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An Improved HHH∞ Filter Design for Nonlinear System

with Time-delay via T-S Fuzzy Models
HUANG Sheng-Juan1 ZHANG Da-Qing1 HE Xi-Qin1 ZHANG Ning-Ning1

Abstract This paper is concerned with the filter design for nonlinear systems with time-varying delay via Takagi-Sugeno fuzzy
model approach. Some sufficient conditions of the existence of fuzzy H∞ filter are established through constructing an improved
Lyapunov functional candidate, which could overcome the conservatism of the existing ones. The main technique used is the free
weighting matrix method combined with a matrix decoupling approach. An illustrative example is given to show the effectiveness of
the method.
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Nonlinear filtering is of both theoretical and practical
importance in signal processing, and this area has kept at-
tracting researchers for decades. So far, various method-
ologies have been developed for the filter designs[1−2], such
as Kalman filter[3−4], H∞ filter[4−10], and so on. The
Kalman filter is based on the assumption that the systems
are exactly known and their disturbances are stationary
Gaussian noises with known statistics, while the H∞ fil-
ter can determine an asymptotically stable filter without
a certain signal model. Moreover, the H∞ filter is de-
signed by minimizing state estimation error for the worst-
case bounded disturbances and noises. Recently, consid-
erable attention has been paid to H∞ filtering for linear
systems[5−6]. As known, T-S fuzzy model[7, 11−14] has be-
come a popular and effective approach to control com-
plex and ill-defined systems for which the application of
conventional techniques is infeasible. In recent years, T-
S fuzzy model approach has been extended to H∞ filter
design[8, 14−18]. In [17−18], an H∞ filtering methodology
for nonlinear discrete-time systems with multiple time de-
lays was proposed. In [10], a delay-independent linear ma-
trix inequality (LMI) approach was proposed for exponen-
tial H∞ filter design for T-S fuzzy delayed systems. In
[16], a delay-dependent design scheme was proposed for
T-S fuzzy delayed systems. The method therein is suit-
able for the case that the filter form is of the extended
Kalman filtering type. The work in [9, 19] was concerned
with H∞ filtering of nonlinear continuous-time state-space
models with time-varying delays via T-S fuzzy model ap-
proach. However, during the filter design to estimate the
upper bound of the derivative of Lyapunov functional, some
useful terms were ignored. For example, the derivative of∫ 0

−τ0

∫ t

t+θ
η̇ηηT(s)Ẑη̇ηη(s)dsdθ and

∫ 0

−τ(t)

∫ t

t+θ
η̇ηηT(s)Ẑη̇ηη(s)dsdθ

were often estimated as τ0η̇ηη
T(t)Ẑη̇ηη(t)−∫ t

t−τ(t)
η̇ηηT(s)Ẑη̇ηη(s)ds

and the term − ∫ t−τ(t)

t−τ0
η̇ηηT(s)Ẑη̇ηη(s)ds was ignored. There-

fore, there is room for further investigation to reduce the
conservativeness of the filter design. This motivates the
current research.

In this paper, some new delay-dependent conditions for
H∞ filter are proposed in terms of LMIs through con-
structing a new Lyapunov functional that is different from
the existing ones in [9, 19] and adopting new free-weighing

matrix[10, 20−22]. An example is used to compare with the
existing results to demonstrate the effectiveness of the pro-
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posed method.
This paper is organized as follows. The problem formu-

lation is presented in Section 1. In Section 2, the main
results on the H∞ filter analysis are presented based on
the T-S fuzzy model. In Section 3, a numerical example is
used to illustrate the effectiveness of the proposed scheme.
Finally, conclusion is given in Section 4.

Notations. Throughout this paper, I denotes the iden-
tity matrix, notation X > 0 (X ≥ 0), for X ∈ Rn×n, means
that matrix X is real symmetric positive definite (positive
semi-definite). If not explicitly stated, all matrices are as-
sumed to have compatible dimensions for algebraic opera-
tions. The symbol “∗” in a matrix X ∈ Rn×n stands for
the transposed elements in the symmetric positions. The
family of continuous functions defined on [−h, 0] is denoted
by C[−h, 0].

1 Problem formulation

Consider the following continuous-time T-S model with
time-varying delay:

Plant rule i:
IF ξ1(t) is Mi1, · · · , and ξp(t) is Mip, THEN

ẋxx(t) = Aixxx(t) + Aτixxx(t− τ(t)) + Biwww(t)

yyy(t) = Cixxx(t) + Cτixxx(t− τ(t)) + Diwww(t)

zzz(t) = Eixxx(t) + Eτixxx(t− τ(t))

xxx(t) = ϕϕϕ(t), ∀t ∈ [−τ0, 0] (1)

where Mij is the fuzzy set, xxx(t) ∈ Rn is the state vector,
yyy(t) ∈ Rm is the measurement vector, zzz(t) ∈ Rp stands
for the signal vector to be estimated, www(t) ∈ Rq is the
disturbance variable which belongs to L2[0,∞); Ai, Aτi,
Bi, Ci, Cτi, Di, Ei, and Eτi are some constant real matrices
of appropriate dimensions, where i = 1, 2, · · · , r and r is the
number of IF-THEN rules; ξ1(t), · · · , ξp(t) are the premise
variables; ϕϕϕ(t) is a vector-valued initial continuous function
defined on the interval [−τ0, 0], and τ(t) is a time-varying
delay satisfying the inequalities below:

0 ≤ τ(t) ≤ τ0, τ̇(t) ≤ d (2)

where τ0 and d are two scalars. The fuzzy system (1) is
supposed to have singleton fuzzifier, product inference, and
centroid defuzzifier. The final output of the fuzzy system
is inferred as follows:
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ẋxx(t) =

r∑
i=1

µi[Aixxx(t) + Aτixxx(t− τ(t)) + Biwww(t)]

yyy(t) =

r∑
i=1

µi[Cixxx(t) + Cτixxx(t− τ(t)) + Diwww(t)]

zzz(t) =

r∑
i=1

µi[Eixxx(t) + Eτixxx(t− τ(t))]

xxx(t) = ϕϕϕ(t), ∀t ∈ [−τ0, 0] (3)

where ξξξ(t) = (ξ1(t), ξ2(t), · · · , ξp(t)), µi(ξξξ(t)) =
βi(ξξξ(t))/

∑r
j=1 βj(ξξξ(t)), βi(ξξξ(t)) =

∏p
i=1 Mij(ξξξ(t)), and

ξξξ(t) are the premise variables. Mij(ξj(t)) is the grade of
membership of ξj(t) in Mij . It is easy to find that:

βi(ξξξ(t)) ≥ 0, i = 1, 2, · · · , r,

r∑
j=1

βj(ξξξ(t)) > 0, ∀t

Therefore, µi(ξξξ(t)) ≥ 0, for i = 1, 2, · · · , r and∑r
j=1 µj(ξξξ(t)) = 1, ∀t. In this paper, we denote that

µi = µi(ξξξ(t)).
The i-th rule of a fuzzy H∞ filter is given as follows:
Rule i: IF ξ1(t) is Mi1, · · · , and ξp(t) is Mip, THEN

˙̂xxx(t) =

r∑
i=1

µi[Afix̂xx(t) + Bfiyyy(t)], x̂xx(0) = x̂xx0

ẑzz(t) =

r∑
i=1

µiCfix̂xx(t) (4)

where Afi, Bfi, Cfi, i = 1, 2, · · · , r are the filter parame-
ters to be designed. Thus, from (3) and (4), the filter error
system can be written in the following form:

η̇ηη(t) = Â(t)ηηη(t) + Âτ (t)ηηη(t− τ(t)) + B̂(t)www(t)

eee(t) = zzz(t)− ẑzz(t) = Ê(t)ηηη(t) + Êτ (t)ηηη(t− τ(t)) (5)

where ηηη(t) = [xxxT(t), x̂xxT(t)] and ηηη(0) = [ϕϕϕT(t), x̂xxT
0 ] for

∀t ∈ [−τ0, 0],

Â(t) =
r∑

i,j=1

µiµj

[
Aj 0

BfiCj Afi

]
=

[
A(t) 0

Bf (t)C(t) Af (t)

]

Âτ (t) =

r∑
i,j=1

µiµj

[
Aτj 0

BfiCτj 0

]
=

[
Aτ (t) 0

Bf (t)Cτ (t) 0

]

B̂(t) =

r∑
i,j=1

µiµj

[
Bj

BfiDj

]
=

[
B(t)

Bf (t)D(t)

]

Ê(t) =

r∑
i,j=1

µiµj

[
Ej Cfi

]
=

[
E(t) Cf (t)

]

Êτ (t) =

r∑
i=1

µi

[
Eτj 0

]
=

[
Eτ (t) 0

]

So far, the fuzzy H∞ filtering problem for system (3) can
be expressed as follows.

Given a prescribed level of noise attention γ > 0, find
a suitable filter in the form of (4) satisfying the following
requirements:

1) The filter error system (5) with w = 0 is asymptoti-
cally stable;

2) The following H∞ performance is satisfied:

∫ L

0

‖eee(t)‖2dt ≤ γ2

∫ L

0

‖www(t)‖2dt (6)

for all L > 0 and www(t) ∈ L2[0,∞) under zero initial condi-
tions. If this is the case, we say that the H∞ filter design
problem is solved.

2 Main results

Similar to [19], we construct an approved Lyapunov func-
tional candidate to establish the sufficient conditions of the
existence of fuzzy H∞ filter. Our main results are as fol-
lows.

Lemma 1. For nonlinear system (3) with (2) and a pre-

scribed real number γ > 0, if there exist matrices P̂ > 0,

Q̂ > 0, Ẑ > 0 and matrix functions Af (t), Bf (t), Cf (t),

Ŷ (t), T̂ (t), Û(t) such that the matrix inequality (7) holds
for a given scalar δ > 0, then the filtering error system (5)
is asymptotically stable and satisfies the H∞ performance
index, where

ϕ11 = P̂ Â(t) + ÂT(t)P̂ + Q̂ + Ŷ (t) + Ŷ T(t)

ϕ12 = P̂ Âτ (t)− Ŷ (t) + T̂T(t)

ϕ22 = −(1− d)Q̂− T̂ (t)− T̂T(t)

Proof. The proof is given in Appendix. ¤
Lemma 1 provides a sufficient condition for the existence

of an asymptotically stable filter with H∞ performance.
However, there exist some coupled matrix variables in the
matrix inequality. In order to decouple the variables in
(7), we will use decoupling technique similar to that in
[6, 9, 19]. In such a way, inequality (7) can be equivalently
transformed into another form as follows:

Lemma 2. There exist matrices P̂ > 0, Q̂ > 0, Ẑ > 0

and matrix functions Af (t), Bf (t), Cf (t), Ŷ (t), T̂ (t), Û(t)
such that (7) holds if and only if there exist matrices P > 0,
F > 0, Q > 0, Z > 0 and matrix functions Āf (t), B̄f (t),
C̄f (t), Y (t), T (t), U(t) such that inequality (8) holds, where

(1, 1) = φ11 + φT
11 + Q + Y (t) + Y T(t)

(1, 2) = φ12 − Y (t) + TT(t)

(2, 2) = −(1− d)Q− T (t)− TT(t)

φ11 =

[
PA(t) + B̄f (t)C(t) Āf (t)
FA(t) + B̄f (t)C(t) Āf (t)

]

φ12 =

[
PAτ (t) + B̄f (t)Cτ (t) 0
FAτ (t) + B̄f (t)Cτ (t) 0

]

φ13 =

[
PB(t) + B̄f (t)D(t)
FB(t) + B̄f (t)D(t)

]
, φ16 =

[
ET(t)
−C̄T

f (t)

]

φ26 =

[
ET

τ (t)
0

]
, φ55 =

[
P F
F F

]
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Θ(t) =




ϕ11 ϕ12 P̂ B̂(t) + ÛT(t)
√

τ0Ŷ (t)
√

τ0Â
T(t)P̂ ÊT(t)

∗ ϕ22 −ÛT(t)
√

τ0T̂ (t)
√

τ0Â
T
τ (t)P̂ ÊT

τ (t)

∗ ∗ −γ2I
√

τ0Û(t)
√

τ0B̂
T(t)P̂ 0

∗ ∗ ∗ −kẐ 0 0

∗ ∗ ∗ ∗ −2δP̂ + δ2Ẑ

k
0

∗ ∗ ∗ ∗ ∗ −I




< 0 (7)

Ξ(t) =




(1, 1) (1, 2) φ13 + ÛT(t)
√

τ0Ŷ (t)
√

τ0φ
T
11 φ16

∗ (2, 2) −ÛT(t)
√

τ0T̂ (t)
√

τ0φ
T
12 φ26

∗ ∗ −γ2I
√

τ0Û(t)
√

τ0φ
T
13 0

∗ ∗ ∗ −kZ 0 0

∗ ∗ ∗ ∗ −2δφ55 + δ2Z

k
0

∗ ∗ ∗ ∗ ∗ −I




< 0 (8)

Ξij =




(1, 1) (1, 2) φ13 + UT
i

√
τ0Yi

√
τ0φ

T
11 φ16

∗ (2, 2) −UT
i

√
τ0Ti

√
τ0φ

T
12 φ26

∗ ∗ −γ2I
√

τ0Ui
√

τ0φ
T
13 0

∗ ∗ ∗ −kZ 0 0

∗ ∗ ∗ ∗ −2δφ55 + δ2Z

k
0

∗ ∗ ∗ ∗ ∗ −I




< 0 (9)

Proof. (Necessity) Suppose that (8) holds for P̂ > 0,

Q̂ > 0, Ẑ > 0, and matrix functions Af (t), Bf (t), Cf (t),

Ŷ (t), T̂ (t), and Û(t). Partition P̂ as

P̂ =

[
P S
ST W

]
(10)

where P > 0, W > 0 and S is invertible (otherwise, S can
be made invertible through slight perturbation). Let

H =

[
I 0
0 SW−1

]
(11)

Pre- and post-multiplying (7) by diag{H, H, I, H, H, I} and
its transpose, respectively, produces (8) with the variable

changing: F = SW−1ST, Q = HQ̂HT, Z = HẐHT,

U = ÛHT, Y (t) = HŶ (t)HT, T (t) = HT̂ (t)HT, Āf (t) =
SAf (t)W−1ST, B̄f (t) = SBf (t), C̄f (t) = Cf (t)W−1ST.
This proves necessity.

(Sufficiency) Suppose that (8) holds for P > 0, F > 0,
Q > 0, Z > 0 and matrix functions Āf (t), B̄f (t), C̄f (t),
Y (t), T (t), and U(t). Choose two matrices W > 0 and S

invertible such that F = SW−1ST. Let P̂ and H be de-
fined as in (10) and (11), respectively. Then, P̂ > 0 due
to φ55 > 0 as inferred by (8). Pre and post-multiplying
(8) by diag{H−1, H−1, I, H−1, H−1, I} and its transpose

yields (7) with the variable changing: Q̂ = H−1QH−T,

Ẑ = H−1ZH−T, Û = UH−T, Ŷ = H−1Y (t)H−T,

T̂ = H−1T (t)H−T, Af (t) = S−1Āf (t)S−TW , Bf (t) =
S−1B̄f (t), Cf (t) = C̄f (t)S−TW . ¤

Theorem 1. The H∞ filter system (5) is asymptotically
stable and satisfies the H∞ performance index if there exist
matrices P > 0, F > 0, Q > 0, Z > 0, Āfi, B̄fi, C̄fi, Yi,
Ti, Ui, i = 1, 2, · · · , r such that the following LMIs hold for
given scalars k > 0 and δ > 0:

Ξij + Ξji < 0, i ≤ j (12)

where Ξij are given as in (9). The filter parameters in (4)

are given by

Afi = F−1Āfi, Bfi = F−1B̄fi, Cfi = C̄fi, i = 1, 2, · · · , r
(13)

where

(1, 1) = φ11 + φT
11 + Q + Yi + Y T

i

(1, 2) = φ12 − Yi + TT
i

(2, 2) = −(1− d)Q− Ti − TT
i

φ11 =

[
PAj + B̄fiCj Āfi

FAj + B̄fiCj Āfi

]

φ12 =

[
PAτj + B̄fiCτj 0
FAτj + B̄fiCτj 0

]

φ13 =

[
PBj + B̄fiDj

FBj + B̄fiDj

]
, φ16 =

[
ET

j

−C̄T
fi

]

φ26 =

[
ET

τj

0

]
, φ55 =

[
P F
F F

]

Proof. Set

Āf (t) =

r∑
i=1

µiĀfi, B̄f (t) =

r∑
i=1

µiB̄fi

C̄f (t) =

r∑
i=1

µiC̄fi, Y (t) =

r∑
i=1

µiYi

T (t) =

r∑
i=1

µiTi, Ui(t) =

r∑
i=1

µiUi

From (14), we have

Ξ(t) =

r∑
i=1

µ2
i Ξii +

r∑
i<j=1

µiµj(Ξij + Ξji) < 0
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By virtue of Lemmas 1 and 2, the H∞ filter design
problem is solvable, and the filter matrix functions are
given by Af (t) = S−1Āf (t)S−TW , Bf (t) = S−1B̄f (t),
Cf (t) = C̄f (t)S−TW , where matrices W > 0 and S are
such that F = SW−1ST. Or equivalently, under transfor-
mation S−TWx̂xx(t), the filter matrix functions can be of
the following forms:

Af (t) = S−TW (S−1Āf (t)S−TW )W−1ST = F−1Āf (t)

Bf (t) = S−TW (S−1B̄f (t)) = F−1B̄f (t)

Cf (t) = (C̄f (t)S−TW )W−1ST = C̄f (t)

Hence, the filter parameters in (4) are given by (13). ¤
Remark 1. If k = 1, then our results are reduced to

those that can be seen in [19]. So, by choosing suitable
k, our results could overcome the conservatism of those in
[19].

3 Simulation

In this section, a numerical example is used to test the
effectiveness of the proposed method.

Example. Consider the following system cited from
[19]:

ẋxx(t) =
2∑

i=1

µi(ξξξ(t))[Aixxx(t) + Aτixxx(t− τ(t)) + Biwww(t)]

yyy(t) =
2∑

i=1

µi(ξξξ(t))[Cixxx(t) + Cτixxx(t− τ(t)) + Diwww(t)]

zzz(t) =
2∑

i=1

µi(ξξξ(t))[Eixxx(t) + Eτixxx(t− τ(t))]

where

A1 =

[ −2.1 0.1
1 −2

]
, A2 =

[ −1.9 0
−0.2 −1.1

]

Aτ1 =

[ −1.1 0.1
−0.8 −0.9

]
, Aτ2 =

[ −0.9 0
−1.1 −1.2

]

B1 =

[
1
−0.2

]
, B2 =

[
0.3
0.1

]

C1 =
[

1 0
]
, C2 =

[
0.5 −0.6

]

Cτ1 =
[ −0.8 0.6

]
, Cτ2 =

[ −0.2 1
]

D1 = 0.3, D2 = −0.6

E1 =
[

1 −0.5
]
, E2 =

[ −0.2 0.3
]

Eτ1 =
[

0.1 0
]
, Eτ2 =

[
0 0.2

]

According to Theorem 1, for given (d, τ0, δ, k) =
(0.3, 0.5, 1, 0.58) solve LMI (12) and get the minimum

attenuation level γ = 0.21 and a set of feasible solutions as
follows:

F =

[
0.1991 −0.1227
−0.1227 0.2078

]

Āf1 =

[ −0.9880 0.2366
0.8052 −0.6834

]

Āf2 =

[ −0.3791 0.2101
0.1677 −0.4949

]

B̄f1 =

[ −0.5804
0.4180

]
, B̄f2 =

[ −0.0843
0.2127

]

C̄f1 =
[ −0.9962 0.5098

]

C̄f2 =
[

0.1168 −0.2795
]

Furthermore, the H∞ filter parameter matrices are com-
puted from (13) as

Af1 =

[ −4.0462 −1.3164
1.4864 −4.0657

]

Af2 =

[ −2.2104 −0.6467
−0.4976 −2.7630

]

Bf1 =

[ −2.6327
0.4576

]
, Bf2 =

[
0.3257
1.2159

]

Cf1 =
[ −0.9962 0.5098

]

Cf2 =
[

0.1168 −0.2795
]

To compare with the recently developed fuzzy H∞ filter,
we consider different (τ0, δ) by choosing k to find the min-
imum index δ for d = 0.3. The corresponding results are
summarized in Table 1.

The fuzzy H∞ filtering approaches proposed by us and
those proposed in [19] are used to design the fuzzy H∞
filter for this system. According to Theorem 1, we choose
d = 0.3 and suitable k, then run the simulation for the case.
In the case, we find the minimum index γ for the given dif-
ferent τ0 and δ by choosing a suitable scalar k from Table 1,
respectively. When τ0 = 1, δ = 0.7 or τ0 = 1, δ = 20, we
can get the feasible solution by Theorem 1, but [19] can
not. Furthermore, we can also find a smaller γ than that
in Table 1 through choosing a more suitable k. It can be
clearly seen that our approach produces less conservative
results than the existing ones in [19] .
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4 Conclusion

This paper deals with the problem of H∞ filter design for
nonlinear systems through T-S fuzzy models. By construct-
ing a new Lyapunov functional and using free-weighting
matrix approach, the H∞ filter design scheme is proposed.
A numerical example is used to illustrate the design pro-
cedure and the effectiveness of the proposed method. And
the approach of H∞ filter design in this paper can be also
used in other H∞ filtering fields.

Appendix The Proof of Lemma 1
In this paper, we choose the Lyapunov function candidate

different from that in [9, 19]:

V (ηηη(t)) = ηηηT(t)P̂ηηη(t) +

∫ t

t−τ(t)
ηηηT(s)Q̂ηηη(s)ds +

k

∫ 0

−τ0

∫ t

t+θ

η̇ηηT(s)Ẑη̇ηη(s)dsdθ (14)

where P̂ > 0, Q̂ > 0, Ẑ > 0, k > 0. As in the proof of [16−17],
by the Leibniz-Newton formula, one has

ηηηT(t− τ(t)) = ηηη(t)−
∫ t

t−τ(t)
η̇ηη(s)ds

Thus, for appropriately dimensioned matrices Ŷ (t), T̂ (t), and

Û(t), the following equalities are true:

2[ηηηT(t)Ŷ (t) + ηηηT(t− τ(t))T̂ (t) + wwwT(t)Û(t)]×

[ηηη(t)− ηηη(t− τ(t))−
∫ t

t−τ(t)
η̇ηη(s)ds] ≡ 0

With the above equation, differentiating (14) along the trajec-
tories of system (5) yields

V̇ (ηηη(t)) = 2ηηηT(t)P̂ η̇ηη(t) + ηηηT(t)Q̂ηηη(t)−
(1− τ̇(t))ηηηT(t− τ(t))Q̂ηηη(t− τ(t))+

kτ0η̇ηη
T(t)Ẑη̇ηη(t)− k

∫ t

t−τ0

η̇ηηT(s)Ẑη̇ηη(s)ds ≤

2ηηηT(t)P̂ [Â(t)ηηη(t) + Âτ (t)ηηη(t− τ(t)) + B̂(t)www(t)]+

ηηηT(t)Q̂ηηη(t)− (1− d)ηηηT(t− τ(t))Q̂ηηη(t− τ(t))+

kτ0η̇ηη
T(t)Ẑη̇ηη(t)− k

∫ t

t−τ(t)
η̇ηηT(s)Ẑη̇ηη(s)ds +

2[ηηηT(t)Ŷ (t) + ηηηT(t− τ(t))T̂ (t) + wwwT(t)Û(t)]×

[ηηη(t)− ηηη(t− τ(t))−
∫ t

t−τ(t)
η̇ηη(s)ds]

Furthermore, a straightforward computation gives

V̇ (ηηη(t))− eeeT(t)eee(t)− γ2wwwT(t)www(t) ≤
ζζζT(t)[Ω(t) + τ0M(t)(kẐ)−1MT(t)]ζζζ(t)−
∫ t

t−τ(t)
[ζζζT(t)M(t) + η̇ηηT(s)(kẐ)](kẐ)−1×

[M(t)ζζζT(t) + (kẐ)η̇ηηT(s)]ds (15)

where τ > 0 and

ζζζT(t) = [ηηηT(t), ηηηT(t− τ(t)),wwwT(t)]

MT(t) = [Ŷ (t), T̂ (t), Û(t)]

θ11 = P̂ Â(t) + ÂT(t)P̂ + Q̂ + Ŷ (t) + Ŷ T(t) + ÊT(t)Ê(t)

θ12 = P̂ Âτ (t)− Ŷ (t) + T̂T(t) + ÊT(t)Êτ (t)

θ22 = −(1− d)Q̂− T̂ (t)− T̂T(t) + ÊT
τ (t)Êτ (t)

Ω(t) =




θ11 θ12 P̂ B̂(t) + ÛT(t)

∗ θ22 −ÛTt)
∗ ∗ −γ2I


 +

kτ0[Â(t), Âτ (t), B̂(t)]TẐ[Â(t), Âτ (t), B̂(t)] (16)

From (δẐ − P̂ )Ẑ−1(δẐ − P̂ ) ≥ 0, one has −P̂ (kẐ)
−1

P̂ ≥
(−2δP̂ + δ2Ẑ)/k holds for any scalar k > 0 and δ > 0. By this
inequality, it can be verified that (8) implies Ω̂(t) < 0, where
Ω̃(t) < 0 is a matrix derived from (8) by change the (5, 5) block
(−2δP̂ + δ2Ẑ)/k to −P̂ (kẐ)−1P̂ . Obviously, by Schur comple-
ment Ω̃(t) < 0 is equivalent to Ω(t) + τ0M(t)(kẐ)−1MT(t) <
0. Consequently, it follows from (15), V (ηηη(t))|t=0 = 0 and
V (ηηη(t))|t=L ≥ 0 that

∫ L

0

(‖eee(t)‖2 − γ2‖www(t)‖2)dt +

V (ηηη(t))|t=L − V (ηηη(t))|t=0 ≤ 0 (17)

which implies that (6) holds. Hence, H∞ performance is verified.
In addition, it can be clearly seen from (8) that the time

derivative of V (ηηη(t)) along the solution of (5) when www = 0 satis-
fies V̇ (ηηη(t)) < 0. As a result, the asymptotic stability of system
(5) follows immediately when www = 0. ¤
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