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Decentralized Control for

Arbitrarily Interconnected

Systems over Lossy Network
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Abstract This paper deals with the control of arbitrarily
topological interconnected systems where information commu-
nicated between subsystems may be lost due to unreliable links.
First, the stochastic variable that is responsible for the commu-
nication status of lossy network is regarded as a source of model
uncertainty. The system is modeled in the framework of linear
fractional transformation with a deterministic nominal system
and a stochastic model uncertainty. Then, the robust control
theory is employed for system analysis. The largest probability
of communication failure, tolerated by the interconnected sys-
tems keeping mean square stable, can be obtained by solving a
µ synthesis optimization problem. Decentralized state feedback
controllers are designed to ensure that the whole system is mean
square stable for a given communication failure rate, based on
the technique of linear matrix inequalities. An illustrative exam-
ple is presented finally to verify the effectiveness of the proposed
model and method.
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Recently there has been a great interest in the control of
large scale interconnected systems, necessitated by a broad
class of potential applications such as large arrays of micro-
electromechanical sensors and actuators[1], multi-agent for-
mation systems[2], power network distributed systems[3],
etc. It is difficult or even infeasible to use the classical cen-
tralized control for such complex systems, because there
are a lot of inputs and outputs, which imposes high burden
of computation. In addition, the interconnections between
subsystems are usually realized through network commu-
nication. For example, in the multi-robot system, robots
broadcast their positions to teammates over wireless net-
work. The use of network gives rise to new challenges such
as intermittent data packet losses, which results in different
information patterns at each subsystem and leads to more
complicated synthesis of control law. The goal of this paper
is to develop decentralized controllers that can handle the
effects of both complex structure and communication fail-
ure on the stability of arbitrarily topological interconnected
systems.

There are already some results on the control of inter-
connected systems. References [4−7] developed distributed
controllers for a class of spatially invariant interconnected
systems. In these works, the interconnections were just be-
tween neighboring subsystems and the communication was
assumed to be perfect. The control of interconnected sys-
tems with communication constraints between subsystems
is a rising problem and there are relatively few results in
this field. The authors in [8] employed tools from dissipa-
tivity theory. They constructed a class of structured con-
trollers for spatially interconnected systems over arbitrary
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graph. These results were later extended to analysis and
synthesis of interconnected systems where small commu-
nication delays existed between subsystems[9]. Langbort
et al.[10] have discussed the control of interconnected sys-
tems over failing channels based on the theory of Marko-
vian jump linear systems. However, the controllers were
obtained on the condition of existence of an arbitrarily fail-
ing packet loss model. The result is more conservative than
those of using the general Markovian failure model. Ref-
erence [11] has discussed the kind of Markovian communi-
cation failure between subsystems, but interconnected sys-
tems considered were spatially-invariant, only having infor-
mation exchange between neighboring subsystems. Jiang
et al.[12] designed structured state feedback controllers by
Youla-Kucera parameterization method for systems inter-
connected over lossy networks. However, the solving of
Youla-Kucera parameter will cost a large amount of com-
putation since it is based on centralized control scheme,
which has a great number of inputs and outputs.

In the field of networked control systems, there are abun-
dant outcomes to deal with the communication failure
problem. However, what has been considered is about the
lossy links from sensors to controllers, or from controllers to
actuators. The results were derived in the context of a sin-
gle plant leading to a centralized control structure. But the
methods they used give us a great inspiration. For example,
[13] viewed the packet transmission situation as a binary
switching sequence and employed the filtering scheme to
handle the effect of missing measurements. Reference [14]
used a discrete time linear system with Markovian jumping
parameters to represent the networked control system with
random communication failure. Reference [15] modeled
the situation of intermittent communication as a source
of model uncertainty and converted the problem into the
classical robust control framework. This method is also the
one we employ here.

In this paper, we aim to tackle the analysis and synthesis
of interconnected systems over an arbitrary graph, which
suffer the intermittent information transmission between
subsystems because of the unreliable communication. An
erasure channel model is introduced to describe the com-
munication link. It is more general than the model used in
[10]. Inspired by the method of [15], we treat the stochasti-
cally unreliable link as a source of model uncertainty. The
whole interconnected system is represented as a linear frac-
tional transformation and the results of robust control the-
ory are adopted. Based on the technique of computation-
ally tractable linear matrix inequalities, a method of design-
ing decentralized state feedback controllers is proposed to
ensure that the whole system is mean square stable under
the effect of stochastic communication failure. The largest
communication failure probability can also be obtained by
solving this robust synthesis problem.

The paper is organized as follows: In Section 1, the
model of interconnected systems over an arbitrary graph
is presented, under the effect of random communication
losses between any two subsystems. Analysis conditions
are proposed in Section 2, which ensure the mean square
stability of the whole system. Section 3 shows the method
of designing decentralized controllers based on the linear
matrix inequalities technique. An illustrative example is
given in Section 4, and the conclusion is in Section 5.

Notations. For a matrix Z belonging to the set of real
symmetric matrices Rn

s , Z > 0 means that Z is positive def-
inite; Z < 0 means Z is negative definite. Given matrices
Zk, k = 1, 2, · · · , n, diagn

k=1{Zk} denotes a block-diagonal
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matrix with Zk along the diagonal. It is usually denoted
as diagk{Zk} for brevity. Likewise for signals or vectors
xk, k = 1, 2, · · · , n, the notation catn

k=1Zk denotes a signal
or a vector [xT

1 , xT
2 , · · · , xT

n ]T formed by concatenating xk,
where xT

k is the transposition of xk. It is also denoted as
catkZk for brevity. In represents an identity matrix with
the dimension n×n. The dimension of a vector x is denoted
by dim(x). For a stochastic variable γ(k), µ = E{γ(k)}
represents its mathematical expectation, σ2 = var{γ(k)}
represents the variance, and σ =

√
σ2 is the standard devi-

ation.

1 The model of interconnected systems
with random connection

Consider the interconnected systems with arbitrary
topology of L subsystems Gi, i = 1, 2, · · · , L, as shown in
Fig. 1. Each node represents a linear time-invariant (LTI)
finite dimensional subsystem. Every directed edge (Gi, Gj)
indicates that there is information flowing from subsystem
Gi to Gj . The edge (Gi, Gj) denotes the case that infor-
mation feeds back in subsystem Gi.

Fig. 1 Interconnected systems with random connection

For every pair of subsystems Gi and Gj , we use the fol-

lowing four signal notations[9]: 1) vij , the input of Gi com-
ing from Gj ; 2) wij , the output of Gi flowing towards Gj ;
similarly, 3) vji and 4) wji. Denote nij = dim(vij). As-
sume that dim(wji) = dim(vij) = nij . nij = 0 indicates
that there is no signal flowing from Gj to Gi.

1.1 The model of communication channel

Due to the characteristic of lossy communication net-
work, information exchanged between subsystems may be
lost randomly at each time-step. For simplicity, we as-
sume that the channels either transmit information per-
fectly or lose it completely. Besides, the communication
failure probabilities of different channels are independent
and identical. The erasure channel model is introduced
here to depict the lossy communication network channel
used in this pape, which is a type of fading channel[15].

Definition 1. δij(k) is a stochastic process taking val-
ues in {0, 1}, which is used to characterize the status of the

communication between subsystem Gi and Gj at time k.
An erasure channel, associated to δij(k), is a multiplica-
tive channel with a Bernoulli fading distribution, where
Pr{δij(k) = 0} = p, and Pr{δij(k) = 1} = 1 − p. denotes
the probability of communication failure.

Assume that for each i, j = 1, 2, · · · , L, δij(0), δij(1),
· · · , δij(k), · · · are independent identically distributed ran-
dom variables, and δij(k) are independent from each other
for different i, j. In other words, the state of a communica-
tion channel at a certain time is independent of the status
of other channels at other time else.

According to the distribution of the stochastic variable
δij(k), we have the mean µij = E{δij(k)} = 1 − p and the
variance σ2

ij = var{δij(k)} = E{(δij(k)−µij)
2} = p(1− p).

Define ∆ij(k) = δij(k)/µij − 1. Then, µ∆ = E{∆ij(k)} =
0, σ2

∆ = var{∆ij(k)} = p/(1− p). So, ∆ij(k) is a zero-
mean stochastic variable, and

δij(k) = µij(1 + ∆ij(k)) (1)

can be used to depict a fading channel[15].
Referring to the definitions of vij and wij , the intercon-

nected relationship between two subsystems can be repre-
sented by

vij(k) = δij(k)Inij wji(k) = µij(1 + ∆ij(k))Inij wji(k) (2)

The communication channel is called to be a mean chan-
nel when ∆ij(k) = 0, which is the nominal instance. Thus,
the fading channel is composed of a mean channel and a
zero-mean channel associated with the stochastic perturba-
tion ∆ij(k), as shown in Fig. 2. It is similar to the descrip-
tion of uncertainty in robust control problem.

Fig. 2 Transformation of channel model

1.2 The model of interconnected systems

Denote the interconnected inputs to subsystem Gi as
vi(k) = catL

j=1(vij(k)). The interconnected outputs from

Gi are wi(k) = catL
j=1(wij(k)). Each subsystem can be

described by the following state-space equations:

xi(k + 1) = Aixi(k) + Bivi(k)
wi(k) = Cixi(k) + Divi(k)

(3)

where Bi = [Bi1 Bi2 · · · BiL], Ci =




C1i

C2i

...
CLi


, and Di =




Di11 · · · Di1L

...
. . .

...
DiL1 · · · DiLL


 are the relevant coefficient matri-

ces with appropriate dimensions respectively. xi ∈ Rmi
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are the state variables of the subsystem Gi. Suppose that
the initial states xi(0) have bounded variances and are in-
dependent of ∆ij(k), k ≥ 0.

The subsystem can also be expressed in the input-output
form as wi(k) = Givi(k).

Aggregate the interconnected signals as v(k) =
catL

i=1vi(k), w(k) = catL
i=1wi(k), and denote x(k) =

catL
i=1xi(k) . The dynamics of the overall system with L

subsystems can be formulated as

x(k + 1) = Ax(k) + Bv(k)
w(k) = Cx(k) + Dv(k)

(4)

where A = diagL
i=1{Ai}. Similar expressions hold for B, C,

and D. The overall system is denoted as G. There is
w(k) = Gv(k) with G = diagL

i=1{Gi}.
In order to represent the whole interconnected systems

as the linear fractional transformation form for the conve-
nience of system analysis, we define the following swapped
interconnection signals

w̄(k) = catL
i=1(catL

j=1wji(k)) (5)

The permutation matrix P is defined correspondingly as

w̄(k) = Pw(k) (6)

Then,

v(k) = Γ(k)w̄(k) (7)

where

Γ(k) = diagL
i=1{diagL

j=1{δij(k)Inij}} (8)

Combining the expressions (1) and (8) yields

Γ(k) = Ψ(I + ∆(k)) (9)

where

Ψ = diagL
i=1diagL

j=1{µijInij}
∆(k) = diagL

i=1diagL
j=1{∆ij(k)Inij}

I = diagL
i=1{diagL

j=1{Inij}}
(10)

Denote ṽ(k) = ∆(k)w̃(k), where ṽ(k) = catL
i=1 (ṽi•(k))

= catL
i=1

(
catL

j=1ṽij(k)
)
, w̃(k) = catL

i=1 (w̃•i(k))

= catL
i=1

(
catL

j=1w̃ji(k)
)
. Let the linear operator M

represents the mapping from ṽ(k) to w̃(k), i.e.




w̃•1(k)
...

w̃•L(k)


 =




M11 · · · M1L

...
. . .

...
ML1 · · · MLL







ṽ1•(k)
...

ṽL•(k)


 (11)

Then the whole interconnected system can be repre-
sented as a linear fractional transformation between ∆(k)
and M , denoted as H = F (∆, M), which is shown in Fig. 3.

Fig. 3 The linear fractional transformation representation of
interconnected systems

2 Analysis of interconnected systems
In this paper, we discuss two main features of intercon-

nected systems: well-posedness and mean square stability.

2.1 Well-posedness

The interconnected systems are well-posed if the signals
satisfying the interconnections exist, i.e., the systems are
physically realizable. Reference [10] has given the mathe-
matical definition on well-posedness of interconnected sys-
tems.

Definition 2[10]. The interconnected systems (4), which
are composed of subsystems (3) and interconnections (2),
are well-posed if for ∀δij ∈ {0, 1}, 1 ≤ i, j ≤ L, the vec-

tors {vij} {wij} satisfying vij = δijwji and

[
wi

vi

]
∈

Im

[
Di

I

]
for all i, j, are zero, where Im

[
Di

I

]
denotes

the space generated by the vector

[
Di

I

]
.

In order to guarantee the well-posedness of intercon-
nected systems, it is assumed that Di = 0. This assumption
may lead to a certain degree of conservatism, but it does
not lose generality. It means that there is no feed-through
loop between subsystems and no algebraic loop in the large-
scale system. This can always be satisfied in practice.

2.2 Mean square stability

Definition 3[10]. The well-posed interconnected sys-
tems are mean square stable if limk→∞ E{x(k)x(k)T} = 0

Definition 4[15]. The mean square norm of M is defined
as

‖M‖MS = max
i=1,··· ,L

√√√√
L∑

j=1

‖Mij‖22 (12)

It is noticeable that the square of the mean square norm
represents the maximum output energy of all output chan-
nels.

For interconnected systems H = F (∆, M), with the as-
sumptions on δij(k), xi(0) and Di mentioned previously, we
have the following analysis result, which is adopted from
[15].

Theorem 1. The following statements are equivalent:
1) The interconnected systems H = F (∆, M) are mean

square stable;
2) There exits a dialogic matrix Θ such that

σ2 inf
Θ>0,diag

∥∥Θ−1MΘ
∥∥2

MS
< 1 (13)

This theorem gives a condition for testing the mean
square stability of interconnected systems from the per-
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spective of the whole system. However, it is difficult to
compute. In order to overcome this disadvantage, a suffi-
cient condition for the mean square stability of intercon-
nected systems is presented based on the dynamics of a
basic building block. Although the condition is a little con-
servative, it is convenient for system analysis and synthesis.

Theorem 2. The interconnected systems H =
F (∆, M), with the assumptions on δij(k), xi(0), and Di

mentioned previously, are mean square stable if

η2 inf
θ>0,diag

∥∥θ−1Giθ
∥∥2

MS
< 1 (14)

for each i = 1, 2, · · · , L, η2 = µ2
ij(1 + σ)2.

Proof. Denote M1 = ΨPG in Fig. 3. Then, M = (I −
M1)

−1M1. Note that the scaling matrix Θ is positively
diagonal, so

∥∥Θ−1MΘ
∥∥2

MS
=

∥∥Θ−1(I −M1)
−1M1Θ

∥∥2

MS
=

∥∥Θ−1(I −M1)
−1ΘΘ−1M1Θ

∥∥2

MS
≤

∥∥Θ−1(I −M1)
−1Θ

∥∥2

MS

∥∥Θ−1M1Θ
∥∥2

MS

(a)

≤
∥∥Θ−1M1Θ

∥∥2

MS(
1− ‖Θ−1M1Θ‖MS

)2 (15)

Inequality (a) holds true because

∥∥Θ−1(I −M1)
−1Θ

∥∥
MS

=
∥∥(I −Θ−1M1Θ)−1

∥∥
MS

≤
1

1− ‖Θ−1M1Θ‖MS

(16)

On the other hand, since the permutation matrix P is or-
thogonal, and all the link channels have the same commu-
nication failure probability, i.e. µij are all the same for
∀i, j,

∥∥Θ−1M1Θ
∥∥

MS
=

∥∥Θ−1ΨGΘ
∥∥

MS
≤ µij

∥∥Θ−1GΘ
∥∥

MS

(17)
Note that G = diagi{Gi} and

∥∥Θ−1GΘ
∥∥

MS
=

maxi

∥∥θ−1Giθ
∥∥

MS
If (14) holds true, i.e.,

µij infθ>0,diag

∥∥θ−1Giθ
∥∥

MS
< 1/(1 + σ) for each i,

we can get

inf
Θ>0,diag

∥∥Θ−1M1Θ
∥∥

MS
<

1

1 + σ
(18)

Then

inf
Θ>0,diag

∥∥Θ−1M1Θ
∥∥2

MS(
1− ‖Θ−1M1Θ‖MS

)2 <
1

σ2
(19)

By (15) and Theorem 1, the result follows immediately.¤
Lemma 1[15]. Given Gi which is stable for each i, and

a diagonal matrix θ > 0, then

∥∥θ−1Giθ
∥∥2

MS
= inf

Q>0,γ
γ

Q > AiQAT
i + Biθ

2BT
i

γθ2
jj > CjiQCT

ji + Dij•θ
2DT

ij•
j = 1, 2, · · · , L

Dij• =
[

Dij1 · · · DijL

]
= (20)

inf
R>0,S>0,γ

γ




R RAi RBiθ
AT

i R R 0
θBT

i R 0 I


 > 0




θSθ Ci Diθ
CT

i R 0
θDT

i 0 I


 > 0

Sjj < γ, j = 1, 2, · · · , L (21)

Proof. The result (20) is similar to the one in lin-
ear matrix inequality optimization for the computation of∥∥θ−1Giθ

∥∥2

2

[16]
. The only difference is that ‖Gi‖22 = tr{S} =∑L

j=1 Sjj , while ‖Gi‖2MS = maxj Sjj . The result (21) is
drawn from the Schur complement lemma. ¤

Thus, the stability condition (14) can be transformed
into a group of linear matrix inequalities by Lemma 1,
which is easier for computation.

Theorem 3. The interconnected systems H are mean
square stable, if there exist a matrix Q > 0 and a vector
α ∈ RL of positive elements satisfying the following linear
matrix inequalities:

Q > AiQAT
i +

L∑
j=1

BijαjB
T
ij

αj > η2CjiQCT
ji + η2

L∑
j=1

Dij•αjD
T
ij•,

i = 1, 2, · · · , L (22)

Furthermore, observe that η2 is monotonic in p, so

infθ>0,diag

∥∥θ−1Giθ
∥∥2

MS
corresponds to the maximal η2 and

then the largest communication failure probability p which
can be tolerated by the interconnected systems.

Finally, the definition of mean square structured norm[15]

is introduced to describe the largest stability margin for
interconnected systems.

Definition 5. The mean square structured norm of M ,
denoted by µMS(M, ∆), is defined as follows:

µMS(M, ∆) = (23)

1

{sup η2 : the interconnected systems are mean square stable}
It is worthy of noting that 1/µMS gives the largest mean

square stability margin, which associates with the largest
communication failure probability that can be tolerated by
H.

Based on the Theorem 2 and Definition 5, Corollary 1
follows immediately.

Corollary 1.

µMS(M, ∆) = inf
i

inf
θ>0,diag

∥∥θ−1Giθ
∥∥2

MS
(24)

3 Controller synthesis
In this section, we aim to design a group of decentralized

state feedback controllers so that the closed loop intercon-
nected systems are mean square stable under the effect of
random communication failure between subsystems. The
reason for designing decentralized state feedback controllers
is that: 1) Decentralized controllers can not only reduce the
computation cost, but also lessen the communication bur-
den; 2) The state feedback controllers may ensure that the
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closed loop systems do not have algebraic loop, which is
required for the well-posedness of interconnected systems.

Augmented with the sensor output signals yi ∈ Rq and
the control inputs ui ∈ Rp, the subplant can be described
as:

Pi :





xi(k + 1) = Aixi(k) + Bivi(k) + Bu
i ui(k)

wi(k) = Cixi(k) + Divi(k) + Du
i ui(k)

yi(k) = Cy
i xi(k) + Dy

i vi(k)
(25)

We want to design controllers

Ki : ui = Kixi (26)

so that the closed loop interconnected systems are mean
square stable when the information exchanging between
subsystems is through erasure channels. Likewise it is as-
sumed that the channels are independent from each other,
and have identical communication failure probability. As
to the largest stability margin, we have

µ∗MS = inf
K−stab

inf
i

inf
θ>0,diag

∥∥θ−1Gcl,iθ
∥∥2

MS
=

inf
θ>0,diag

inf
i

inf
K−stab

∥∥θ−1Gcl,iθ
∥∥2

MS
(27)

where Gcl,i is the closed loop subsystem and K − stab de-
notes the set of all the stabilizing state feedback controllers.

For a fixed diagonal matrix θ0 > 0, the minimal mean
square norm synthesis is a convex problem. The controller
gain can be obtained by solving a group of linear matrix
inequalities. It will be discussed in the following context
in detail. However, the search for the optimal controller
is non-convex for non-deterministic θ. We use a heuristic
algorithm, termed D-K iteration[17] to accomplish the op-
timal controller synthesis. The problem is split into two
simple parts: 1) solving the controller Ki in H∞ synthesis
framework for a fixed scaling θ0 > 0; 2) finding a scaling θ
that minimizes the mean square norm.

Theorem 4. For a subsystem Gcl,i and a fixed di-
agonal matrix θ0 > 0, the optimization problem of

infK−stab

∥∥θ−1
0 Gcl,iθ0

∥∥2

MS
is equivalent to the following lin-

ear matrix optimization:

inf
R>0,S>0,X,γ

γ

s.t. 


R RAi + X RBiθ0

AT
i R + XT R 0
θ0B

T
i R 0 I


 > 0




θSθ Ci Diθ
CT

i R 0
θDT

i 0 I


 > 0

Sjj < γ, j = 1, 2, · · · , L (28)

Moreover, if these linear matrix inequalities are feasible,
Ki = (RBu

i )−X is the needed state feedback gain.
Proof. This result follows immediately from Theorem

3 and Lemma 1, with the system matrices Ai, Bi, Ci, Di

being that of the closed loop system instead. Then, the
approach of variable substitution[16] is used to convert them
into the form of linear matrix inequalities. ¤

4 A power network example
In this section, the tools presented above are applied

to an example of power network where the transmission

between subsystems may fail stochastically. The goal is to
control each power plant individually so that the whole net-
work is mean square stable in face of transmission failure.
This model is adopted from [10].

The power network consists of a group of load-driving
generators interconnected by unreliable transmission lines.
The dynamics of the i-th generator is governed by

xi(k + 1) = Tixi(k) + LiIi(k) + Bu
i ui(k)

Vi(k) = Fixi(k)
(29)

where xi(k) ∈ R2 are the state variables of the i-th genera-
tor, corresponding to the deviations from the reference pro-
files of rotor′s angular velocities and angles. Ii(k) ∈ R2 are
the current deviations from the reference operating points.
Vi(k) ∈ R2 are the voltage deviations. ui(k) ∈ R are the
control torques.

As shown in Fig. 4, each generator is connected to a load
resistance with admittance matrix Yii ∈ R2×2 and to other
generators through a transmission line with stochastically
varying admittance δij(k)Yii ∈ R2×2, j = 1, 2, · · · , L. The
stochastic variable δij(k) is a Markovian random process,
which has the distribution characteristic as depicted in Sec-
tion 1. Assume that the line fails and is independent of
other lines. By the Kirchhoff Laws, we have

Ii(k) = YiiVi(k) +
∑

j 6=i

δij(k)Yij(Vi(k)− Vj(k)) (30)

Then

xi(k + 1) = (Ti + LiYiiFi)xi(k)+ (31)

Li

∑

j 6=i

δij(k)Yij(Fixi(k)− Fjxj(k)) + Bu
i ui(k)

for i = 1, 2, · · · , L.

Fig. 4 A power network with five generators

Let the sensor output signals yi(k) = xi(k). Thus, (31)
can be rewritten in the form of (25), i.e.,

xi(k + 1) = Aixi(k) + Bivi(k) + Bu
i ui(k) (32)

with Ai = Ti + LiYiiFi and Bi = [Li · · ·Li]︸ ︷︷ ︸
2(L−1)

. The intercon-

nected output signals are

wi(k) = catjwij(k) (33)
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where

wij(k) = −YjiFixi(k), i 6= j

wii(k) =
[
Yi1 · · · Yi(i−1) Yi(i+1) · · · YiL

]T
Fixi(k)

(34)

The interconnections between subsystems are

vij(k) = δij(k)Inij wji(k), i 6= j
vii(k) = diag1≤j≤L,j 6=i{δij(k)Inij}wii(k)

(35)

and
vi(k) = catjvij(k) (36)

Remark 1. In this example, at each instant k, vii(k)
and wii(k) are related through a block-diagonal matrix,
instead of a diagonal one. This only increases the di-
mension of interconnection. Our tools for system analysis
and control synthesis can be extended straightforwardly to
this case. The characteristics of the generator are sup-

posed to be Ti =

[
5 0
0 0

]
, Li =

[
10 0
0 0

]
, Bu

i =
[ −1

0

]
, and Fi =

[
0 0
0 −10

]
. The load matrices are

Yii =

[
10 −2
−2 10

]
and Yij =

[
10 −5
5 10

]
.

Assume that there are five generators interconnected
over a complete graph, i.e., every generator interconnects
with the other four generators, nij = 2 for all i, j =
1, 2, · · · , 5. All the links independently fail with failure rate
p = 0.3. Using the control synthesis method described in
Theorem 4, we can get the suboptimal state feedback con-
troller gains as Ki = [5.6652 − 244.6163] while θii = 1.
With these decentralized controllers, Ai+Bu

i Ki have eigen-
values {−0.6652, 0} which locate inside the unit circle. The
simulation result is shown in Fig. 5. It is found that the in-
terconnected systems can keep mean square stable under
the effect of stochastic link failure.

If the failure rate is changed to be p = 0.8, the simulation
result is presented as Fig. 6. The systems are still mean
square stable, but they need longer setting time.

The mean square structured norm is calculated to be
µ∗MS = 1×10−4 in this example. That is to say, the system
can keep mean square stable even with a failure rate p ≈ 1.
However, it may not be the case always. For instance,

if we change Fi and Yij to Fi =

[
0 0
0 −100

]
and Yij =

[
10 −50
50 10

]
, it follows that µ∗MS = 2.0934. The maximal

failure probability for system keeping mean square stable
is p = 0.7461.

5 Conclusion
The problems of stability analysis and controller synthe-

sis of arbitrarily interconnected systems linked over lossy
communication network are discussed in this paper. The in-
termittent communication failure was treated as a source of
model uncertainty. The system was put into the framework
of linear fractional transformation representation. Analy-
sis conditions for system maintaining mean square stable
were obtained based on the robust control theory. The
conditions were then expressed in terms of subsystem and
a group of decentralized controllers were designed based on
the technique of linear matrix inequalities. A power net-
work example was given finally to show the effectiveness of
our approach. In the future, we will try our best to deal
with the effects of packet losses and time delays on the

stability of interconnected systems having network-based
communication between subsystems.

Fig. 5 State responses of five generators with p = 0.3

Fig. 6 State responses of five generators with p = 0.8
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