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Recursive Identification for Hammerstein Systems with

State-space Model
CHEN Xi1 FANG Hai-Tao1

Abstract In this paper, the subspace methods for multi-input multi-output (MIMO) Hammerstein systems in state-space form
are considered, for the reason that relation of input and output in MIMO case is appropriate to indicate in this form. In open-loop
case, a subspace identification method is given for Hammerstein systems, in which the nonlinear static function can be represented as
a linear combination of finite basis functions, and the recursive version of this method is also given. We show that, in mild conditions,
the method given in this paper is consistent in some sense. A numerical example is given to show the performance of this method.
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Generally, system identification is carried out to fig-
ure out the structure of the dynamic system by making
use of the system input and output corrupted by additive
noise. Most of the existing methods focus on the para-
metric model-based techniques to find a well-suited model
described by a finite number of data. Examples of such
methods include the prediction error method (PEM) to es-
timate the free parameters based on an optimization prob-
lem, the instrumental variable (IV) method to find a good
principal random variable uncorrelated with the noise and
sufficiently correlated with the states and inputs, and the
maximum likelihood method and the subspace identifica-
tion method (SIM)[1−4], and so on, respectively, in various
model structure.

The subspace identification method is designed espe-
cially for the time-invariant systems, the beginning of which
could be traced back to the 1960s. It is naturally applica-
ble to the multi-input multi-output (MIMO) systems in the

form of state space model[5], which is convenient for estima-
tion, filtering, prediction, and control. Much attention has
been attracted from researchers because of its efficient, con-
venient, and stable computational characteristics. As the
subspace method has been developed in several decades, it
has attained maturity, especially against linear state space
model.

As for the nonlinear system, the state space model de-
scription is applied widely in various fields. General form
of the dynamic system could be described as follows:

xt+1 = f(t, xt, ut, θt) + vt+1 (1)

yt = h(t, xt, ut, θt) + wt (2)

in which xt, ut, and yt are the system state, input, and
output respectively, and θt denotes the parameter of the
system, vt and wt represent the process noise and the ob-
served noise.

In the nonlinear system field, there is a simple and typi-
cal kind of system, which consists of a linear dynamic part
cascaded with a static nonlinear part at the input or out-
put. The system is called Hammerstein system, if the non-
linearity is prior to the linear part. And the same is called
Wiener system, if the cascade order alters. The Hammer-
stein system is used for modeling biological process, chem-
ical process, and in signal processing applications, which
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can be shown in the state-space form as

xk+1 = Axk + Bg(uk) + vk+1 (3)

yk+1 = Cxk+1 + Duk+1 + wk+1 (4)

Nonlinear identification[6−7] is an increasingly active
research topic, which includes parametric and non-
parametric methods. As is widely known, no omnipo-
tent identification method exists. Extensions to nonlin-
ear systems though desirable are much harder in gen-
eral. There are plenty of methods for Hammerstein system
identification[8−15], but they are mainly designed against
the single-input and single-output (SISO) model[16−17].
These days, researches on the subspace methods have been
extended from linear systems to nonlinear systems. And
some results of the nonlinear system identification meth-
ods based on subspace identification have appeared in
succession[18−21]. However, the nonlinear functions of these
existing subspace identification methods are in particu-
lar forms and little theoretical analysis about convergence,
consistency[8−9, 22−23], rate, and so on, has been given.

This paper is targeted to give a subspace identifica-
tion method of the Hammerstein system in open-loop case,
based on the state space representation. And the recur-
sive algorithm[24−26] of the method is also shown. In or-
der to obtain faster computation, we have utilized the av-
eraging technique in view of the principal analysis based
on stochastic approximation[27−28] to identify the extended
observable matrix. In addition, some asymptotic quality is
analyzed under mild condition. And a simulated example
is given to show that the average technique is indeed a fa-
vorable alternative to speed up the computation process.

The rest of this paper is organized as follows: Section 1
sets the model and its assumptions, which hold throughout
the whole paper. Section 2 gives the recursive version of
identification, and its consistency analysis is also followed.
Finally, a simulated example is given in Section 3 to eval-
uate the given method.

Notations.

E : Expectation;

R : Real field;

Rn : Real space in n dimensions;

AT : Transpose of A;

λmax(A) : Largest eigenvalue of A;

span(A) : Space spanned by column of A;

Adj(A) : Adjoint matrix of A.
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1 Identification

1.1 Model and assumptions

We consider the discrete MIMO Hammerstein system in
state space form as follows:

xxxk+1 = Axxxk + Bhhh(uuuk) (5)

yyyk+1 = Cxxxk+1 + eeek+1 (6)

where xxxk ∈ Rn, uuuk ∈ Rm, yyyk ∈ Rl, eeek ∈ Rl are the
system state, input, measured output, and observed noise,
respectively. Here, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, and
hhh : Rm → Rm is the unknown static nonlinear function.
We assume the order of the system has been known before-
hand, denoted as n.

For system (5) and (6), we make the following assump-
tions:

A 1. (A, C) is observable and (A, B) is controllable;
A 2. The system (5) is asymptotically stable, i.e.,

|λmax(A)| < 1;
A 3. The input uuuk is a sequence of independently and

identically distributed random variables with m dimen-
sions;

A 4. Let ϕϕϕi(uuuk), i = 1, · · · , N be N bounded functions
of m dimensions, satisfying E{ϕϕϕi(uuuk)ϕϕϕj(uuuk)T} = δij , where

δij =

{
I, i = j
0, i 6= j

and hhh could be constructed as the sum of ϕϕϕi(uuuk) with
proper coefficients, namely,

hhh(uuu) =

N∑
i=1

Diϕϕϕi(uuu)

where D1 = I;
A 5. {eeek} is a sequence of bounded white noise, inde-

pendent from {uuuk} satisfying

E{eeek} = 0, E{eeekeee
T
k } = σeI

where σe > 0 and I is the unit matrix.
Remark 1. Since N could be taken large enough,

A 4 is reasonably acceptable, if hhh has a wide
range. Any nonlinear function could be approximated
as hhh(uuu) =

∑N
i=1 Diϕϕϕi(uuu). This condition makes sure

that 1
L

∑L
k=l E{hhh(uuuk)hhh(uuuk−l)

T} =
∑N

i=1 DiD
T
i = I +∑N

i=2 DiD
T
i > 0, which can be considered as some kind

of persistently excited restriction. Furthermore, the limita-
tion on D1 = I could be broadened to nonsingular matrix.
In this case, we could multiply it to B from the right, chang-
ing B into BD, and hhh(uuu) could still be approximated by a
sum of the basic functions with proper coefficients and I as
the first coefficient.

Remark 2. The problem of approximation error of the
nonlinear function hhh on the result of the estimation is O(ε),
which can be obtained from the theory of robustness of
stochastic approximation-based principal component anal-
ysis (SABPCA) algorithm later introduced. Certain condi-
tions have been fulfilled in order to guarantee its estimation
accuracy. And further knowledge on this topic can be found
in [29].

1.2 Denotation

The purpose of identification is to estimate the system
matrices A, B, C, and the coefficients {Di, i = 2, · · · , N} of
the unknown nonlinear function hhh.

In order to identify the extended state space
model corresponding to the system (5) and (6),
let D = [I, D2, · · · , DN ] ∈ Rm×Nm, ũuuk =
[ϕϕϕT

1 (uuuk), · · · , ϕϕϕT
N (uuuk)]T ∈ RNm, and then the state space

model can be described as

xxxk+1 = Axxxk + BDũuuk (7)

yyyk+1 = Cxxxk+1 + eeek+1 (8)

Let

yyyf (k) =
[
yyyT

k−f+1 yyyT
k−f+2 · · · yyyT

k

]T ∈ Rlf

and we denote eeef (k) and uuuf (k) in the same form as
yyyf (k), the components of which are respectively con-
sisted of ek−f+1ek−f+1ek−f+1, · · · , ekekek and ˜uuuk−f+1, · · · , ũuuk in stead of
yyyk−f+1, · · · , yyyk.

Denote

Yk =
[
yyyf (1) yyyf (2) · · · yyyf (k)

] ∈ Rlf×k

and Yk is the Hankle matrix of all the output data before
the time k. f is an arbitrary integer satisfying f > n.

1.3 Identification of OfOfOf

Having denoted all the symbols we need, it is easy to
gain the extended state space model by the state space
system (7) and (8) as follows:

yyyf (k) = Ofxxxk−f+1 + Φfuuuf (k) + eeef (k) (9)

where

Of =




C
CA
...

CAf−1


 ∈ Rlf×n

is an extended observable matrix of rank n, and

Φf =




0 · · · 0 0
CBD · · · 0 0

...
. . .

...
...

CAf−2BD · · · CBD 0


 ∈ Rlf×Nmf (10)

is a block lower triangular Toeplitz matrix.
In order to estimate Of and noticing (9), we intend to

remove the input term uuuf (k) .
Lemma 1. If A 2 ∼ A5 hold, then {(yyyT

k , uuuT
k )T} is

an asymptotically stable and ergodic sequence; and so is
(yyyf (k)T,uuuf (k)T)T .

From Lemma 1, by the ergodic characteristic of uuuf (k)
and yyyf (k) we could conclude that:

1

k
YkUT

k
a.s.−−−−→

k→∞
Ryu = E{yyyf (k)uuuT

f (k)}
1

k
UkUT

k
a.s.−−−−→

k→∞
Ruu = E{uuuf (k)uuuT

f (k)}

A 3 and A4 assure Ruu > 0, so UkUT
k /k is reversible for

large enough k, and (UkUT
k /k)−1 a.s.−−−−→

k→∞
R−1

uu .

Considering

zzzf (k + 1) = yyyf (k + 1)−RyuR−1
uuuuuf (k + 1)

R = E{zzzf (k + 1)zzzT
f (k + 1)} = Ryy −RyuR−1

uuRuy (11)
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and

rxx = E{xxxkxxx
T
k }

rxu = E{xxxk−f+1uuu
T
f (k)}

by the definition (11) of R, the extended state space model
(9) and the assumptions, we have

R = Of (rxx − rxuR−1
uurux)OT

f + σeI (12)

Since the extended observable matrix Of is full column
rank (rank Of = n), by (12), if

rxx − rxuR−1
uurux > 0 (13)

it is concluded that n of the eigenvalues of R are larger
than σe, and the rest of lf − n ones exactly equal to σe.
From the singular value decomposition, we know that under
condition (13), R can be decomposed as follows:

R = [Rs Rn]

[
Λs 0
0 Λn

][
RT

s

RT
n

]
(14)

where Λn = σeI. Rs includes the n principal eigenvectors
corresponding to the n principal eigenvalues and Rn con-
tains lf − n eigenvectors corresponding to the eigenvalue
σe. [Rs Rn] is orthogonal matrix.

Comparing (12) and (14), the space spanned by the
columns of Of is identical to the space spanned by the
columns of Rs, namely,

span(Of ) = span(Rs)

Therefore, the problem turns to be condition under
which the inequality (13) will hold. And the following
proposition will give an answer to this problem.

Proposition 1. If A 1 ∼ A 5 hold, then

rxx − rxuR−1
uurux > 0

Proof. The proof is given in Appendix A. ¤
Proposition 1 assures span(Of ) = span(Rs). Therefore,

in order to estimate Of , we just have to estimate the first
n eigenvectors of R in (14).

2 Recursive algorithm

In this section, we will give a version of recursive sub-
space identification method of Hammerstein system. First
of all, a recursive estimation of Of will be shown.

2.1 Estimation of OfOfOf

In the previous section, we have shown that Of can

be estimated from the n principal eigenvectors vvv(i) of R.
And the principal eigenvectors can be calculated from
the stochastic approximation-based principal component
analysis algorithm. Here, to accelerate the computation
speed, we will utilize the averaging technique of stochastic
approximation[16].

Denote vvv(i) as a unit eigenvector of R corresponding to
the eigenvalue λ(i), i = 1, · · · , lf . In recursively estimat-
ing vvv(i) and λ(i), i = 1, · · · , lf , we will compute R, defined
in (11). So, we perform the data projection as analyzed in
Subsection 1.3:

ẑzzf (k + 1) =

yyyf (k + 1)−Ryu(k + 1)R−1
uu (k + 1)uuuf (k + 1) (15)

where

Ryu(k + 1) =

Ryu(k)− 1

k + 1

[
Ryu(k)− yyyf (k + 1)uuuf

T(k + 1)
]

R−1
uu (k + 1) = N(k + 1) =

N(k) +
1

k

[
N(k)− (k + 1)

N(k)uuuf (k)uuuf (k)N(k)

k + uuuf
T(k)N(k)uuuf (k)

]

The initial value Ryu(0) = 0 and N(0) could be taken as
arbitrary positive matrix.

After obtaining the data projection, we will calculate
the component eigenvectors of ẑzzf (k + 1)ẑzzT

f (k + 1) by
principal component analysis (PCA) based on the stochas-
tic approximation.

1)
ṽvv

(1)
k+1 = vvv

(1)
k + akẑzzf (k + 1)ẑzzT

f (k + 1)vvv
(1)
k

vvv
(1)
k+1 =

ṽvv
(1)
k+1

‖ṽvv(1)
k+1‖

, if ‖ṽvv(1)
k+1‖ 6= 0

If ‖ṽvv(1)
k+1‖ = 0, then reset vvv

(1)
k to be the unit vector.

vvv
(1)
k should be taken as the one of the k-th R′s unit char-

acteristic vector estimation.
2) Assume that vvv

(i)
k , i = 1, · · · , j has been defined.

Denote V
(j)

k = [vvv
(1)
k , P

(1)
k vvv

(2)
k , · · · , P

(j−1)
k vvv

(j)
k ] be a matrix

of lf × j, where

P
(i)
k = I − V

(i)
k V

(i)†
k , i = 1, 2, · · · , j − 1

V
(j)†

k here represents the Moore-Penrose pseudoinverse of

V
(j)

k . When k is large enough, V
(j)

k is a full rank matrix
of order lf × j (lf > j)

V
(j)†

k = (V
(j)T

k V
(j)

k )−1V
(j)T

k

Furthermore, we could estimate the j-th unit characteristic
vector:

ṽvv
(j+1)
k+1 =P

(j)
k vvv

(j+1)
k + akP

(j)
k ẑzzf (k + 1)ẑzzT

f (k + 1)P
(j)
k vvv

(j+1)
k

vvv
(j+1)
k+1 =

ṽvv
(j+1)
k+1

‖ṽvv(j+1)
k+1 ‖

, if ‖ṽvv(j+1)
k+1 ‖ ≥ ε

where 0 < ε < 1/4, j = 1, 2, · · · , lf − 1.

If ‖ṽvv(j+1)
k+1 ‖ < ε , then reset vvv

(j+1)
k , so that ‖vvv(j+1)

k ‖ =

1 and ‖P (j)
k vvv

(j+1)
k ‖ = 1.

Then, we will give the algorithm as follows.
Step 0. Let ak = 1/k and 0 < Mk −→ ∞ and

take {vvv(j)
0 , j = 1, · · · , lf} as arbitrary unit orthogonal

group, λ
(j)
0 = 0, j = 1, · · · , lf, σ0 = 0, k = 0.

Step 1. Data projection to calculate zzzf (k) using (15):

ẑzzf (k + 1) =

yyyf (k + 1)−Ryu(k + 1)N(k + 1)uuuf (k + 1)

Step 2. Use SABPCA algorithm to calculate the prin-

cipal characteristic vectors vvv
(i)
k+1, i = 1, · · · , lf as shown

above.
Step 3. Estimate the eigen-roots

λ
(j)
k+1 = [λ

(j)
k − ak(λ

(j)
k − ‖ẑzzT

f (k + 1)vvv
(j)
k ‖2)]×

1
[|λ(j)

k
−ak(λ

(j)
k
−‖ẑzzT

f
(k+1)vvv

(j)
k
‖2)|≤Mσk

]
,

j = 1, 2, · · · , lf
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where
σk+1 = σk + 1

[|λ(j)
k
−ak(λ

(j)
k
−‖ẑzzT

f
(k+1)vvv

(j)
k
‖2)|>Mσk

]

Step 4. if k ≤ N0, let k = k + 1 and go to Step 1, else
use fast average technique to proceed the step:

vvv
(j)
k+1 =

1

k + 1
(vvv

(j)
k + k × vvv

(j)
k+1)

λ
(j)
k+1 =

1

k + 1
(λ

(j)
k + k × λ

(j)
k )

and perform normalization to vvv
(j)
k , j = 1, · · · , lf ;

Step 5. Rearrange
{
λ

(j)
k+1, vvv

(j)
k+1

}
, so that λ

(1)
k+1 ≥

λ
(2)
k+1 ≥ · · · ≥ λ

(lf)
k+1, and let

Ôf (k + 1) = [vvv
(1)
k+1 vvv

(2)
k+1 · · · vvv

(n)
k+1] (16)

Step 6. Take k = k + 1 and return to Step 1.
Remark 1. From the analysis and algorithm, λ(j) is

constant when j > n, and λ(n) > λ(n+1), so the order n of

the system matrix can be estimated from λ
(j)
k if the order

is unknown.
Remark 2. Averaging technique will make the noise

converge in equilibrium, however, the state deviation in
the beginning is too large to use averaging technique, since
it will eliminate the deviation too slowly. Therefore, in the
algorithm above, we do not utilize fast average technique
in the first N0 steps. And N0 will be taken large enough so
that the averaging technique plays its role more efficiently.

The following theorem indicates Of to be strongly con-
sistent up to some extent.

Theorem 1. If A 1 ∼ A 5 hold, then the estimation

Ôf (k) obtained as in (16), converges to Of almost ev-
erywhere, i.e., there exists a nonsingular matrix T of or-
der n× n , so that

Ôf (k)
a.s.−−−−→

k→∞
OfT

Proof. The proof of Theorem 1 is also attached in Ap-
pendix B. ¤
2.2 Recursive estimation of AAA,BBB,CCC, and DDD

2.2.1 Estimation of AAA and CCC

Let Â(k), B̂(k), Ĉ(k), and D̂(k) be the k-th estimation
of A, B, C, and D, respectively. Once Of has been known,
the system matrix C can be directly observed from Of .

As for the estimation of A, we will utilize the transfer
invariance of Of :

Of (l + 1 : lf, :) = Of (1 : lf − l, :)A

Denote

O(k) = Ôf (k)((l + 1) : lf, : )

O(k) = Ôf (k)(1 : (f − 1)l, : )

utilizing the transfer invariance of Of , then

O(k + 1) = O(k)×A + εk

where εk is the noise in the process of estimation.
Using recursive least square estimation method,

Â(k) could be recursively calculated as follows:
{

Â(k + 1) =Â(k)+γ(k)G(k)O(k)[O(k + 1)−O(k)× Â(k)]

G(k) = G(k)− γ(k)G(k)O(k)O(k)TG(K)
(17)

where

G(k) =

(
k−1∑
i=0

O(i)O(i)T
)−1

γ(k) = (1 + O(k)TG(k)O(k))−1

2.2.2 Estimation of BBB and DDD

Let O⊥f ∈ Rlf×(lf−n) be denoted as the arbitrary or-

thogonal complement of Of , i.e. OT
f O⊥f = 0 and O⊥f is full

rank in column.
To estimate matrix B and D, we pre-multiply (9)

by (O⊥f )T, then

(O⊥f )Tyyyf (k) = (O⊥f )TΦfuuuf (k) + (O⊥f )Teeef (k) (18)

in which uuuf (k) and eeef (k) are uncorrelated and Φf is a linear
matrix of BD.

Similarly, we will also use the recursive least square
estimation method to calculate BD recursively.
Let zzzf = [zzzT

1 zzzT
2 · · · zzzT

f ]T be a vector as the form
of uuuf (k), namely, zzzj ∈ Rm, j = 1, 2, · · · , f .

Let

θθθ = VecVecVec(BD)

where BD is the product of B and D.
Denote

M(C, A,zzzf ) =




0
zzzT

1 ⊗ C
zzzT

1 ⊗ CA + zzzT
2 ⊗ C

...
f−1∑
i=1

zzzT
i ⊗ CAf−1−i




where ⊗ is Kronecker product. For any vector uuuf (k) as
defined in Section 1,

Φfuuuf (k) = M(C, A,uuuf (k))θθθ + ωωωk (19)

where ωωωk is the estimation noise.
Denote

Õf (k) =




Ĉ(k)

Ĉ(k)Â(k)
...

Ĉ(k)Âf−1(k)




Ô⊥f (k) = (Õf (k))⊥

M(k) = M(Ĉ(k), Â(k), uf (k))

ψ(k) =
[
(Ô⊥f (k))TM(k)

]T
= MT(k)Ô⊥f (k)

where Ô⊥f (k) is the orthogonal complement matrix of k-th

extended observable estimated matrix Õf (k) generated

by Ĉ(k) and Â(k), i.e., satisfying Õf (k)TÔ⊥f (k) = 0, and

Ô⊥f (k) ∈ Rlf×lf−n is full column rank. M(k) is the k-th

matrix substituting Ĉ(k) and Â(k) into M(C, A,uuuf (k)) in-
stead of C and A.
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Next, we put (19) into (18) and gain the following result:

(O⊥f )Tyyyf (k + 1) = (O⊥f )TM(C, A,uuuf (k))θθθ + (O⊥f )Teeef (k)
(20)

Then θθθ, namely, VecVecVec(BD) can be estimated using recur-
sive least square method as follows:





ψ(k) = (O⊥f )TM(C, A,uuuf (k))

θ̂θθ(k + 1) = θθθ(k) + κ(k)P (k)ψ(k)[(O⊥f )Tyyyf (k + 1)−
(O⊥f )TM(C, A,uuuf (k))θθθ]

P (k + 1) = P (k) + κ(k)P (k)ψ(k)ψ(k)TP (k)
where

P (k) =

(
k−1∑
i=0

ψ(k)ψ(k)T
)−1

κ(k) = (1 + ψ(k)TG(k)ψ(k))−1

The initial values P (0), G(0) could be chosen as I with
proper dimensions, and A(0), θθθ(0) could be taken as any
deterministic matrix of compatible dimensions.

Once Vec(BD) is obtained, since D1 = I by the def-
inition of D we could observe B directly from BD, i.e.,
B = BD(1 : n, 1 : m). And then by the property of
the Kronecker product ABC = CT ⊗ BT ⊗ AT with ar-
bitrary suitable dimension, respectively, D could be esti-
mated uniquely under proper restriction on B.

3 Simulation results

In this section, we will give a simulated example for the
case of MIMO Hammerstein system to evaluate the pro-
posed algorithm in the previous section:

xxxk+1 = Axxxk + Bh(uuuk) (21)

yyyk+1 = Cxxxk+1 + eeek+1 (22)

where

A =




0 1 0
−0.5625 −1.5 0

0 0 0.85




B =




1.5 0.5
0 1.5

0.1 0.2




C =

[
0 0.3 0

0.5 0 2

]

D1 = I2×2

D2 = I2×2

The static nonlinearity is chosen as

hhh(u) =




1 + sin u(1)

cos

(
u(2)

2

)
+ 2 sin

(
u(2)

2

)



and the inputs u(i), i = 1, 2 are taken uniformly on the
interval [−1, 1]. The observed noise is also chosen as a
sequence of Gaussian white noise with standard devia-
tion σ = 0.1×I, where data set has 3 000 input and output
measurements respectively. Let N0 = 1000.

To evaluate the gap between the spanned subspace by

the column vector of Ôf and Of , we introduce the following

variant:

Θ(span(Of ), span(Ôf (k))) = ‖ΠOf −ΠÔf (k)‖

where
∏

X denotes the orthogonal projection matrix on the
spanned space of column of X. By the definition of Θ, it
can be considered as an angle between the two subspaces.
The smaller the angle is, the closer the two subspaces will
be.

As shown in Fig. 1, the gap between the true

value Of and its estimation Ôf (k) has approached to zero
as soon as it turns to the fast averaging computation on
the 1 000-th step.

Fig. 2 has given a comparison in the end of steps from
1 500 to 2 000 between the normal PCA method in the
winding line and method using fast averaging technique un-
derneath in the straight line. We can observe that the line
in the fast averaging method goes to zero more smoothly
and quickly than the normal method. It is indicated that
fast averaging technique is a more satisfying choice in iden-
tifying the extended observable matrix.

The true eigenvalues of A are 0.85, −0.75, and −0.75.
Fig. 3 has shown that the estimation of A′s eigenvalues con-
verge to its true value gradually as the computation process
goes to the end.

Fig. 4 has indicated that the least square estimation of
B and D could be rather accurate.

Fig. 1 Gap between Ôf (k) and Of

Fig. 2 Comparison between fast averaging method and normal
method
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Fig. 3 Estimation eigenvalues of A(k)

Fig. 4 Gap between the two subspaces spanned by B, D and
their true values

4 Conclusion

In this paper, a method for estimating the parameters of
MIMO Hammerstein system in state-space form applying
subspace identification method was proposed. Extension
of Hammerstein system to the MIMO case has brought in
many difficulties. The existing methods mainly deal with
SISO case, among which the relation between the input and
output is indicated in the transfer function form. How-
ever, the transfer function in the MIMO form is difficult
to show and the relationship between the parameters and
the inputs is troublesome to indicate. So, the state space
model is applied. In particular, the presented recursive
algorithm based on PCA in view of the stochastic approx-
imation methods has been given. This is an important ex-
tension of the previous works, which have been restricted to
the area of SISO Hammerstein system. With a purpose to
speed up the computation rate, we have applied the PCA
algorithm based on the stochastic approximation using fast
averaging technique.

Although the results obtained here are satisfying, to ex-
tend the subspace identification methods on the general
nonlinear system, further research need to be performed.
To recursively identify this general nonlinear system is also
our future focus of research.

Appendix A The proof of Proposition 1

To show rxx − rxuR−1
uurux > 0, it is equivalent to prove

that

E

{[
xxxk

uuuf (k)

]
×

[
xxxk

uuuf (k)

]T
}

=

[
rxx rxu

ruu ruu

]
> 0 (A1)

By the state space model (7) and (8). Let xxxk = Fuuu(q−1)

a(q−1)
ũuuk,

where q−1 is the backward shift operator, i.e., q−1ũuuk =
ũuuk−1,

Fuuu(q−1) =
Adj(qI −A)BD

qn
=

Fuuu
1 q−1 + Fuuu

2 q−2 + · · ·+ Fuuu
n q−n

a(q−1) =
det(qI −A)

qn
=

a0 + a1q
−1 + a2q

−2 + · · ·+ anq−n

where Fuuu
i ∈ Rn×Nm, a0 = 1.

[
xxxk

uuuf (k)

]
=

Ξ

a(q−1)




ũuuk−n

...
ũuuk+f−1




where

Ξ=




Fuuu
n Fuuu

n−1 · · · Fuuu
1 0 0 · · · 0

0 0 · · · 0 anI an−1I · · · a0I
0 0 · · · anI an−1I an−2I · · · 0
...

...
...

...
...

...
...

...
0 anI · · · a2I a1I a0I · · · 0

anI an−1I · · · a1I a0I 0 · · · 0




If Ξ has full row rank under A 1 ∼ A4, and

E





1

a(q−1)




ũuuk−n

...
ũuuk+f−1


× 1

a(q−1)




ũuuk−n

...
ũuuk+f−1




T




(A2)

is positive definite, then (A1) is true. Note that




ũuuk−n

...
ũuuk+f−1


 =




ϕϕϕT(uuuk−n)
...

ϕϕϕT(uuuk+f−1)




is persistently excited as stated in the remark after the
assumptions A 1 ∼ A4.

At last, we will show that Ξ is full row rank. Equiva-
lently, we can show that [Fuuu

n · · · Fuuu
1 ] is full rank. Define

Fuuu(q−1) =
Adj(qI −A)BD

qn
=

a(q−1)(qI −A)−1BD =

(a0 + a1q
−1 + · · ·+ anq−n)q−1

(I + q−1A + q−2A2 + · · · )BD

Comparing the coefficients of the two sides of this equation,
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we have

[Fuuu
n · · · Fuuu

1 ] = [An−1BD An−2BD · · · BD]×


a0I 0 · · · 0
a1I a0I · · · 0
...

...
. . .

...
an−1I an−2I · · · a0I




(A3)

Since [An−1BD, An−2BD, · · · , BD] is full rank in col-
umn by the controllability of (A; B) in assumption A1,
D = [I, D2, · · · , DN ], and the right matrix consisting of
a0, a1, · · · , aN of the right equality of (A3) is nonsingular,
[Fuuu

n , · · · , Fuuu
1 ] is also full rank. ¤

Appendix B The proof of Theorem 1

From the analysis in Subsection 1.3, we know
span{Of} = span{Rs}, by Theorem 1, under the assump-

tions A 1∼ A5, then we will show Ôf (k)
a.s.−−−−→

k→∞
OfT , under

the assumptions A 1 ∼ A 5.
Since {uuuk} is an independent identically distributed pro-

cess, {ϕϕϕi, i = 1, · · · , N} are bounded, {ũuuk} is a bounded
process, the observed noise {eeek} is bounded, Yk is bounded.
By the definition of ẑzzf (k), then Rk = E{ẑzzf (k)ẑzzf (k)T} is
also bounded. In view of Chapter 3.3 of [15], we just have
to show the noise condition:

lim
T→0

lim sup
k→∞

1

T

∥∥∥∥∥∥

m(k,T )∑

i=k

ak(ẑzzf (i + 1)ẑzzT
f (i + 1)−R)

∥∥∥∥∥∥
= 0,

∀Tk ∈ (0, T ]

where m(k, T ) = max{m,
∑m

i=k ≤ T}.
Without loss of generality, we assume ak = 1/k. By the

result of Lemma 1,

1

k
(UkUT

k )−1 a.s.−−−−→
k→∞

R−1
uu

1

k
(YkUT

k )
a.s.−−−−→

k→∞
Ryu

Then, we use the second equation to subtract the first one
and it turns out to be:

∆(k) = RyuR−1
uu − (

1

k
YkUT

k )
1

k
(UkUT

k )−1 a.s.−−−−→
k→∞

0

ẑzzf (i + 1)ẑzzT
f (i + 1)−R =

[yyyf (i + 1)− Yi+1U
T
i+1(UkUT

k )−1uuufuuufuuuf (i + 1)]×
[yyyf (i + 1)− Yi+1U

T
i+1(UkUT

k )−1uuuf (i + 1)]T −R =

[yyyf (i+1)−Yi+1U
T
i+1(UkUT

k )−1uuuf (i+1)+∆(k)uuuf (i+1)]×
[yyyf (i + 1)− Yi+1U

T
i+1(UkUT

k )−1uuuf (i + 1)]T+

∆(k)uuuf (i + 1)T −R =

[ẑzzf (i + 1) + ∆(i + 1)uuuf (i + 1)]×
[ẑzzf (i + 1) + ∆(i + 1)uuuf (i + 1)]T −R =

ẑzzf (i + 1)ẑzzf (i + 1)T −R + ẑzzf (i + 1)uuuT
f (i + 1)∆T(i + 1)+

∆(i+1)uuuf (i+1)zzzT
f (i+1) + ∆T(i+1)uuuT

f (i+1)∆T(i+1)

As we have known that ∆(i + 1)
a.s.−−−→

i→∞
0 and [uuuf (i +

1), ẑzzf (i + 1)] is bounded, then

lim
T→0

lim sup
k→∞

1

T

∥∥∥
m(k,T )∑

i=k

1

i
[ẑzzf (i + 1)uuuT

f (i + 1)∆T(i + 1)+

∆(i+1)uuuf (i+1)zzzT
f (i+1)+∆T(i+1)uuuT

f (i+1)∆T(i+1)]
∥∥∥=0

a.s. ∀ Tk ∈ (0, T ]

and we just have to show that

lim
T→0

lim sup
k→∞

1

T
‖

m(k,T )∑

i=k

1

i
[ẑzzf (i + 1)ẑzzT

f (i + 1)−R] ‖= 0,

a.s. ∀Tk ∈ (0, T ]

From Lemma 1, we have come to know that {(yyyT
k , uuuT

k )T}
has the stable ergodic characteristic, so does
{zzzf (k)zzzf (k)T}. By (11), E{R̃(k)} = E{ẑzzf (k)ẑzzf (k)T} = R

and 1
k

∑k
i=1 R̃(k)− R

a.s.−−−→
i→∞

0. Let ηk =
∑k

i=1(R̃(k)− R),

i.e., ηk
a.s.−−−→

i→∞
0,

m(k,T )∑

i=k

1

i
(ẑzzf (i + 1)ẑzzT

f (i + 1)−R) =

m(k,T )∑

i=k

1

i
(ηi+1 − ηi) =

1

m(k, T )
ηm(k,T )+1 − 1

k
ηk +

m(k,T )∑

i=k+1

ηk(
1

i + 1
− 1

i
) =

1

m(k, T )
ηm(k,T )+1 − 1

k
ηk +

m(k,T )∑

i=k+1

ηk(
1

(i + 1)i
)

a.s.−−−→
i→∞

0

So, (4) holds naturally.
¤
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