3i 0

∗ ∗ ∗ −e−βτ̄ Q̃2 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ − 1
τ̄−τ

R̃ 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
τ̄
R̃ 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Xi 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − β
eβτ̄−1

R̃ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − β

eβτ̄−1
I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ψi




< 0

(22)

XiB
T
i XiA

T
i XiB

T
i M̃1i Ñ1i

Q̃BT
di Q̃AT

di + Y T
i CT

i Q̃BT
di M̃2i Ñ2i

0 0 0 0 Ñ3i

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−Xi 0 0 0 0

∗ − β
eβτ̄−1

R̃ 0 0 0

∗ ∗ − β

eβτ̄−1
I 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I




< 0

(23)

where Λi = Θ̃1i + ΦiΨ
−1
i ΦT

i .
For each i ∈ S, denote

Pi = X−1
i , Q = Q̃−1, Q1 = Q̃−1

1 , Q2 = Q̃−1
2 , R = R̃−1

M1i = X−1
i M̃1i, M2i = Q̃−1M̃2i, N1i = X−1

i Ñ1i

N2i = Q̃−1Ñ2i, N3i = Q̃−1
1 Ñ3i, Ki = YiQ̃

−1

Pre- and post-multiplying LMI (23) by diag{X−1
i , Q̃−1, Q̃−1

1 ,

Q̃−1
2 , R̃−1, R̃−1, X−1

i , R̃−1, I, I, I} and its transpose, re-
spectively, we can rewrite LMI (23) as follows:




Θ1i Θ̄2i NT
3i −M1i −M1i −N1i

∗ Θ3i −NT
3i −M2i −M2i −N2i

∗ ∗ −e−βτQ1 0 0 −N3i

∗ ∗ ∗ −e−βτ̄Q2 0 0
∗ ∗ ∗ ∗ − 1

τ̄−τ
R 0

∗ ∗ ∗ ∗ ∗ − 1
τ̄
R

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

BT
i Pi AT

i R BT
i M1i N1i

BT
diPi (Adi + CiKi)

TR BT
di M2i N2i

0 0 0 0 N3i

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−Pi 0 0 0 0

∗ − β

eβτ̄−1
R 0 0 0

∗ ∗ − β
eβτ̄−1

I 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I




< 0

where Θ̄2i = Pi(Adi + CiKi) + M1i −N1i + NT
2i.

Hence, from Theorem 1, by replacing Adi in (4) with
Adi +CiKi, the closed-loop system (22) is mean-square ex-
ponentially stable. This completes the proof of Theorem 2.

¤

3 Numerical examples

Example 1. In this example, we consider the following
system

ẋ(t) = A(rt)x(t) + Ad(rt)x(t− τ(t))

with system matrices as follows:

A1 =

[−2 0
0 −0.9

]
, Ad1 =

[−1 0
−1 −1

]

A2 =

[−1 0.5
0 −1

]
, Ad2 =

[−1 0
1 −1

]

where 0 < τ(t) < τ̄, τ̇(t) < d. The parameter Π = {πij} is
given by

Π =

[ −1 1
2 −2

]

With above parameters and β = 0.1, η =2, Table 1 presents
the comparison results with respect to [15, 24, 35]. From
this table, it can be easily concluded that the achieved
maximum value of τ̄ in this paper is larger than the ones
in [15, 24, 35], which also shows that the result obtained in
Theorem 1 is less conservative than the ones in [15, 24, 35].
Moreover, when let τ̄ = 0.8 and d = 1.5, by convex opti-
mization algorithm, it is easy to obtain that the suboptimal
upper bound of decay rate is 0.8065.
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Table 1 The achieved maximum values of τ̄ corresponding to
different values of d

d 0.9 1 1.5

τ̄ by [24] 0.9279 - -

τ̄ by [35] 0.7529 0.7529 0.7255

τ̄ by [15] 0.9359 0.8886 0.8886

τ̄ by Theorem 1 1.0428 1.0428 1.0428

Example 2. Consider the time-varying delay stochastic
system with Markovian jump parameters in the form of (1)
with two modes, that is, S = {1, 2}. The system matrices
are shown as follows:

A1 =

[−0.5 0
−1 0.5

]
, Ad1 =

[
1.5 0
−0.1 −0.5

]

B1 =

[−0.2 0
1 −0.5

]
, Bd1 =

[−0.5 0
−1 0.3

]
, C1 =

[
1.2
−5

]

A2 =

[−1 0
0.2 −1

]
, Ad2 =

[
1 0.5
0 0.3

]

B2 =

[−0.2 0
0.1 0

]
, Bd2 =

[−0.1 0
0.5 −0.3

]
, C2 =

[
2.2
1.2

]

The parameter Π = {πij} is given by

Π =

[−1.8 1.8
2 −2

]

If we let τ1(t) = (e−2.4t + 0.2)/2, τ2(t) = (e−1.5t + 0.5)/3,
then one has d1 = 1.2, d2 = 0.5, τ = 0.1, τ̄ = 0.6. With
the above parameters and β = 0.1, η = 2, Figs. 1 and 2
show the operation modes and the state responses of open-
loop system in two modes with an arbitrary initial state,
respectively.

Fig. 1 The operation modes

Fig. 2 The state responses of open-loop system

From Fig. 2, it is easy to see that this system is unstable.
We choose

N11 =

[
0 −0.05
0 −0.1

]
, N12 =

[
0 −0.01
0 −0.1

]
, N21 =

[
0 0.01
0 0.17

]

N22 =

[
0 0
0 0.5

]
, N31 =

[
0.02 0
−0.01 −1

]

N32 =

[
0 0.1

−0.1 1.5

]
, M11 =

[
0 0
0 0

]
, M12 =

[
0 −0.05
0 −0.1

]

M21 =

[
0 −0.1

0.01 −2

]
, M22 =

[
0 0
0 0

]

By Matlab LMI tool box and Theorem 2, we obtain the
following delayed-state-feedback controller gain matrices:

K1 =
[−0.7604 −0.0683

]
, K2 =

[−0.5766 −0.2004
]

Figs. 3 and 4 present the operation modes and the state
response of closed-loop system in two modes with initial
condition [−1, 1]T, respectively. Consequently, we can ver-
ify that the designed delayed-state-feedback controller is
effective for exponentially stabilizing the system with de-
cay rate 0.1.

Fig. 3 The operation modes

Fig. 4 The state responses of closed-loop system

4 Conclusion

In this paper, we have investigated the stochastic Marko-
vian jump systems with time-varying delays, in which the
time-varying delays are dependent on the system modes.
By constructing a suitable Lyapunov-Krasovskii functional,
sufficient condition for mean-square exponential stability
has been proposed. Based on this newly established stabil-
ity criterion, a delayed-state-feedback controller which can
exponentially stabilize the stochastic Markovian jump sys-
tems has been presented. There is no additional equation or
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multi-inequality constraint on decay rate β and the deriva-
tive of time-varying delay only needs to satisfy τ̇i(t) < di,
where di is a constant. Finally, numerical examples have
been provided to demonstrate the effectiveness of the ob-
tained results in this paper.
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