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Convergent Stabilization Conditions of Discrete-time 2-D

T-S Fuzzy Systems via Improved Homogeneous

Polynomial Techniques
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Abstract This paper is concerned with the problem of stabilization of the Roesser type discrete-time 2-D T-S fuzzy system via
some improved homogeneous polynomial techniques. First, a novel kind of non-quadratic control scheme is proposed to stabilize
the underlying 2-D T-S fuzzy system, thus less conservative stabilization conditions are attained by applying two kinds of improved
homogeneous polynomial techniques. As the degree of the homogeneous polynomially parameter-dependent matrix increases, these
attained sufficient conditions may be asymptotically necessary in a convergent sense. Second, for the sake of further reducing
conservatism, a new right-hand-side slack variables introducing approach which suits the homogenous polynomial setting is also
proposed. Finally, a numerical example is provided to illustrate the effectiveness of the proposed methods.
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The search for more general and efficient control design
techniques for nonlinear systems has been an important is-
sue of great interest in control theory and its applications.
In this direction, Takagi-Sugeno (T-S) fuzzy system[1] plays
an important role. Based on the T-S fuzzy model, many
stability conditions for the nonlinear systems have also been
investigated in [2−5] and most of the existing results are de-
rived by applying a single quadratic Lyapunov function and
the usual parallel distributed compensation (PDC) control
scheme, which tend to give more conservative conditions.
To overcome this drawback, different Lyapunov functions
have been proposed: piecewise Lyapunov functions using
a partition of the state space have been investigated in
[6]; another family of functions considers the use of non-

quadratic Lyapunov functions[7−9]. Furthermore, relaxed
stabilization conditions are also given in [10−11] by con-
sidering the information of some idiographic membership
functions (MFs). More recently, all kinds of existing re-
laxed conditions for stability and stabilization of discrete-
time T-S model are recalled in [12].

Over the past three decades, the two-dimensional (2-D)

systems[13−14] have received considerable attention due to
their extensive applications, such as those in image data
processing and transmission, thermal process, signal filter-
ing, etc. Recently, the 2-D system theory is also frequently
used as an analysis tool to some problems, e.g., iterative
learning control[15], repetitive process control[16], and PI
control of discrete linear repetitive processes[17]. In [18],
the problem of H∞ control for 2-D discrete state delay sys-
tems described by the second Fornasini-Marchesini (FM)
state-space model has also been investigated. Due to the
application in modeling hybrid systems, H∞ filtering for
2-D Markovian jump systems has also been investigated in
[19]. Moreover, stability analysis of 2-D discrete systems
described by the FM second model with state saturation
was studied in [20]. However, the aforementioned results
are only for linear 2-D systems. As well known, most of
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the actual 2-D systems are nonlinear and the above results
do not work in the nonlinear case[21].

Recently, based on the T-S fuzzy modeling approach,
non-quadratic stabilization conditions for a class of non-
linear Roesser type 2-D systems have been proposed by
applying some new fuzzy relaxed techniques in [21]. The
authors in [21] extended both the non-quadratic control

scheme[7] and the right-hand-side slack variables introduc-
ing approach[2−3] to the 2-D T-S fuzzy setting. With sev-
eral kinds of linear matrix inequality (LMI) relaxations for
stabilizing the underlying 2-D T-S systems available in [21],
it seems that the challenge now is to improve the quality of
the relaxations. For instance, in terms of efficiency, i.e., the
ability that the same results are obtained with less compu-
tational burden; or the easiness that a given stability con-
dition is extended to cope with similar problems. As stated
in [12, 21], there is still some conservatism to be lifted if we
change “something” of either the control law or the form
of introducing additional variables.

In this paper, the problem of stabilization for Roesser
type discrete-time 2-D T-S fuzzy systems will be investi-
gated via some improved homogeneous polynomial tech-
niques. First, with the sake of further releasing the con-
servatism, convergent stabilizations are obtained by using
both the novel kind of non-PDC scheme and some improved
homogeneous polynomial techniques. Because more extra
degrees of freedom are introduced, it is worth noting that
the conservatism will be gradually reduced as the degrees
of some control gain matrix parameters increase. Second,
a new right-hand-side slack variables introducing approach
which suits the homogenous polynomial setting is also pro-
posed to accelerate the convergence rate of these attained
results, i.e., attaining equivalent or less conservative sta-
bilization conditions by using the same degrees of some
control gain matrix parameters.

The rest of this paper is organized as follows. Following
the introduction, system description and some preliminar-
ies are given in Section 1. In Section 2, new non-quadratic
stabilization conditions are proposed by using both the
novel non-quadratic control scheme and some improved ho-
mogeneous polynomial techniques. With the purpose of
further reducing the conservatism, a new kind of right-
hand-side slack variables introducing techniques is also in-
vestigated which suits to the homogeneous matrix polyno-



1306 ACTA AUTOMATICA SINICA Vol. 36

mial setting in Section 3. In Section 4, an example is given
to demonstrate the effectiveness of the results proposed in
Sections 2 and 3. Finally, some conclusions are drawn in
Section 5.

For simplicity, the notations used are fairly standard.
For example, X > 0 (or X ≥ 0) means the matrix X
is symmetric and positive (semi-positive) definite. For a
square matrix E, He(E) is defined as E + ET. XT denotes
the transpose of X. The symbol I represents the identity
matrix with appropriate dimension. “∗” in a symmetric
matrix denotes the transposed element in the symmetric
position. For a matrix P , min (P ) and max(P ) means the
smallest and largest eigenvalue of P , respectively. Z+ de-
notes the set of non-negative integers {0, 1, 2, · · · }. M ! rep-
resents factorial, i.e., M ! = M(M − 1)(M − 2) · · · (2)(1) for
M ∈ Z+ with 0! = 1. C1 denotes the set of continuous
functions with derivatives of one order.

1 Problem statement

1.1 Discrete-time 2-D T-S fuzzy model[21]

Consider a class of Roesser type discrete-time nonlinear
2-D systems described as follows:

xxx+(s, l) = Z(xxx(s, l)) + S(xxx(s, l))uuu(s, l) (1)

xxxh(0, l) = fff(l), xxxv(s, 0) = ggg(s) (2)

with

xxx(s, l) =

[
xxxh(s, l)
xxxv(s, l)

]
, xxx+(s, l) =

[
xxxh(s + 1, l)
xxxv(s, l + 1)

]

where xxxh(·) is the horizonal state in Rn1 ; xxxv(·) is the verti-
cal state in Rn2 ; uuu(·) is the control input in Rm; Z(·) and
S(·) are general nonlinear functions satisfying Z,S ∈ C1.
s, l are two integers in Z+; fff(l) and ggg(s) are corresponding
boundary conditions along two independent directions.

Extending the usual 1-D T-S fuzzy modeling method to
the 2-D case, a discrete-time 2-D T-S fuzzy model described
by the following rules is proposed to represent discrete-time
nonlinear 2-D systems (1):

IF z1(s, l) is Mi1, · · · , and zL(s, l) is MiL, THEN,

xxx+(s, l) = Aixxx(s, l) + Biuuu(s, l), i = 1, · · · , r (3)

xxxh(0, l) = fff(l),xxxv(s, 0) = ggg(s)

with

Ai =

[
A11

i A12
i

A21
i A22

i

]
, Bi =

[
B1

i

B2
i

]

where zp(s, l), p = 1, · · · , L are the premise variables,
Mip is the fuzzy set, and r is the number of IF-THEN
rules. A11

i ∈ Rn1×n1 , A12
i ∈ Rn1×n2 , A21

i ∈ Rn2×n1 , A22
i ∈

Rn2×n2 , B1
i ∈ Rn1×m, B2

i ∈ Rn2×m, respectively.
By using product of inference, singleton fuzzifier, and

center-average defuzzifier, the overall discrete-time 2-D T-
S fuzzy systems can be expressed as follows:

xxx+(s, l) =

r∑
i=1

hi(z(s, l)){Aixxx(s, l) + Biuuu(s, l)} (4)

xxxh(0, l) = fff(l), xxxv(s, 0) = ggg(s)

where hi(z(s, l)) = µi(z(s, l))/
∑r

i=1 µi(z(s, l)),

µj(z(s, l)) = ΠL
m=1Mmj(z(s, l)).

Denote Xr = sup{‖xxx(s, l)‖ : r = s + l}, and we first give
out the definition of asymptotic stability for system (4).

Definition 1. The discrete-time 2-D T-S fuzzy systems
(4) is asymptotically stable if limr→∞Xr = 0 with the ini-
tial and boundary conditions (2).

In this paper, for a matrix X, the following notations
will be adopted for simplicity:

hi = hi(z(s, l)), Xz =

r∑
i=1

hiXi, X−1
z =

(
r∑

i=1

hiXi

)−1

(5)

1.2 Existing stabilization conditions via non-PDC
scheme and PDLF

In [21], a kind of non-quadratic controller is proposed
to attain less conservative stabilization conditions than the
usual PDC scheme as follows:

uuu(s, l) = FzG−1
z xxx(s, l) (6)

where Fi =
[

F 1
i F 2

i

]
and Gi =

[
G1

i 0
0 G2

i

]
.

Lemma 1[21]. The discrete-time 2-D T-S fuzzy sys-
tem (4) with the non-quadratic controller (6) is asymptoti-
cally stable if there exist appropriately dimensional matri-
ces Pi > 0, Fi, Gi, R

mn
ii , Rmn

ij = (Rmn
ji )T, with

Pi =

[
P 1

i 0
0 P 2

i

]
, P 1

i ∈ Rn1×n1 , P 2
i ∈ Rn2×n2

Rmn
ii =




Rmn
ii (1, 1) · · · Rmn

ii (1, 4)

∗ . . .
...

∗ ∗ Rmn
ii (4, 4)




Rmn
ij =




Rmn
ij (1, 1) Rmn

ij (1, 2) Rmn
ij (1, 3) Rmn

ij (1, 4)
Rmn

ij (2, 1) Rmn
ij (2, 2) Rmn

ij (2, 3) Rmn
ij (2, 4)

Rmn
ij (3, 1) Rmn

ij (3, 2) Rmn
ij (3, 3) Rmn

ij (3, 4)
Rmn

ij (4, 1) Rmn
ij (4, 2) Rmn

ij (4, 3) Rmn
ij (4, 4)




such that the following LMIs hold:

Υmn
ii > Rmn

ii , i, m, n = 1, · · · , r (7)

Υmn
ij + Υmn

ji > Rmn
ij + Rmn

ji , (8)

i 6= j, i, j, m, n = 1, · · · , r

Rmn =




Rmn
11 Rmn

12 · · · Rmn
1r

Rmn
21 Rmn

22 · · · Rmn
2r

...
...

. . .
...

Rmn
r1 Rmn

r2 · · · Rmn
rr


 > 0, (9)

m, n = 1, · · · , r

where for i, j, m, n = 1, · · · , r, we have

Υmn
ij =




P 1
i 0 Υmn

ij (1, 3) Υmn
ij (1, 4)

∗ P 2
i Υmn

ij (2, 3) Υmn
ij (2, 4)

∗ ∗ Υmn
ij (3, 3) 0

∗ ∗ ∗ Υmn
ij (4, 4)


, and

Υmn
ij (1, 3) = (A11

i G1
j + B1

i F 1
j )T

Υmn
ij (1, 4) = (A21

i G1
j + B2

i F 1
j )T

Υmn
ij (2, 3) = (A12

i G2
j + B1

i F 2
j )T

Υmn
ij (2, 4) = (A22

i G2
j + B2

i F 2
j )T

Υmn
ij (3, 3) = G1

m + (G1
m)T − P 1

m

Υmn
ij (4, 4) = G2

n + (G2
n)T − P 2

n

Remark 1. In [21], the authors have investigated the
problem of stabilization of the discrete-time 2-D T-S fuzzy
model (4) by applying quadratic Lyapunov function and
non-quadratic Lyapunov function, respectively. Based on
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an improved non-quadratic control scheme (6) for the un-
derlying 2-D fuzzy system, less conservative stabilization
condition than those in the existing literature was proposed
by Lemma 1. However, it is worth noting that MFs play an
important part in system (4); hence, how to make good use
of the information of them in the process of controller syn-
thesis seems meaningful and interesting[21]. Furthermore,
the underlying 2-D T-S system′s information is propagated
along two independent directions and this fact makes the
problem of stabilization more complicated, especially for
the case of non-quadratic stabilization.

1.3 Homogeneous matrix polynomial and useful
lemmas

Firstly, two useful lemmas which will play an important
part in the derivation of our results are given as follows.

Lemma 2[7]. For two symmetric matrices P > 0, P+ >
0, the inequality ATP+A − P < 0 holds, if there exists a

matrix G such that

[
P ∗

GA G + GT − P+

]
> 0.

Lemma 3 (Polya′s theorem)[22]. Let F (ξ) =
F (α1, α1, · · · , αN ) be a real homogenous polynomial which
is positive ∀α ∈ ∆N . Then, for a sufficiently large d ∈ Z+,
the product (α1+α2+· · ·+αN )dF (α) has all its coefficients
strictly positive, where ∆N is defined as follows:

∆N =

{
α ∈ RN ;

N∑
i=1

αi = 1; α ≥ 0

}
(10)

The following definitions are needed, which are consis-
tent with those in [23].

Define K(g) as the set of N -tuples obtained as all possi-
ble combinations of k1k2 · · · kN , ki ∈ Z+, i = 1, · · · , N such

that k1 + k2 + · · ·+ kN = g. αk1
1 αk2

2 · · ·αkN
N , α ∈ 4N , ki ∈

Z+, i = 1, 2, · · · , N are the monomials, k = k1k2 · · · kN ,
and Pk ∈ Rn×n, ∀k ∈ K(g) are matrix-valued coeffi-
cients. Here, by definition, K(g) is the set of N -tuples
obtained as all possible combinations of nonnegative inte-
gers ki, i = 1, 2, · · · , N , such that k1 + k2 + · · · + kN = g.
Since the number of vertices is equal to N , the number of
elements in K(g) is given by

J(g) =
(N + g − 1)!

g!(N − 1)!
(11)

To give an example, for homogeneous polynomials of de-
gree g = 4 with N = 2 variables, the possible values of the
partial degrees are K(4) = 04, 13, 22, 31, 40, J(4) = 5, cor-
responding to the generic form P4(α) = α4

2P04 +α1α
3
2P13 +

α2
1α

2
2P22 + α3

1α2P31 + α4
1P40.

By definition, for N -tuples k and k′, one writes k ≥ k′

if ki ≥ k′i (i = 1, · · · , N). The usual operations of summa-
tion, k + k′, and subtraction, k − k′(whenever k ≥ k′), are
defined component-wise. Moreover, let us define some new
mathematical notations as follows:

ei = 0 · · · 0 1︸︷︷︸
i-th

0 · · · 0, rec(ei) = i

π(k) = (k1!)(k2!) · · · (kN !) (12)

2 Convergent stabilization conditions
via a novel non-quadratic control
scheme

As well known, MFs play important parts in the T-S
fuzzy systems. Thus, there is a chance to further reduce

the conservatism if we consider information of MFs in the
process of controller design.

With the purpose of further releasing the conservatism,
new stabilization conditions for system (4) will be proposed
by using a novel non-PDC scheme, while some improved ho-
mogeneous matrix polynomial techniques are also applied
in this section. Here, the novel non-quadratic control law,
named as homogeneous polynomially non-quadratic control
law (HPNQCL), is designed as follows:

uuu(s, l) =Fg(h)

(
r∑

i=1

hiGi

)−1

xxx(s, l) =

Fg(h)G−1
z xxx(s, l) (13)

where Fg(h) is a homogenous polynomially parameter-
dependent matrix of degree g, g ∈ Z+ denoted by

Fg(h) =
∑

k∈K(g)

hk1
1 · · ·hkr

r Fk, k = k1k2 · · · kr (14)

Fk, k ∈ K(g) and Gi, i = 1, · · · , r are appropriately dimen-
sional matrices to be determined and have the following
matrix structures:

Fk =
[

F 1
k F 2

k

]
, Gi =

[
G1

i 0
0 G2

i

]
(15)

Based on the HPNQCL (13), the closed-loop system
could be developed as follows:

xxx+(s, l) = (Az + BzFg(h)G−1
z )xxx(s, l) (16)

Theorem 1. The discrete-time 2-D T-S fuzzy sys-
tem (4) with the HPNQCL (13) is asymptotically sta-
ble if there exist appropriately dimensional matrices Pi >
0, Gij , P ij , i = 1, 2, · · · , r, j = 1, 2, · · · , r and Fk′(k

′ ∈
K(g)), with

Pi =

[
P 1

i 0
0 P 2

i

]
, P 1

i ∈ Rn1×n1 , P 2
i ∈ Rn2×n2

Gij =

[
G1

i 0
0 G2

j

]
, P ij =

[
P 1

i 0
0 P 2

j

]

such that the following LMIs hold,

Lmn
k (h) =

∑

k′∈K(g),k≥k′

[
0 ∗

Brec(k−k′)Fk′ 0

]
+

∑

i,j∈{1,··· ,r},k−ei−ej≥0

(g − 1)!

π(k − ei − ej)
×

[
Pi ∗

AiGj Gmn + GmnT − P mn

]
> 0,

∀ k ∈ K(g + 1), m, n ∈ {1, 2, · · · , r} (17)

Proof. Consider a non-quadratic Lyapunov function for
discrete-time 2-D T-S systems as follows:

V (xxx(s, l)) = xxxT(s, l)G−T
z PzG−1

z xxx(s, l) (18)

First, let us check the existence of G−1
z . Noting that if

these conditions of Theorem 1 hold true, we have inequali-
ties with (17): Gmn +(Gmn)T−P mn > 0, m, n = 1, · · · , r.
Therefore,

∑r
i=1 hi(Gi + GT

i − Pi) > 0, which ensures that

G−1
z exists.
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Second, we check the non-quadratic Lyapunov function
(18)′s validity. We can write

xxxT(s, l)λG−T
z G−1

z xxx(s, l) ≤ V ≤ xxxT(s, l)λG−T
z G−1

z xxx(s, l)
(19)

where λ = minz(Pz) and λ = maxz(Pz).
As (G−T

z G−1
z )−1 = GzGT

z and with µ = minz(GzGT
z )

and µ = maxz(GzGT
z ), (18) becomes λµ−1‖xxx(s, l)‖2 ≤ V ≤

λµ−1‖xxx(s, l)‖2 that ensures V (xxx(s, l)) to be a candidate
Lyapunov function.

Then, its variation is written as

4V (xxx(s, l)) = xxxT(s, l)[(Az+BzFg(h)G−1
z )TG−T

z+ Pz+G−1
z+ ×

(Az+BzFg(h)G−1
z )−G−T

z PzG−1
z ]xxx(s, l)

(20)

where

Gz+ =




r∑
i=1

hi(z(s + 1, l))G1
i 0

0
r∑

j=1

hj(z(s, l + 1))G2
j




Pz+ =




r∑
i=1

hi(z(s + 1, l))P 1
i 0

0
r∑

j=1

hj(z(s, l + 1))P 2
j




Here, hi(z(s + 1, l)) and hj(z(s, l + 1)) are two differ-
ent one-step ahead MFs produced by the fact that the 2-D
systems′s information is propagated along two independent
directions. Therefore, in the following derivation of the new
non-quadratic stabilization conditions via the HPNQCL,
we have to consider this difference via solving more LMIs
as a tradeoff.

Then, 4V (xxx(s, l)) < 0 holds if we have the following
inequality:

(Az + BzFg(h)G−1
z )TG−T

z+ Pz+G−1
z+(Az + BzFg(h)G−1

z )−
G−T

z PzG−1
z < 0 (21)

Pre- and post-multiplying (21) by GT
z and Gz, it is easy

to verify that the system (4) with the non-quadratic con-
troller (13) is asymptotically stable if we have the following
inequality:

(GT
z AT

z +Fg(h)TBT
z )G−T

z+ Pz+G−1
z+(AzGz+BzFg(h))−Pz< 0

(22)
and using Lemma 2 with A = G−1

z+(AzGz−BzFg(h)), leads
to
[

Pz ∗
AzGz + BzFg(h) Gz+ + GT

z+ − Pz+

]
=

r∑
m=1

r∑
n=1

hm(z(s + 1, l))hn(z(s, l + 1))× (23)

([
Pz ∗

AzGz + BzFg(h) Gmn + GmnT − P mn

])
> 0

where Gmn =

[
G1

m 0
0 G2

n

]
and P mn =

[
P 1

m 0
0 P 2

n

]
.

Let

Lmn(h) =

[
Pz ∗

AzGz + BzFg(h) Gmn + GmnT − P mn

]

and (23) becomes:

r∑
m=1

r∑
n=1

hm(z(s + 1, l))hn(z(s, l + 1))Lmn(h) > 0 (24)

On the other hand, we have

Lmn(h) =
∑

k∈K(g+1)

hk1
1 · · ·hkr

r ×

( ∑

k′∈K(g),k≥k′

[
0 ∗

Brec(k−k′)Fk′ 0

]
+

∑

i,j∈{1,··· ,r},k−ei−ej≥0

(g − 1)!

π(k − ei − ej)
×

[
Pi ∗

AiGj Gmn + GmnT − P mn

] )
=

∑

k∈K(g+1)

hk1
1 · · ·hkr

r Lmn
k (h) (25)

Thus, if Lmn
k (h) > 0 for all k ∈ K(g +1) hold, Lmn(h) >

0 evidently holds. In other words, (24) holds if those LMIs
(17) hold, which guarantee the asymptotic stability for the
closed-loop system (16). ¤

Remark 2. In Theorem 1, new non-quadratic stabi-
lization condition for fuzzy 2-D system (4) is proposed by
applying the HPNQCL. It is worth noting that the HPN-
QCL reduces to the usual non-quadratic control scheme (6)
when g = 1, i.e., the usual non-quadratic control scheme is
a special case of the HPNQCL. Moreover, although more
additional variables introduce extra degrees of freedom, the
conservatism will be gradually reduced as the value of g in-
creases, which proved that for a given polynomial structure,
the sufficient condition may be asymptotically necessary in
a convergent sense. This fact will also be illustrated by a
numerical example in Section 4.

To further reduce the conservatism, we will exploit the
generalization of the Polya′s theorem for the case of posi-
tive polynomials with matrix-valued coefficients as follows.

Theorem 2. The discrete-time 2-D T-S fuzzy sys-
tem (4) with the HPNQCL (13) is asymptotically sta-
ble if there exist appropriately dimensional matrices Pi >
0, Gij , Pij , i = 1, 2, · · · , r, j = 1, 2, · · · , r, and Fk, k ∈
K(g), with

Pi =

[
P 1

i 0
0 P 2

i

]
, P 1

i ∈ Rn1×n1 , P 2
i ∈ Rn2×n2

Gij =

[
G1

i 0
0 G2

j

]
, P ij =

[
P 1

i 0
0 P 2

j

]

such that the following LMIs hold,

∑

k′ ∈ K(d),
k ≥ k′

{ ∑

i ∈ {1, · · · , r},
ki > k′i

d!

π(k′)

[
0 ∗

BiFk−k′−ei
0

]
+

∑

i, j ∈ {1, · · · , r}
k − k′ − ei − ej ≥ 0

d!

π(k′)
(g − 1)!

π(k − k′ − ei − ej)
×

[
Pi ∗

AiGj Gmn + GmnT − P mn

] }
> 0, (26)

∀ k ∈ K(g + d + 1), m, n ∈ {1, 2, · · · , r}, d ∈ Z+

Proof. From the proof of Theorem 1, we know that
the closed-loop 2-D system is asymptotically stable if the
following matrix inequality holds:

Lmn(h) > 0, m, n ∈ {1, 2, · · · , r} (27)
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where Lmn(h) has been defined in (24).
On the other hand, using the fact that h1 + · · ·+hr = 1,

we have Lmn(h) = (h1 + h2 + · · · + hr)
dLmn(h), d ∈ Z+.

Thus, we have that (27) is equivalent to

(h1 + · · ·+ hr)
dLmn(h) =

∑

k∈K(g+d+1)

hk1
1 hk2

2 · · ·hkr
r T mn

k > 0,

∀k ∈ K(g + d + 1) (28)

where T mn
k is equivalent to the left side of (26).

From (28), if we have T mn
k < 0 for all k ∈ K(g + d + 1)

and m, n ∈ {1, 2, · · · , r}, while d has some fixed value, (27)
evidently holds. In other words, the discrete-time 2-D sys-
tem (4) is asymptotically stable via the fuzzy controller
(13) under the LMI-based condition (26).

Furthermore, using the Polya′s theorem, we have

Lmn(h) > 0 ⇔ T mn
k > 0, ∃ d ∈ Z+ (29)

It means that (26) becomes asymptotically sufficient and
necessary conditions for (27) as the value of d increases. ¤

Remark 3. Using the Polya′s theorem, a systematic
procedure for constructing a family of linear matrix in-
equalities conditions of precision is given. As the value of
d increases, more LMIs provide less conservative sufficient
conditions for stabilizing the underlying 2-D T-S fuzzy sys-
tems. Moreover, necessity in some sense will be attained
through a relaxation while d tends to ∞. In other words,
Theorem 2 provides a kind of convergent stabilization con-
dition.

3 Reducing conservatism via an im-
proved right-hand-side slack vari-
ables introducing approach

In [2], the authors firstly proposed a kind of right-hand-
side slack variables introducing approach by collecting the
interactions among those sub-systems in a single matrix.
Several improved right-hand-side slack variables introduc-
ing approaches[3−4] have also been given out for conceiv-
ing less conservative stabilization conditions. As far as the
slack variables introducing technique is concerned, Lemma
1 could be seen as an extension to the 2-D T-S fuzzy system
based on the relaxed technique proposed in [3−4]. In the
above section, two kinds of convergent stabilization con-
ditions are proposed under the framework of homogenous
matrix polynomial. In this case, conventional right-hand-
side slack variables introducing approach[2−4] fails to work
and hence an improved right-hand-side slack variables in-
troducing approach which suits to the homogenous matrix
polynomial setting is proposed as follows.

Theorem 3. The discrete-time 2-D T-S fuzzy system
(4) with the HPNQCL (13) is asymptotically stable if there
exist appropriately dimensional matrices Pi > 0, Gij , i, j =

1, 2, · · · , r, Fk, k ∈ K(g), symmetric matrices Ek1k2···kr
iimn

and matrices Ek1k2···kr
ijmn =

(
Ek1k2···kr

jimn

)T

, k ∈ K(g + d− 1),

i, j, m, n = 1, 2, · · · , r, g, d ∈ Z+ with

Pi =

[
P 1

i 0
0 P 2

i

]
, P 1

i ∈ Rn1×n1 , P 2
i ∈ Rn2×n2

Gij =

[
G1

i 0
0 G2

j

]
, P ij =

[
P 1

i 0
0 P 2

j

]

such that the following LMIs hold:

T mn
k +

∑

1≤i≤r

E
k1···(ki−2)···kr
iimn +

He


 ∑

1≤i<j≤r

E
k1···(ki−1)···(kj−1)···kr

ijmn


 > 0,

k ∈ K(g + d + 1); m, n ∈ {1, 2, · · · , r} (30)

Ek1k2···kr
mn =

[
Ek1k2···kr

ijmn

]
r×r

< 0,

k ∈ K(g + d− 1); m, n ∈ {1, 2, · · · , r} (31)

where E
k1···(ki−2)···kr
iimn = 0 for ki − 2 < 0,

E
k1···(ki−1)···(kj−1)···kr

ijmn = 0 for ki − 1 < 0 or kj − 1 < 0,

and T mn
k are the same as in (28).

Proof. Pre- and post-multiplying (31) by [h1I h2I · · ·
hrI] and its transpose, then we have

∑

1≤i≤N

h2
i E

k1···kr
iimn + He


 ∑

1≤i<j≤r

hihjE
k1···kr
ijmn


 < 0,

k1 · · · kr ∈ K(g + d− 1) (32)

Multiplying (30) by hk1
1 · · ·hkr

r (k1 · · · kr = Kl(g+d+1)),
thus it follows that

hk1
1 · · ·hkr

r



T mn

k +
∑

1≤i≤r

E
k1···(ki−2)···kr
iimn +

He


 ∑

1≤i<j≤r

E
k1···(ki−1)···(kj−1)···kr

ijmn






 =

hk1
1 · · ·hkr

r T mn
k + hk1

1 · · ·hkr
r

∑

1≤i≤r

E
k1···(ki−2)···kr
iimn +

hk1
1 · · ·hkr

r He


 ∑

1≤i<j≤r

E
k1···(ki−1)···(kj−1)···kr

ijmn


 > 0,

k ∈ K(g + d + 1) (33)

By summing (33) from l = 1 to J(g + d + 1), we can
obtain

J(g+d+1)∑

l=1

hk1
1 · · ·hkr

r T mn
k +

J(g+d+1)∑

l=1

∑

1≤i≤r

(hk1
1 · · ·hki−2

i · · ·hkr
r )(h2

i )E
k1···(ki−2)···kr
iimn +

J(g+d+1)∑

l=1

He


 ∑

1≤i<j≤r

hk1
1 · · ·hkr

r E
k1···(ki−1)···(kj−1)···kr

ijmn


>0,

k ∈ K(g + d + 1) (34)

Combining with (34) and the fact E
k1···(ki−2)···kr
iimn = 0

for ki − 2 < 0, E
k1···(ki−1)···(kj−1)···kr

ijmn = 0 for ki − 1 < 0 or



1310 ACTA AUTOMATICA SINICA Vol. 36

kj − 1 < 0, it follows that

J(g+d+1)∑

l=1

∑

1≤i≤r

(hk1
1 · · ·hki−2

i · · ·hkr
r )(h2

i )E
k1···(ki−2)···kr
iimn +

J(g+d+1)∑

l=1

He


 ∑

1≤i<j≤r

hk1
1 · · ·hkr

r E
k1···(ki−1)···(kj−1)···kr

ijmn


=

J(g+d−1)∑

l=1

(hk1
1 · · ·hki

i · · ·hkr
r )

∑

1≤i≤r

(h2
i )E

k1···(ki)···kr
iimn +

J(g+d−1)∑

l=1

(hk1
1 · · ·hki

i · · ·hkj

j · · ·hkr
r )×

He


 ∑

1≤i<j≤r

hihjE
k1···(ki)···(kj)···kr

ijmn


 =

J(g+d−1)∑

l=1

(hk1
1 · · ·hkr

r )





∑

1≤i≤r

(h2
i )E

k1···kr
iimn +

He


 ∑

1≤i<j≤r

hihjE
k1···kr
ijmn






 (35)

Them, combining (30), (32), and (35), we have

J(g+d+1)∑

l=1

hk1
1 · · ·hkr

r T mn
k > 0 (36)

which guarantees the asymptotic stability for the closed-
loop system (16). ¤

Remark 4. Theorem 3 presents less conservative sta-
bilization conditions by using a new right-hand-side slack
variables introducing technique which suits to the homoge-
neous matrix polynomials setting. From (31), these interac-
tions of some fuzzy sub-model′s combinations are collected
in some single matrix. In some sense, it could be seemed
as an extension of the relaxed technique firstly proposed
in [2] and hence the convergence rate will be accelerated.
Moreover, this fact will also be illustrated in Section 4.

4 Numerical example

Example. Consider the same discrete-time 2-D fuzzy
systems as in [21]:

IF sin2(xv(k, l)) is about 0, THEN
[

xh(k + 1, l)
xv(k, l + 1)

]
= A1

[
xh(k, l)
xv(k, l)

]
+ B1u(k, l)

IF sin2(xv(k, l)) is about ∓1, THEN
[

xh(k + 1, l)
xv(k, l + 1)

]
= A2

[
xh(k, l)
xv(k, l)

]
+ B2u(k, l)

here, A1 =

[
1 + a1T1 a1a2T1

T2 1 + a2T2

]
, B1 =

[
bT1

0

]
, A2 =

[
1 + a1T1 (a1a2 + a0)T1

T2 1 + a2T2

]
, B2 = B1.

Then, the MFs of the attained discrete-time 2-
D T-S fuzzy system become: h1(k, l) = 1 −
sin2(xv(k, l)), h2(k, l) = sin2(xv(k, l)). Consider the follow-
ing parameter values: a0 = −2, a1 = −3, b = −1, T1 =
0.5, and T2 = 0.8. We can calculate the feasible parame-
ter intervals by evaluating the feasibility of the associated

LMI problems with Lemma 1 and Theorems 1∼ 3 for vary-
ing values of a2.

Table 1 shows the parameter feasible intervals of a2 in
which the fuzzy state feedback stabilizing controllers of the
above system can be found by using those results provided
in Lemma 1 and Theorems 1∼ 3 with different g or d, re-
spectively. From Table 1, it can be seen that Theorem 3
provides the most relaxed results. Moreover, the feasible
intervals attained by Theorems 1∼ 3 tend to be bigger as
the value of g and d increase.

Table 1 Feasible parameter intervals of a2

Methods Feasible intervals

Usual PDC[21] [−1.990, −0.512]

Theorem 1 of [21] [−2.012, −0.494]

Lemma 1 [−2.492, −0.014]

Corollary 1 of [21] [−2.292, −0.212]

Theorem 1 with g = 2 [−2.502, −0.013]

Theorem 1 with g = 3 [−2.546, −0.011]

Theorem 1 with g = 4 [−2.575, −0.010]

Theorem 1 with g = 5 [−2.592, −0.009]

Theorem 2 with g = d = 2 [−2.561, −0.012]

Theorem 2 with g = d = 3 [−2.579, −0.011]

Theorem 2 with g = d = 4 [−2.591, −0.009]

Theorem 2 with g = d = 5 [−2.596, −0.008]

Theorem 3 with g = d = 2 [−2.566, −0.011]

Theorem 3 with g = d = 3 [−2.583, −0.010]

Theorem 3 with g = d = 4 [−2.594, −0.008]

Theorem 3 with g = d = 5 [−2.610, −0.007]

Next, choosing a2 = −2.56 which is feasible for Theo-
rems 1 ∼ 3 but unfeasible for Lemma 1, and solving (30)
and (31) with d = g = 2 by the Matlab LMI solver, the
corresponding controller gain matrices are attained as fol-
lows:

F20 =
[ −16.27 223.93

]
, F11 =

[ −10.36 210.26
]

F02 =
[ −7.69 156.83

]

G1 =

[
34.96 0

0 81.47

]
, G2 =

[
19.74 0

0 76.95

]

Then, under the controller of (13), Figs. 1 and 2 show
the evolution of two state xh(k, l) and xv(k, l), respectively,
with the initial and boundary conditions to be

xh(0, l) = 0.5, 0 ≤ l ≤ 30, xv(k, 0) = 0.5, 0 ≤ k ≤ 30

xh(0, l) = 0.05, xv(k, 0) = 0.05, i, j > 30

Fig. 1 Trajectory of the state xh(k, l)
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From Figs. 1 and 2, it is easy to see that the closed-loop
2-D T-S fuzzy system is asymptotically stable via the at-
tained HPNQCL.

Fig. 2 Trajectory of the state xv(k, l)

5 Conclusion

This paper has presented a kind of convergent stabiliza-
tion method for Roesser type discrete-time 2-D T-S fuzzy
system. Three kinds of relaxed stabilization conditions are
proposed by applying a novel non-quadratic control scheme,
homogenous polynomial techniques, and a new improved
right-hand-side slack variables introducing approach. Nu-
merical example shows the effectiveness of the proposed
results.
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