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A Robust Adaptive Dynamic Surface Control for

Nonlinear Systems with Hysteresis Input
ZHANG Xiu-Yu1 LIN Yan1

Abstract In this paper, a robust adaptive dynamic surface control (DSC) for a class of uncertain perturbed strict-feedback
nonlinear systems preceded by unknown backlash-like hysteresis is proposed. The main advantages of our scheme are that it can
eliminate the explosion of complexity problem when the hysteresis is fused with backstepping design, and by introducing an initializing
technique, and the L∞ performance of system tracking error can be guaranteed. It is proved that the new scheme can guarantee
semiglobal stability of the closed-loop system and make the convergence of the tracking error into an arbitrarily small residual set.
Simulation results are presented to demonstrate the efficiency of the proposed scheme.
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As one of the most important non-smooth nonlinearities,
hysteresis exists in many physical systems and devices[1−4].
It is well known that when a plant is preceded by hysteresis
nonlinearity, the system may exhibit undesirable properties
such as inaccuracy, oscillations, and instability[5]. Indeed,
modeling and control of hysteresis have long been challeng-
ing issues and have attracted a lot of attention in recent
years due to increasing applications of smart material-based
actuators[6−9].

The research dealing with hysteresis in control systems
can be classified into two categories: one is to construct
an inverse operator to cancel the hysteresis effect, and
the other one is to develop some robust adaptive schemes
without constructing hysteresis inverse. The first category,
which as some authors pointed out[10], always possesses
strong sensitivity of the model parameters to unknown
measurement errors and, therefore, is directly linked to the
difficulty of system stability analysis except for certain spe-
cial cases, e.g. the method by Tao and Kokotovic[5] (for
more details, see [5, 8−9, 11−12] and the references con-
tained therein). While the second one has drawn much
interest from the control community in recent years since
it allows the designer to use various robust control schemes
to mitigate the effect of hysteresis and makes the stabil-
ity analysis more convenient[13−15]. In [14] and [16], for
a class of nonlinear plants preceded by hysteresis, based
on backlash-like hysteresis model, a robust adaptive con-
trol scheme was proposed, which achieves stabilization and
tracking to certain precision without constructing a hys-
teresis inverse. In [16], some assumptions upon the con-
trolled plant in [14] were relaxed by using backstepping
design. In [13], combining variable structure and backstep-
ping techniques, a robust adaptive control was applied to
the case of hysteresis described by P-I model without con-
structing a hysteresis inverse. In [17], the adaptive control
problem of a linear discrete time plant preceded by hys-
teresis was discussed. In [18], by using generalized P-I hys-
teresis model, for a class of uncertain nonlinear systems in
pure-feedback form, an adaptive backstepping neural con-
trol scheme was introduced, where the uncertainties are
compensated by using neural networks and the unknown
virtual control directions are dealt with by using Nassbaum
functions.
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We note that most of the above schemes without con-
structing hysteresis inverse are fused with adaptive back-
stepping control, which has been investigated extensively
for the past two decades and become a popular design tech-
nique for a large class of nonlinear systems[19]. However,
the main drawback of the backstepping design is that it
suffers from the problem of “explosion of complexity”. In
other words, the control law becomes highly nonlinear and
complicated as plant relative degree is high due to the re-
peated derivatives of certain modelled nonlinear functions.
Obviously, the complexity problem may become more se-
vere if a controlled plant with higher relative degree is pre-
ceded by hysteresis.

To overcome the drawback of backstepping design, in-
spired by the multiple surface sliding control, a new tech-
nique named dynamic surface control (DSC) was proposed

by Swaroop et al. recently[20], which introduces a low-pass
filter at each design step to prevent the derivative of nonlin-
ear functions and, therefore, eliminates the phenomenon of
explosion of complexity. The DSC technique has also been
applied to some commonly encountered nonlinearities. In
[21], for a class of pure-feedback nonlinear systems with
unknown dead zone and perturbed uncertainties, an adap-
tive DSC was developed by using neural networks, whereas
in [22], DSC technique was extended to state time delay
uncertain nonlinear systems in parametric strict-feedback
form. The latest developments in DSC for different non-
linear systems and the applications to various engineering
fields can be referred to [23−26]. However, no systematic
procedure exists for current DSC schemes to guarantee the
transient performance of the tracking error.

In this paper, an adaptive DSC scheme is proposed for
a class of nonlinear systems preceded by backlash-like hys-
teresis with the following features:

1) Within our knowledge, this is the first attempt to fuse
backlash-like hysteresis with adaptive DSC for perturbed
strict feedback nonlinear systems without constructing hys-
teresis inverse. Besides, it can also be extended to P-I and
generalized P-I hysteresis models.

2) Compared with the backstepping control schemes

concerning hysteresis[13, 16, 18], the explosion of complexity
problem is eliminated.

3) By introducing an initializing technique, the L∞ per-
formance of system-tracking error can be guaranteed, which
establishes the relationship between the L∞ performance
and the design parameters for the first time.

We point out that the elimination of the explosion of
complexity is achieved by introducing a low-pass filter
at each design step so that the differentiation of some
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nonlinear functions can be avoided. In addition, the class
of perturbed strict-feedback nonlinear systems considered
in this paper is of more general form and, therefore, is more
suitable for applications.

1 Problem statement

We consider the following nonlinear plants in perturbed
strict-feedback form preceded by backlash-like hysteresis
actuator:

ẋi = gixi+1 + θifi(x̄i) + ∆i(x, t), i = 1, · · · , n− 1

ẋn = gnw(t) + θnfn(x) + ∆n(x, t) + d̄(t)

y = x1 (1)

where x̄i = [x1,x2, · · · , xi]
T ∈Ri, i = 1, · · · , n are the state

vectors with x̄n = x; gi, θi ∈ R are unknown constant sys-
tem parameters; ∆i denotes the unknown perturbed terms;
y ∈ R is the output of the controlled plant; d̄ denotes an
external disturbance; w ∈ R is the unknown backlash-like
hysteresis and can be expressed as

w(t) = P (u(t)) (2)

with u as the input signal to be designed.
For the controlled plant (1), we make the following as-

sumptions.
Assumption 1. fi(x̄i), i = 1, · · · , n are known smooth

functions.
Assumption 2. The disturbance terms ∆i(x, t), i =

1, · · · , n satisfy
|∆i(x, t)| ≤ ρi(x̄i) (3)

where ρi(x̄i) are known positive smooth functions.
Assumption 3. The desired trajectory yr is smooth

and available with yr(0) at designer′s disposal; [yr, ẏr, ÿr]
T

belongs to a known compact set for all t ≥ 0.
Assumption 4. The signs of gi, i = 1, · · · , n are known.

Without loss of generality, it is assumed that gi > 0. More-
over, it is assumed that 0 < gmin ≤ |gi| ≤ gmax with gmin a
known constant.

Assumption 5. The unmeasured disturbance d̄ is
bounded.

Remark 1. yr(0) in Assumption 3 will be employed
to guarantee the L∞ performance of system-tracking er-
ror. Assumption 4 is common for a large class of nonlinear
systems[21−22].

In this paper, the backlash-like hysteresis nonlinearity is
described by the following differential equation[14]:

dw

dt
= α

∣∣∣∣
du

dt

∣∣∣∣ (λu− w) + ψ
du

dt
(4)

where α, λ (> 0), and ψ are unknown constant parameters
with λ > ψ. The solution of (4) is

w = λu + d1 (5)

d1(u) = (w0 − λu0) exp[−α(u− u0)sgn(u̇)]+

exp(−αusgn(u̇))×
∫ u

u0

(ψ − λ) exp[αξsgn(u̇)]dξ

(6)

where u0 = u(t0) and w0 = w(u0). It can be proved that
d1(u) is bounded for any u ∈ R; furthermore,

lim
u→−∞

d1(u) = lim
u→−∞

[w(u; u0, w0)− λu] =
λ− ψ

α
(7)

lim
u→+∞

d1(u) = lim
u→+∞

[w(u; u0, w0)− λu] = −λ− ψ

α
(8)

that is, α determines the rate at which w switches between
−(λ − ψ)/α and (λ − ψ)/α, i.e., the larger the parameter
α is, the faster the transition frequency in w is going to
be[14]. Fig. 1 illustrates the class of backlash-like hysteresis
described by (4).

Fig. 1 Hysteresis curves given by (4), where the parameters
α = 1, λ = 1.432, ψ = 0.105, and the input u(t) = k sin(2.3t)

with k = 3.5 and k = 6.5, respectively

Taking (5) into consideration, (1) can be rewritten as

ẋi = gixi+1 + θifi(x̄i) + ∆i(x, t), i = 1, · · · , n− 1

ẋn = βu + θnfn(x̄n) + ∆n(x, t) + dn

y = x1 (9)

where
β = λgn, β > 0 (10)

dn = gnd1(u) + d̄ (11)

with dn a bounded disturbance-like term satisfying

|dn| ≤ d (12)

where d is an unknown constant parameter. And as will
be shown in the next section, both β and d will be online
estimated.

The objective is to design the control law u in (9) based
on DSC technique, such that the output y tracks a given
reference input yr with a prescribed small error and all the
closed-loop signals are uniformly bounded.

Remark 2. We emphasize that system (1) can be used
to describe many practical nonlinear systems preceded by
unknown hysteresis such as pneumatic servomechanism[27],
permanent magnet synchronous motor (PMSM)[25], and

the systems with smart material-based actuators[2].

2 Adaptive DSC design

In this section, an adaptive DSC technique will be pro-
posed to cope with the class of nonlinear systems with un-
known backlash-like hysteresis described by (9). The whole
design procedure contains n steps, and the actual control
law u will be deduced in the last step.

Step 1. Let the first surface error be defined as

S1 = x1 − yr (13)

where yr is the desired trajectory. Taking (9) into consid-
eration, the derivative of S1 is

Ṡ1 = ẋ1 − ẏr = g1x2 + θ1f1(x1) + ∆1 − ẏr (14)
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Let

θg1 =
θ1

g1

φ1 =
1

g1
(15)

Based on (14) and (15), a virtual control signal is chosen
as

x2d = −θ̂g1f1(x1)− 1

gmin

S1ρ
2
1(x1)

2ε
− k1S1 + φ̂1ẏr (16)

where ε is any positive constant and, θ̂g1 and φ̂1, which are
the estimations of θg1 and φ1, are updated by

˙̂
θg1 = γg1(f1(x1)S1 − η1θ̂g1)

˙̂
φ1 = − γφ1(ẏrS1 + σ1φ̂1) (17)

with γg1 , η1, γφ1 , σ1 being positive design parameters. Let
x2d pass through a first-order filter to obtain z2:

τ2ż2 + z2 = x2d, z2(0) = x2d(0) (18)

where τ2 is the time constant.
Step iii (2 ≤ iii ≤ nnn− 1). Define the i-th surface error

Si = xi − zi − ci (19)

where ci is a constant design parameter1. The time deriva-
tive of (19) is

Ṡi = ẋi − żi = gixi+1 + θifi(x̄i) + ∆i − żi (20)

where the i-th equation in (9) has been used. Let

θgi =
θi

gi

φi =
1

gi
(21)

Based on (20) and (21), a virtual control signal is chosen
as

x(i+1)d = −θ̂gifi(x̄i)− 1

gmin

Siρ
2
i (x̄i)

2ε
− kiSi + φ̂iżi (22)

where θ̂gi and φ̂i, which are the estimations of θgi and φi,
respectively, are updated by

˙̂
θgi = γgi(fi(x̄i)Si − ηiθ̂gi)

˙̂
φi = − γφi(żiSi + σiφ̂i) (23)

with γgi , ηi, γφi , σi being positive design parameters. Let
xi+1d pass through a first-order filter to obtain zi+1:

τi+1żi+1 + zi+1 = x(i+1)d, zi+1(0) = x(i+1)d(0) (24)

where τi+1 is the time constant.
Step n... Define the n-th surface error

Sn = xn − zn − cn (25)

with cn being any design parameter, whose derivative is

Ṡn = ẋn − żn = βu + dn + θnfn(x̄n) + ∆n − żn (26)

1As will be shown in Section 3, the design parameters
c2, c3, · · · , cn in Step i and Step n are used to guarantee L∞ per-
formance of the tracking error.

where (9) has been used. Let

ζ =
1

β
(27)

The control law is designed as

u = ζ̂ū (28)

where ζ̂, which is the estimate of ζ, is updated by

˙̂
ζ = −γζ(ūSn + ηζ ζ̂) (29)

with γζ , ηζ being positive design parameters, and

ū = −knSn − θ̂nfn(x̄n)− Snρ2
n(x̄n)

2ε
+ żn − sgn(Sn)d̂ (30)

where θ̂n and d̂, which are the estimations of θn and d,
respectively, are updated by

˙̂
θn = γgn(fn(x̄n)Sn − ηnθ̂n) (31)

˙̂
d = γd(|Sn| − ηdd̂) (32)

Remark 3. In the above design procedure, the com-
monly adopted dynamic surfaces, i.e., Si = xi−zi (2 ≤ i ≤
n), are abandoned. Instead, we use Si = xi − zi − ci as
our dynamic surfaces for the purpose of deriving L∞ per-
formance of tracking error, which will be given in the next
section.

Remark 4. In comparison with the backstepping
design[13, 16, 18], the above design procedure shows that the
derivation of low-pass filter at each design step makes the
control law quite simple. However, the price we have to
pay is that only semiglobal stability can be guaranteed and
the tracking error does not converge to zero but to a small
residual set.

3 Stability and transient performance
analysis

In this section, the stability and transient performance
analysis for the proposed DSC scheme will be presented,
which develops the technique given by [20]. Although the
design procedure is simple, the stability analysis is compli-
cated due to the derivation of the low-pass filters. To this
end, define

y2 = z2 − x2d =

z2 + θ̂g1f1(x1) +
1

gmin

S1ρ
2
1(x1)

2ε
+ k1S1 − φ̂1ẏr

yi+1 = zi+1 − x(i+1)d =

zi+1 + θ̂gifi(x̄i) +
1

gmin

Siρ
2
i (x̄i)

2ε
+ kiSi − φ̂iżi,

i = 2, · · · , n− 1 (33)

where x2d and x(i+1)d are given by (16) and (22), respec-
tively. Further, define the estimation errors

θ̃gi = θ̂gi − θgi (34)

φ̃i = φ̂i − φi, i = 1, · · · , n− 1 (35)

θ̃n = θ̂n − θn (36)

ζ̃ = ζ̂ − ζ (37)

d̃ = d̂− d (38)
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Using (33) ∼ (35), we can write (14) and (20) as

Ṡ1 = − g1k1S1 + g1S2 + g1y2 + g1c2 − g1θ̃g1f1(x1)+

g1φ̃1ẏr + ∆1 − g1

gmin

S1ρ
2
1(x1)

2ε

Ṡi = − gikiSi + giSi+1 + giyi+1 + gici+1−

giθ̃gifi(x̄i) + giφ̃iżi + ∆i − gi

gmin

Siρ
2
i (x̄i)

2ε
,

i = 2, · · · , n− 1 (39)

From (28), we can rewrite βu in (26) as

βu = βζ̂ū = β(ζ̃ + ζ)ū = ū + βζ̃ū (40)

Taking (30), (36) ∼ (38), and (40) into consideration, (26)
can be rewritten as

Ṡn = − knSn − θ̃nfn(x̄n) +

(
∆n − Snρ2

n(x̄n)

2ε

)
+

dn − sgn(Sn)d̂ + βζ̃ū (41)

Since

żi =
xid − zi

τi
= −yi

τi
, i = 2, · · · , n (42)

from (33), we obtain

ẏ2 = − y2

τ2
+

˙̂
θg1f1(x1) + θ̂g1

∂f1(x1)

∂x1
ẋ1 + k1Ṡ1 +

1

gmin

Ṡ1ρ
2
1(x1)

2ε
+

S1

gminε
ρ1(x1)

∂ρ1(x1)

∂x1
ẋ1−

φ̂1ÿr − ˙̂
φ1ẏr =

− y2

τ2
+ B2(S1, S2, y2, θ̂g1 , φ̂1, yr, ẏr, ÿr)

ẏi+1 = − yi+1

τi+1
+

˙̂
θgifi(x̄i) + θ̂gi

i∑
j=1

∂fi(x̄i)

∂xj
ẋj +

1

gmin

Ṡiρ
2
i (x̄i)

2ε
+

Si

gminε
ρi(x̄i)

i∑
j=1

∂ρi(x̄i)

∂xj
ẋj +

kiṠi + φ̂i
ẏi

τi
+

˙̂
φi

yi

τi
=

− yi+1

τi+1
+ Bi+1(S1, · · · , Si+1, y2, · · · , yi+1,

θ̂g1 , · · · , θ̂gi, φ̂1, · · · , φ̂i, yr, ẏr, ÿr) (43)

where Bi+1, i = 1, · · · , n− 1 are continuous functions.
We are now ready to establish the main theorem of this

paper.
Theorem 1. Consider the closed-loop system (9), (39),

(41), and (43). Let the Lyapunov function candidate be
defined as

V =
1

2

n−1∑
i=1

(
1

gi
S2

i +
1

γgi

θ̃2
gi

+
1

γφi

φ̃2
i + y2

i+1

)
+

1

2

(
β

γζ
ζ̃2 +

1

γgn

θ̃2
n +

1

γd
d̃2 + S2

n

)
(44)

Then for any given positive number p, if V (0) ≤ p, there
exist design parameters ki, τi+1, γgi , γφi , γζ , γgn , γd, ηi,
ηn, ηζ , ηd, σi, i = 1, · · · , n − 1 such that all the signals
of the closed-loop system are uniformly bounded and the

tracking error converges to a residual set that can be made
arbitrarily small by properly choosing the design parame-
ters. Furthermore, by choosing the design parameters and
initializing the dynamic surfaces properly, the L∞ norm of
the tracking error can be guaranteed.

Proof. The time derivative of V yields

V̇ =

n−1∑
i=1

(
1

gi
SiṠi +

1

γgi

θ̃gi

˙̂
θgi +

1

γφi

φ̃i
˙̂
φi + yi+1ẏi+1

)
+

SnṠn +
β

γζ
ζ̃

˙̂
ζ +

1

γgn

θ̃n
˙̂
θn +

1

γd
d̃

˙̂
d (45)

Note that for i = 1, · · · , n, the following inequalities hold:

Si∆i ≤ |Si| ρi(x̄i) ≤ S2
i ρ2

i (x̄i)

2ε
+

ε

2
(46)

Using (39) and (46), we obtain that

1

g1
S1Ṡ1 ≤ (−k1S

2
1 + S1S2 + S1y2 + S1c2)−

θ̃g1f1(x1)S1 + φ̃1ẏrS1 +
ε

2gmin

1

gi
SiṠi ≤ (−kiS

2
i + SiSi+1 + Siyi+1 + Sici+1)−

θ̃gifi(x̄i)Si + φ̃iżiSi +
ε

2gmin
,

i = 2, · · · , n− 1 (47)

Similarly, using (41) and (46), it follows that

SnṠn ≤ − knS2
n + βζ̃ūSn + Sndn − |Sn| d̂−

θ̃nfn(x̄n)Sn +
ε

2
(48)

In view of (43), (47), (48), and substituting the adaptive
laws (17), (23), (29), (31), (32) into (45) yields

V̇ ≤
n−1∑
i=1

(−kiS
2
i + SiSi+1 + Siyi+1 + Sici+1

)
+

n−1∑
i=1

(
−ηiθ̃gi θ̂gi − σiφ̃iφ̂i

)
− knS2

n − ηζβζ̃ζ̂ −

ηdd̃d̂− ηnθ̃nθ̂n +

n−1∑
i=1

(
−y2

i+1

τi+1
+ |yi+1Bi+1|

)
+

(n− 1)ε

2gmin
+

ε

2
(49)

where we have used the inequality Sndn ≤ |Sn| d. By As-
sumption 3, the set

Π = {(yr, ẏr, ÿr) : y2
r + ẏ2

r + ÿ2
r ≤ B1} (50)

is compact in R3 for some B1 > 0. Moreover, the sets

Πi =

{
i∑

j=1

(
1

gj
S2

j +
1

γgj

θ̃2
gj

+
1

γφj

φ̃2
j + y2

j+1

)
≤ 2p

}
,

i = 1, · · · , n− 1 (51)

Πn =





n−1∑
i=1

(
1

gi
S2

i +
1

γgi

θ̃2
gi

+
1

γφi

φ̃2
i + y2

i+1

)
+

β

γζ
ζ̃2 +

1

γgn

θ̃2
n +

1

γd
d̃2 + S2

n ≤ 2p




(52)
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are compact in R4i and R4n, respectively. Note that Π×Πi

and Π×Πn are also compact in R4i+3 and R4n+3, respec-
tively. Therefore, |Bi+1| have maximums, i.e., Mi+1 on
Π×Πi. Using the inequalities

SiSi+1 ≤ S2
i +

1

4
S2

i+1

Siyi+1 ≤ S2
i +

1

4
y2

i+1

Sici+1 ≤ S2
i +

1

4
c2

i+1 (53)

and taking (53) into consideration, we have

V̇ ≤
n−1∑
i=1

(
−kiS

2
i + 3S2

i +
1

4
S2

i+1 +
1

4
y2

i+1 +
1

4
c2

i+1

)
+

n−1∑
i=1

(−ηiθ̃gi θ̂gi − σiφ̃iφ̂i)− knS2
n − ηζβζ̃ζ̂−

ηdd̃d̂− ηnθ̃nθ̂n +

n−1∑
i=1

(
−y2

i+1

τi+1
+ |yi+1Bi+1|

)
+

(n− 1)ε

2gmin
+

ε

2
(54)

In the above inequality, we let

k1 = 3 +
α0

gmin

ki = 3
1

4
+

α0

gmin
, i = 2, · · · , n− 1

kn =
1

4
+ α0,

ηi =
2α0

γgi

, i = 1, · · · , n

σi =
2α0

γφi

, i = 1, · · · , n− 1

ηζ =
2α0

γζ

ηd =
2α0

γd
(55)

where α0 is a positive constant. Also note that

ζ̃ ζ̂ = ζ̃2 + ζ̃ζ

d̃d̂ = d̃2 + d̃d

φ̃iφ̂i = φ̃2
i + φ̃iφi, i = 1, · · · , n− 1

θ̃gi θ̂gi = θ̃2
gi

+ θ̃giθgi , i = 1, · · · , n− 1

θ̃nθ̂n = θ̃2
n + θ̃nθn (56)

Hence, the following equalities hold:

−ηζβζ̃ζ̂ ≤ − ηζβ

2
(ζ̃2 − ζ2)

−ηdd̃d̂ ≤ − ηd

2
(d̃2 − d2)

−σiφ̃iφ̂i ≤ − σi

2
(φ̃2

i − φ2
i ), i = 1, · · · , n− 1

−ηiθ̃gi θ̂gi ≤ − ηi

2
(θ̃2

gi
− θ2

gi
), i = 1, · · · , n− 1

−ηnθ̃nθ̂n ≤ − ηn

2
(θ̃2

n − θ2
n) (57)

From (54) ∼ (57), we obtain that

V̇ ≤ − α0

n−1∑
i=1

(
1

gi
S2

i +
1

γgi

θ̃2
gi

+
1

γφi

φ̃2
i

)
−

α0

(
β

γζ
ζ̃2 +

1

γgn

θ̃2
n +

1

γd
d̃2 + S2

n

)
+

n−1∑
i=1

(
1

4
y2

i+1 −
y2

i+1

τi+1
+ |yi+1Bi+1|

)
+

n−1∑
i=1

(
ηi

2
θ2

gi
+

σi

2
φ2

i +
1

4
c2

i+1

)
+

ηn

2
θ2

n +

ηζβ

2
ζ2 +

ηd

2
d2 +

(n− 1)ε

2gmin
+

ε

2
(58)

Notice that for any positive number µ, we have

|yi+1Bi+1| ≤ y2
i+1M

2
i+1

2µ
+

µ

2
, i = 1, · · · , n− 1 (59)

Let
1

τi+1
=

1

4
+

M2
i+1

2µ
+ α0, i = 1, · · · , n− 1 (60)

eM =

n−1∑
i=1

(
ηi

2
θ2

gi
+

σi

2
φ2

i +
1

4
c2

i+1

)
+

ηn

2
θ2

n +

ηζβ

2
ζ2 +

ηd

2
d2 +

(n− 1)ε

2gmin
+

ε

2
(61)

Using (59) and (60), we have the following inequality:

n−1∑
i=1

(
1

4
y2

i+1 + |yi+1Bi+1| − y2
i+1

τi+1

)
≤

− α0

n−1∑
i=1

y2
i+1 +

(n− 1)µ

2
(62)

where the left hand side of (62) appears in (58). Replacing
(62) in (58) and in view of (61), it follows that

V̇ ≤ −2α0V + eM +
(n− 1)µ

2
(63)

Let

α0 >
eM +

(n− 1)µ

2
2p

(64)

then V̇ ≤ 0 on V = p. That is, V ≤ p is an invariant set,
i.e., if V (0) ≤ p, then V (t) ≤ p, for all t ≥ 0. Solving the
inequality (63), we obtain

V (t) ≤
eM +

(n− 1)µ

2
2α0

+


V (0)−

eM +
(n− 1)µ

2
2α0


e−2α0t

(65)

which implies that

lim
t→∞

V (t) =
eM +

(n− 1)µ

2
2α0

(66)

Thus, all signals of the closed-loop system, i.e., Si, θ̂gi , φ̂i,

θ̂n, d̂, ζ̂, yi+1, are uniformly bounded. Moreover, from (55),
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by appropriately choosing the design parameters γgi , γφi ,
γgn , γζ , γd, ki, kn, τi+1, i = 1, · · · , n− 1, we can make α0

larger, which together with (66) implies that the tracking
error can be made arbitrarily small.

Finally, to obtain L∞ performance of the tracking error,
we set the initial conditions of the parameter estimators in
(17), (23), (29), (31), and (32) to zero, i.e.,

θ̂gi(0) = 0

φ̂i(0) = 0, i = 1, · · · , n− 1

θ̂n(0) = 0

ζ̂(0) = 0

d̂(0) = 0 (67)

and set Si(0) = 0, i = 1, · · · , n, which can be done by
letting yr(0) (see Assumption 3) and the design parameters
c2, · · · , cn satisfy

yr(0) = x1(0)

ci = xi(0), i = 2, · · · , n (68)

Now, taking (67) and (68) into consideration, from (13),
(16), (18), (19), (22), (24), (25), (33), and (44), it can be
shown in a step-by-step fashion that

Si(0) = 0, i = 1, · · · , n

x(i+1)d(0) = 0 ⇒ zi+1(0) = 0

yi+1(0) = zi+1(0)− x(i+1)d(0) = 0, i = 1, · · · , n− 1

V (0) =
1

2

n−1∑
i=1

(
1

γgi

θ2
gi

+
1

γφi

φ2
i

)
+

1

2

(
β

γζ
ζ2 +

1

γgn

θ2
n +

1

γd
d2

)
(69)

From (55) and (61), it follows that

V (0)−
eM +

(n− 1)µ

2
2α0

< 0 (70)

which, together with (65), implies that

0 ≤ V (t) ≤
eM +

(n− 1)µ

2
2α0

(71)

Therefore,

‖S1‖∞ ≤

√√√√
gmax ×

eM+
(n− 1)

2
µ

α0
(72)

Note that we can first fix ηi, σi, i = 1, · · · , n−1, ηn, ηζ , ηd,
µ, then choose the design parameters γgi , γφi , γζ , γd, γgn ,
such that (55) is satisfied. As a result, [eM +(n− 1)µ/2] is
independent of α0; hence, from (72), it is clear that the L∞

norm of the tracking error S1 can be improved if a larger
α0 is chosen. ¤

Remark 5. In Theorem 1, we assume that all initial
conditions satisfy (51) and (53). However, since p can be
arbitrarily large, the condition is not really restrictive.

4 Simulation results

In this section, to illustrate the effectiveness of the pro-
posed scheme, we consider the following second-order con-
trolled plant with unknown backlash-like hysteresis:

ẋ1 = g1x2 + θ1f1(x1) + ∆1(x, t)

ẋ2 = g2w(t) + θ2f2(x̄2) + ∆2(x, t)

y = x1 (73)

where w is the output of the hysteresis, g1, g2 are unknown
parameters, and ∆1, ∆2 are disturbances. In the simu-
lation, we choose g1 = 1, g2 = 1, gmin = 1, θ1 = 0.1,
θ2 = 0, f1(x1) = x2

1, f2(x̄2) = 0, ∆1 = 0.2 sin(x2), and
∆2 = 0.1(x2

1 + x2
2) sin3(t) . Therefore, ∆1 ≤ ρ1(x1) = 0.2

and ∆2 ≤ ρ2(x̄2) = 0.1(x2
1 + x2

2). The hysteresis is de-
scribed by (5) and (6) with actual parameters λ = 1.432,
ψ = 0.105, and α = 1. The control objective is to make
the state x1(= y) follow the desired trajectory yr = sin(t).
According to Section 2, the design procedure is as follows.

Step 1. The first surface error is

S1 = x1 − yr (74)

From (16),

x2d = −θ̂g1f1(x1)− 1

gmin

S1ρ
2
1(x1)

2ε
− k1S1 + φ̂1ẏr (75)

where x2d is obtained by (18) and θ̂g1 , φ̂1 are updated ac-
cording to (17).

Step 2. The second surface error is

S2 = x2 − z2 − c2 (76)

Since (73) is a second-order system, from (28), the control
law is

u = ζ̂ū (77)

where ζ̂ is updated by (29),

ū = − k2S2 − θ̂2f2(x̄2)− S2ρ
2
2(x̄2)

2ε
+

x2d − z2

τ2
− sgn(S2)d̂ (78)

with θ̂2, d̂ being updated by (31) and (32), respectively.
In this simulation, the initial parameters for update laws

are θ̂g1(0) = 0.05, φ̂1(0) = 1, ζ̂(0) = 0.5, and d̂(0) = 1, re-
spectively. In addition, we choose the design parameters
k1 = 10 , k1 = 0.45, γg1 = γφ1 = γζ = γd = 8, the small
gains η1 = ηζ = ηd = ε = σ1 = 0.01, and the time con-
stant of the low-pass filter τ2 = 0.01. The initial states
are chosen as x1(0) = 0.08 and x2(0) = 0.1, respectively.
Therefore, c2 = 0.1. Also, in the simulation, to avoid chat-
tering, the function sgn(S2) is replaced by saturation func-
tion sat (S2/0.01).
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To illustrate the effectiveness of the proposed control
scheme, the simulation is done under two different circum-
stances: with and without considering the effect of hys-
teresis, which is shown in Fig. 2. Fig. 2 clearly shows that
the tracking performance becomes poor once the hysteresis
compensation is ignored. Figs. 3 and 4 show the control
signal and hysteresis output.

Remark 6. It is interesting to compare the control law
(78) obtained by using DSC with the backstepping control
law given below:

ū = − k2z2 − θ̂2f2(x̄2)− z2ρ
2
2(x̄2)

2ε
− sgn(z2)d̂−

γg1(f1(x1)− η1θ̂g1)f1(x1)− γφ1(ẏrS1 − σ1φ̂1)ẏr +

φ̂1ÿr − ĝ1k1x2 − ĝ1θ̂g1

∂f1(x1)

∂x1
x2 − ĝ1

ρ2
1(x1)

2gminε
x2−

ĝ1
z1ρ1(x1)

gminε

∂ρ1(x1)

∂x1
x2 − k1θ̂1f1(x1)−

θ̂1θ̂g1

∂f1(x1)

∂x1
f1(x1)− θ̂1

ρ2
1(x1)

2gminε
f1(x1)−

θ̂1
z1ρ1(x1)

gminε

∂ρ1(x1)

∂x1
f1(x1) (79)

which shows that even for the second-order system, ū is
much complicated than that of our proposed scheme. The
performance using the backstepping control is shown in
Figs. 5 and 6 with the same plant parameters and initial
conditions as those of the DSC control scheme, from which
it is clear that the DSC and backstepping control have sim-
ilar tracking performance, but the control amplitude by us-
ing the DSC is smaller in this example.

5 Conclusion

In this paper, a robust adaptive DSC for the class of
uncertain perturbed strict-feedback nonlinear systems pre-
ceded by unknown backlash-like hysteresis has been pro-
posed. We have shown that by using the new scheme, the
explosion of complexity problem in backstepping design can
be eliminated, the semiglobal uniform ultimate bounded-
ness of all closed-loop signals can be guaranteed, and the
convergence of the tracking error to an arbitrarily small
residual set can be achieved. Moreover, we have shown
that by choosing the design parameters and initializing the
dynamic surfaces properly, the L∞ performance of system
tracking error can be guaranteed.

Fig. 2 Tracking errors with (solid line) and without (dashed
line) considering hysteresis compensation by using the DSC

scheme

Fig. 3 Control signal u(t) by using the DSC scheme

Fig. 4 Hysteresis output w(t) by using the DSC scheme

Fig. 5 Tracking error by using backstepping scheme

Fig. 6 Control signal u(t) by using backstepping scheme
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