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Discretization of Continuous-time Systems with

Input Delays
ZENG Li1 HU Guang-Da1

Abstract In this paper, the Runge-Kutta (RK) method, which involves the polynomial interpolation is adopted to discretize
continuous-time systems with input delay. The proposed scheme is an efficient and higher-order approach compared with conventional
discretizing methods. The accuracy of the proposed conversion scheme is closely related to the order of RK as well as that of the
polynomial interpolation. Both the approximate order and the maximal attainable order of the discretization are discussed. In
addition, the input-to-state stability of the scheme is analyzed. In order to guarantee the stability of the corresponding discrete
system, the sampling time can be chosen by investigating the absolute stability region of the RK method. Especially, when the RK
method is A-stable, the sampling time can be selected without being constrained by stability considerations. A numerical experiment
is provided to demonstrate the superior performance of the method.
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This paper deals with discretizing continuous-time sys-
tems with input delay by using Runge-Kutta (RK) meth-
ods. There are many methods for converting a continuous-
time system to a discrete equivalence. The commonly used
methods include Tustin approximation with or without fre-
quency pre-warping, the impulse-invariance method, zero-
pole mapping method, and the triangle hold equivalent,
and so on. Some other approaches such as the higher-
order s-to-z mapping method and weighed-sample method
were analyzed in [1−4]. These conventional methods[5] are
straightforward and applicable to delay-free cases. When a
system contains delay, the conversion will be quite complex
using classical methods.

Recently, some novel approaches were presented in
[6−11] to tackle time-delayed systems. Both the matrix
exponential and the Taylor series discretization methods in
[7] considered that the input signal was piecewise constant
over the sampling interval by the zero-hold assumption.
Apart from the influences caused by the choice of param-
eters and the truncation order in the above two methods,
the accuracy was lost due to the inaccurate piecewise con-
stant input. Similarly, [8−11] adopted the zero-order and
second-order holders to keep the input constant during the
sampling intervals, respectively. The frequency domain re-
cursive least square (RLS) based method in [6] was to ob-
tain the discrete equivalence whose frequency response fit-
ted that of the continuous one. Its result was fairly desir-
able. But the stability of discrete equivalence cannot be
guaranteed and the RLS may give different local optimal
convergent solutions with different initial points. Though
RLS in [6] used the bilinear equivalence as the initial dis-
crete model for its maintenance of stability during contin-
uous and discrete conversion, this skill could not solve the
stability problem essentially. Obviously, a fairly satisfying
result can cost heavy computational efforts.

We apply the generally known RK methods to
continuous-time systems with input delays. High accuracy
and stability are the merits of the RK method. It should
be mentioned that if the RK method is A-stable, the sta-
bility region includes all the left half-plane. The sampling
time can be selected without being constrained by stabil-
ity considerations. As for the discretizing, the Lagrange
polynomial interpolation formula is used to approximate
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the non-integer step values of delayed input signals. The
accuracy of the scheme can be maintained if the order of
interpolating equals or exceeds that of the RK method it-
self. In addition, we analyze the maximal attainable order
of the proposed scheme for discretizing. Furthermore, if
the original continuous-time system is stable, we hope its
discrete equivalence is also stable. So, the input-to-state
stability (ISS) of the scheme is discussed.

The organization of this paper is as follows. RK method
with polynomial interpolation for discretizing is presented
in the next section. The approximate order of the scheme is
derived in Section 2. The ISS of the scheme is discussed in
Section 3. In Section 4, a numerical experiment is provided.

1 Using RK methods with polynomial
interpolation for discretizing

We are concerned with an SISO continuous-time system
with input delay whose transfer function is

H(s) =
md−1s

d−1 + · · ·+ m1s + m0

sd + ld−1sd−1 + · · ·+ l1s + l0
e−τs (1)

where li and mi, i = 0, 1, · · · , d−1 are real coefficients and
τ is the time delay. Express this transfer function in the
controllable canonical form defined in [12] as follows:

{
ẋxx(t) = Lxxx(t) + GGGu(t− τ)
y(t) = MMMxxx(t)

(2)

where

L =




0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1
−l0 −l1 · · · −ld−1




, GGG =




0
0
...
1




MMM =
[

m0 m1 · · · md−1

]

We always assume that the initial vector xxx(0) is known
throughout this paper.

In this section, we are concerned with applying the RK
method to the continuous-time system with input delay (2).

We already know that an s-stage RK method is com-
pletely specified by its-Butcher array in which

ccc = [c1, c2, · · · , cs]
T, bbb = [b1, b2, · · · , bs]

T, A = [aij ]
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and the row-sum condition

ci =

s∑
j=1

aij , i = 1, 2, · · · , s

holds. Applying an s-stage RK method to problem (2), we
have




xxxn+1 = xxxn + h
s∑

i=1

bigggi

gggi = L(xxxn + h
s∑

j=1

aijgggj) + GGGu(nh− τ + cih),

i = 1, 2, · · · , s (3)

where xxxn stands for the state vector of the discrete-time
system (3) at tn = nh, while xxx(n) stands for the exact so-
lution xxx(tn) of continuous-time system (2) at tn = nh, and
h denotes a constant step-size.

The discrete-time system (3) can be rewritten by the
Kronecker product as follows:

[
Isd − h(A⊗ L) 0
−bbbT ⊗ Id Id

] [
KKKn

xxxn+1

]
−

[
0 h(eees ⊗ L)
0 Id

]
×

[
KKKn−1

xxxn

]
−

[
hIs ⊗GGG

0

]
UUUn = 0 (4)

where KKKn,i = hgggi, KKKn = [KKKn,1,KKKn,2, · · · ,KKKn,s]
T, eees =

[1, 1, · · · , 1]T, and UUUn = [u(nh − τ + c1h), u(nh − τ +
c2h), · · · , u(nh− τ + csh)]T.

Remark 1. Let

V =

[
Isd − h(A⊗ L) 0
−bbbT ⊗ Id Id

]

W =

[
0 h(eees ⊗ L)
0 Id

]

T =

[
hIs ⊗GGG

0

]
, ZZZn =

[
KKKn−1

xxxn

]

When the RK method is explicit or A-stable, V −1 exists.
Equation (4) can be rewritten as follows:

ZZZn+1 = V −1WZZZn + V −1TUUUn (5)

With the help of the rule of solving the inverse of a par-
titioned matrix, we derive from (5) that

ZZZn+1 =

[
0 h[Isd − h(A⊗ L)]−1(eees ⊗ L)
0 Id + h(bbbT ⊗ Id)[Isd − h(A⊗ L)]−1(eees ⊗ L)

]

ZZZn +

[
h[Isd − h(A⊗ L)]−1(Is ⊗GGG)
h(bbbT ⊗ Id)[Isd − h(A⊗ L)]−1(Is ⊗GGG)

]
UUUn (6)

Let

S1 = h[Isd − h(A⊗ L)]−1(eees ⊗ L)

S2 = Id + h(bbbT ⊗ Id)[Isd − h(A⊗ L)]−1(eees ⊗ L)

N1 = h[Isd − h(A⊗ L)]−1(Is ⊗GGG)

N2 = h(bbbT ⊗ Id)[Isd − h(A⊗ L)]−1(Is ⊗GGG)

We obtain the xxxn+1 part in (6) as follows:

xxxn+1 = S2xxxn + N2UUUn (7)

In the discrete-time system (3), components of input vec-
tors u(nh − τ + cih), i = 1, 2, · · · , s include the noninte-
ger step values. But a discrete system can only sample
integral step values of the input signal u(nh). It is neces-
sary to use interpolation technique to approximate the term
u(nh− τ + cih) for discretization with high-performance.

The Lagrange polynomial interpolation is used to ap-
proximate the noninteger step values of the input signal
u(nh− τ + cih) as follows:

τ = Dh + γ, D = {0, 1, 2, · · · }, 0 ≤ γ < h

u(nh− τ + δh) =

0∑
j=−r

Lj(δ)un−D+j + o(hr+1) (8)

where δ ∈ [0, 1], n = 0, 1, · · · , and o(hr+1) is the interpola-
tion residual, and

Lj(δ) =

0∏

k=−r,j 6=k

nh− τ + δh− (nh−Dh + kh)

(nh−Dh + jh)− (nh−Dh + kh)
=

0∏

k=−r,j 6=k

δh− τ + Dh− kh

jh− kh

Let

ŪUUn−D = [un−D−r, un−D−r+1, · · · , un−D]T

We have

UUUn = QŪUUn−D + ooo(hr+1) (9)

where

Q =




L−r(c1) L−r+1(c1) · · · L0(c1)
L−r(c2) L−r+1(c2) · · · L0(c2)

...
...

. . .
...

L−r(cs) L−r+1(cs) · · · L0(cs)




Then, we use QŪUUn−D to approximate UUUn in (7) as

xxxn+1 = S2xxxn + N2QŪUUn−D (10)

Remark 2. If the RK method is of order q, r ≥ q − 1
is taken to guarantee the order of the scheme being q. This
is the conclusion described in Theorem 1.

2 Approximate order of RK method
with polynomial interpolation

In this section, we discuss the accuracy of the discretiza-
tion with the RK method. As the Lagrange polynomial
interpolation formula is used to approximate the input sig-
nal u(nh − τ + cih), the accuracy of the scheme is closely
related to that of the RK as well as interpolation.

Definition 1[13]. The local truncation error TTT n+1 of
(3) at tn+1 = (n + 1)h is defined to be the residual
when xxxn+j is replaced by xxx(tn+j), j = 0, 1, i.e., TTT n+1 =
xxx(tn+1)−xxx(tn)− h

∑s
i=1 bigggi, where xxx(t) is the exact solu-

tion of problem (2).

Definition 2[13]. If q is the largest integer such that
TTT n+1 = ooo(hq+1), then we say that the method has order q.
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Remark 3. If we denote by xxxn+1 the value at tn+1

generated by the RK method when the localizing assump-
tion that xxx(tn) = xxxn is made, from the definition of local
truncation error, then we have that TTT n+1 = xxx(tn+1)−xxxn+1.

Remark 4. If the RK method is of order q, and the
localizing assumption xxx(tn) = xxxn is made, then we have
xxx(tn+1) = xxxn+1 + o(hq+1).

Theorem 1. When an RK method of order q is ap-
plied to problem (2), the order of the interpolation for in-
put signal should be equal to or higher than that of the RK
method in order to guarantee the order of the scheme is q,
that is, the number of the interpolating points should be
at least q or larger, namely, r ≥ q − 1.

Proof. From (10), it follows that

xxxn+1 = S2xxxn + N2QŪUUn−D (11)

If the RK method is of order q, according to Remark 4, we
have

xxx(tn+1) = S2xxx(tn) + N2UUUn + ooo(hq+1) (12)

Assume that the local linearizing assumption is satisfied,
that is, xxx(tn) = xxxn, and let TTT n+1 = xxx(tn+1)− xxxn+1. Com-
paring (11) with (12) and considering (9), we have

TTT n+1 = N2(UUUn −QŪUUn−D) + ooo(hq+1) =

ooo(hr+2) + ooo(hq+1) (13)

According to Definition 2, we can see that the condition
r ≥ q − 1 should be satisfied to guarantee the order of the
scheme is q. ¤

Remark 5[13]. When an s-stage Gauss method is ap-
plied to the scalar test equation ẏ = λy, λ ∈ C, it yields

the difference equation yn+1 = R(ĥ)yn, where ĥ = hλ and

R(ĥ) = exp(ĥ) + o(h2s+1). According to the Padé approxi-

mation theory, this means R(ĥ) is the (s, s) Padé approxi-

mation of order 2s to the exponential exp(ĥ). Furthermore,
it indicates that the maximal attainable order of an s-stage
RK method is 2s.

Theorem 2. The maximal attainable order of the RK
method for converting the continuous-time system with in-
put delay (2) to its discrete equivalence is 2s if the order of
the interpolation is equal to or higher than 2s, that is, the
number of the points for interpolating should be at least 2s
or larger, namely, r ≥ 2s− 1.

Proof. We rewrite (11), (12), and (13) in Theorem 1 as
follows:

xxxn+1 = S2xxxn + N2QŪUUn−D

xxx(tn+1) = S2xxx(tn) + N2UUUn + ooo(hq+1)

TTT n+1 = N2(UUUn −QŪUUn−D) + ooo(hq+1) =

ooo(hr+2) + ooo(hq+1) (14)

From Remark 5, we know that the maximal attainable or-
der of an s-stage RK method is the Gauss method which is
of order 2s. When an s-stage Guass method is applied to
(2), the local truncation error at tn+1 is

TTT n+1 = ooo(hr+2) + ooo(hq+1) = ooo(hr+2) + ooo(h2s+1)

It follows that the maximal attainable order of the scheme
is 2s based on the condition r ≥ 2s− 1. ¤

The correctness of this conclusion can be verified by the
example in Section 4.

3 ISS of the scheme

In this section, we discuss the ISS of the scheme. As-
suming that the original continuous-time system is ISS, we
hope that the resulting discrete equivalence derived from
RK methods is also ISS. Theorems 3 and 4 give the rela-
tionships between the ISS and the absolute stability of the
RK method.

Lemma 1[12]. For the linear system (2), suppose that
all eigenvalues of L have negative parts. Then, system (2)
is ISS.

Lemma 2[12]. For the linear system xxx(k +1) = Lxxx(k)+
GGGu(k), where L ∈ Rd×d and GGG ∈ Rd×1 are constant matri-
ces, suppose that all eigenvalues of L have magnitudes less
than unity. Then, this system is ISS.

Definition 3. An RK method with the polynomial
interpolation for linear system (2) is called ISS if the
difference system (3) is ISS in terms of the input term
u(nh− τ + cih), i = 1, 2, · · · , s.

Definition 4. The stability function of the RK method
is given by

r(ĥ) = 1 + ĥbbbT(Is − ĥA)−1eees =
det[Is − ĥ(A− eeesbbb

T)]

det(Is − ĥA)

based on the test equation ẏ(t) = λy(t), where λ ∈ C,

ĥ = hλ and Re(λ) < 0. The region

RRK = {ĥ ∈ C : |r(ĥ)| < 1}
is called the region of absolute stability of the RK method.
The method is said to be A-stable if RRK includes all the
left half-plane of ĥ.

Theorem 3. We consider that an RK method (A,bbb, ccc)
with the polynomial interpolation is applied to the linear
system (2). Assume that

1) Re(λi(L)) < 0, for i = 1, 2, · · · , d;
2) The RK method is explicit and hλi(L) ∈ RRK , for

i = 1, 2, · · · , d.
Then, the scheme for (2) is ISS. Here, λi(L) stands for

the i-th eigenvalue of the matrix L.
Proof. According to Lemma 1, the linear system (2) is

ISS for Re(λi(L)) < 0. When an RK method with poly-
nomial interpolation is applied to (2), we obtain the non-
homogeneous difference system (4). First, we can prove
the corresponding homogeneous system of (4) is ISS. The
proof is similar to that in [14−15]. Then by Lemma 2, the
non-homogeneous system (4) is ISS. ¤

We know from the theory of numerical analysis that if the
RK method is A-stable, the sampling time can be selected
without being constrained by stability considerations. For
the A-stable RK methods, we have the following result.

Theorem 4. We consider that an RK method (A,bbb, ccc)
with the polynomial interpolation is applied to the linear
system (2). Assume that

1) Re(λi(L)) < 0, for i = 1, 2, · · · , d;
2) The RK method is A-stable and Re(λi(A)) ≥ 0, for

i = 1, 2, · · · , s.
Then, the scheme for (2) is ISS.
Proof. The proof can be carried out similarly to that of

Theorem 3. ¤
Remark 6. The above results show that the ISS of RK

method for the linear system (2) can be described by the re-
gion of absolute stability of the RK method for the scalar
test equation without the control term. Theorems 3 and
4 give the relationships between the ISS and the absolute
stability of the RK method.
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4 Numerical example

We will give an example to illustrate the scheme. All the
computations are carried out by Matlab.

Example 1. Consider the following transfer function

H(s) =
s− 1

s2 + 4s + 5
e−0.35s

which appeared in [6]. Its controllable canonical form is

{
ẋxx(t) =

[
0 1
−5 −4

]
xxx(t) +

[
0
1

]
u(t− 0.35)

y(t) =
[ −1 1

]
xxx(t)

(15)

Assume that the initial state is xxx(0) = [1, 1]T and the input
u(t) to this system is sin(t)/4.

We consider the influence of interpolating input signal
on the order of the scheme. Applying the two-stage Gauss
method with different interpolations to (15), we get the
global errors at t = 1.4 for a range of step lengths. The
results are given in Table 1.

What is persuasive is the column of entries named “Ra-
tio”, where we have calculated, for each h, the ratio of the
error when the step length is h to the error when the step
length is h/2. It is known that for a q-order method, the
global error is o(hq). Thus, for the Gauss method of 4 or-
der, we expect this ratio to tend to 24 = 16 as h → 0. The
results in Table 1 indicate that we are achieving fourth-
order behaviors for r = 3 and r = 4, but not for r = 2. At
the same time, the results verify the correctness of Theo-
rem 2, namely, taking r ≥ q−1 = 2s−1 = 3 can guarantee
the order of the scheme.

Next, on the basis of the conditions for interpolating
being satisfied, we discuss the accuracies of the system ob-
tained by different RK methods, which are applied to (15).
The sampling frequency ωs varies from 10π to 160π rad/s.
An explicit RK method (s = 2 and q = 2), Gauss meth-
ods (s = 2, 3 and q = 4, 6), and Radau method (s = 2
and q = 3) are used for comparison. The root-mean-square
(RMS) errors are plotted in Fig. 1.

ERMS =

√√√√ 1

n

n∑
i=1

‖xxx(i)− xxxi‖2

In the following, we discuss the frequency responses of
different discrete-time systems that appeared in [6] and our
paper. Plots of the magnitude and phase frequency re-
sponses are in Fig. 2 for the continuous-time system, and
for the discrete-time ones obtained with 4th-order Gauss

method with h = 0.05, 4th-order Gauss method with
h = 0.1, RLS method with h = 0.1 in [6], Tustin rule
with h = 0.1 in [6], and second-order explicit RK method
with h = 0.05. In Fig. 3, the deviation in the response of
each discrete-time one from the continuous system is plot-
ted. The time responses of discrete equivalence of (15) are
plotted in Fig. 4. And the deviations in the response of each
discrete one from the original continuous system in the time
domain are plotted in Fig. 5. The results show that over
the useful frequency band, the discrete equivalence closely
duplicates its original continuous one in the frequency do-
main as well as in the time domain. And the performance
improves as the order of RK method increases.

The results in the above example indicate the followings:

Fig. 1 RMS errors of Example 1

Fig. 2 Frequency responses of Example 1

Table 1 Global errors

r=2 r=3 r=4

h Error Ratio Error Ratio Error Ratio

0.2 9.8032× 10−5 8.7745× 10−5 8.7484× 10−5

22.26 16.59 16.12

0.1 4.4047× 10−6 5.2895× 10−6 5.4281× 10−6

8.18 15.51 16.08

0.05 5.3855× 10−7 3.4106× 10−7 3.3758× 10−7

11.59 16.02 16.01

0.025 4.6484× 10−8 2.1289× 10−8 2.1091× 10−8

10.31 16.01 16.00

0.0125 4.5090× 10−9 1.3299× 10−9 1.3182× 10−9
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Remark 7. The accuracy of the scheme is determined
by the order of the interpolation as well as that of the RK.
If the condition r ≥ q − 1 is satisfied, the order of the RK
itself decides the accuracy of the scheme.

Remark 8. The deviations in both time and frequency
domains decrease as the order for discretizing increases.
And the equivalent discrete one well duplicates its origi-
nal continuous-time system when the discretizing accuracy
is high. So, the RK method is efficient and preferable to
discretizing compared with conventional methods.

Fig. 3 Deviations of frequency responses of Example 1

Fig. 4 Time responses of Example 1

Remark 9. The implementation of the proposed
method is easier compared to that of the RLS method in
[6]. RLS adopts parameters derived from the bilinear dis-
cretizing as the initial values for recursion. It takes many
steps and requires heavy computational efforts to attain a
fairly desirable convergent result. And, the stability of the
resultant discrete filter may not be guaranteed. However,
a good discrete equivalence can be obtained by comput-
ing just once for RK methods. The computational efforts
largely decrease as compared to that of RLS method. As
for the stability of discrete one, Theorems 3 and 4 give
clear explanations. All these show the superiority of the
RK method.

Fig. 5 Deviations of time responses of Example 1

5 Conclusion

In this paper, we study the RK method for discretizing
a continuous-time system with input delay. The technique
of Lagrange polynomial interpolation is employed for ap-
proximation to tackle the noninteger step values of delayed
input. This action needs us to make further analysis of
the influence caused by the interpolation to the accuracy
of discretizing. The approximate order and the maximal
attainable order of the scheme are analyzed, respectively.
Furthermore, we discuss the ISS of the scheme. The ISS of
the discrete system is closely related to the absolute stabil-
ity of the RK method. The numerical example verifies the
efficiency and superiority of the proposed method.
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