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Population Control of Equilibrium States of

Quantum Systems via Lyapunov Method
KUANG Sen1 CONG Shuang1, 2

Abstract This paper studies the population control problem associated with the equilibrium states of mixed-state quantum systems
by using a Lyapunov function with degrees of freedom. The control laws are designed by ensuring the monotonicity of the Lyapunov
function; main results on the largest invariant set in the sense of LaSalle are given; and the strict expression of any state in the
largest invariant set is normally deduced in the framework of Bloch vectors. By analyzing the obtained largest invariant set and
the Lyapunov function itself, this paper also discusses the determination problem of the degrees of freedom. Numerical simulation
experiments on a three-level system show the validity of research results.
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In the field of quantum systems, state control reduces
to the so-called population control, when one neglects
the phases between any eigenvectors that generate any
given target state. In fact, population control can be re-
garded as a particular state control and is of very funda-
mental importance, e.g., in quantum chemistry. So far,
for the population control of quantum states, several dif-
ferent strategies have emerged, e.g., optimal control[1−2],
adiabatic control[3], factorization techniques of unitary
group[4], Lyapunov method[5−14], methods based on adap-
tive tracking[15] and system decomposition[16], and so on.

Compared with other methods, Lyapunov method has
some merits: its design procedure is simpler, its solving pro-
cess is easier, and the physical meaning is more intuitive.
However, the LaSalle invariance principle included in this
method can only guarantee the convergence of closed-loop
trajectories to some of its invariant set, and not to some
prescribed state in the set. For this problem, [7] achieved
an asymptotical approaching to an eigenstate by analyz-
ing asymptotical tracking to any reference trajectory and
using quantum adiabatic theorem. Reference [9] proposed
an implicit Lyapunov method to achieve an asymptotical
tracking to some eigenstate.

Reference [11] proposed a simple but tentative idea to
achieve a satisfying transition to any eigenstate by con-
structing the degrees of freedom contained in a Lyapunov
function. Theoretical analysis and simulation experiments
show that the idea is very flexible and that the control ef-
fects are often excellent as long as the degrees of freedom
are suitably constructed. Based on this, we further ex-
plore its application to mixed-state quantum systems. It
is well known that equilibrium states are very important
in system theory. For quantum systems described by pure
states, equilibrium states in a strict sense do not exist since
global phases evolve at each instant. However, equilibrium
points in the sense of population still make sense. This
implies that quantum systems described by Liouville equa-
tions contain true equilibrium states. This paper will focus
on studying the population control of the equilibrium states
associated with the Liouville equations.

Notice that the designed control laws in this paper con-
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tain the system states. To avoid notional confusion, it is
necessary to clarify the difference of the terms “feedback
control” and “closed-loop system” from the counterparts
in the classical case. In fact, since the feedback states in
the quantum field cannot usually be fully obtained by ex-
act measurement, the designed control laws have the char-
acteristics of open-loop implementation. This admits one
to call such a control strategy “program control with state
feedback”[11]. In terms of classical control theory, we can
also call it “model-based feedback control”, and the corre-
sponding system “model-based closed-loop system”. This
is exactly the real meaning of the terms in this paper. Even
so, the research in this paper still has theoretical and actual
interests as, presently, open-loop quantum control remains
important.

1 Preliminary notions and control de-
sign

1.1 Preliminary notions

This paper studies the following N -level quantum system
and assumes that it is operator controllable:

ρ̇(t) = −i

[
H0 +

m∑

k=1

Hkuk(t), ρ(t)

]
, ρ(0) = ρ0 (1)

where ρ(t) is the density operator describing the system
dynamics; H0, is the inner Hamiltonian of the system; uk(t)
is an applied real-valued control field; Hk is the control
Hamiltonian caused by the interaction between uk(t) and
the system. Both H0, and Hk are independent of time. We
work in an orthonormal basis of energy eigenvectors. So, ρ,
H0, and Hk will take on the corresponding N ×N matrix
forms, and H0 is diagonal.

The system described by (1) is closed. Its evolution is
unitary. So, whatever value uk(t) takes, ρ(t) and ρ0 have
the same spectrums. This is a necessary condition satisfied
by any reachable state of ρ0.

In physics, the eigenvalues λj (j = 1, 2, · · · , N) of H0 =
diag{λ1, λ2, · · · , λN} represent all the possible energy val-
ues (energy levels) of the system, while ωjl = λj − λl rep-
resents the Bohr frequency (transition frequency) between
the energy levels λj and λl. Further, we give the follow-
ing concepts. If all the energy levels of a quantum sys-
tem are mutually different, then the system is called non-
degenerate. If all the Bohr frequencies of a quantum system
are mutually different, then the system is called transition-
ally non-degenerate. If there exists k′ ∈ {1, 2, · · · , m} such
that (Hk′)jl 6= 0 holds, then the energy-level pair (j, l) ad-
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mits a direct transition and is called directly coupled. If
for two arbitrary energy levels, there exists a path connect-
ing them via a series of direct transitions, then the system
is called connected. If two arbitrary energy levels admit a
direct transition, then the system is called fully connected.
Further, we call ρ satisfying [H0, ρ] = 0 an equilibrium state
of (1), denoted by ρe.

This paper assumes that the system under consideration
is transitionally non-degenerate and connected.

1.2 Control design based on Lyapunov function

Our goal is to design the control laws uk(t) via the Lya-
punov method such that the system (1) starts from an
initial state ρ0 and converges to (or transits with a high
probability to) the population of some equilibrium state ρf

isospectral to ρ0.
Consider the Lyapunov function:

V (ρ) = tr(Pρ) (2)

where P is a positive definite Hermitian operator to be
constructed and can be regarded as an imaginary mechan-
ical quantity. Mathematically, V (ρ) is a tracing operation,
while physically, represents the average value of P . This
Lyapunov function is a generalization of the counterpart in
the pure state case in [11].

Now, design control laws by guaranteeing the monotonic
decreasing of the Lyapunov function (2). Calculating its
time derivative gives

V̇ (ρ) = −i tr([P, H0]ρ)− i

m∑

k=1

tr([P, Hk]ρ)uk (3)

In view of the independence of the first item on the right-
hand side of (3) from all the control components, let

[P, H0] = 0 (4)

To ensure V̇ (ρ) ≤ 0, one can design

uk = iεktr([P, Hk]ρ), k = 1, · · · , m (5)

where εk > 0 and is used to adjust the amplitude of uk.
Considering that the density operator ρ evolves in a uni-

tary fashion, one can prove the following propositions about
the Lyapunov function (2) and its extreme points via the

tool of Lie algebra su(N)[17]:
Proposition 1. On the premise that ρ changes in a

unitary fashion, if ρ is any extreme point of V (ρ), then
[ρ, P ] = 0 holds; contrarily, if ρ satisfies [ρ, P ] = 0, then ρ
must be an extreme point of V (ρ).

Further, one can also easily prove the following proposi-
tion about P :

Proposition 2. If H0 is non-degenerate and satisfies
[H0, P ] = 0, then P is diagonal.

Remark 1. The considered system in this paper is non-
degenerate. So, by replacing P in Proposition 2 with ρ, it
can be shown that its equilibrium states are also diagonal.

2 Main results on the largest invariant
set

Since the system (1) with the control field (5) is au-
tonomous, the LaSalle invariance principle can be used to
analyze the convergence of the closed-loop system. This
principle states that any trajectory of the closed-loop sys-
tem must converge to the largest invariant set contained in
the set S = {ρ : V̇ (ρ) = 0}.

Clearly, the set S is composed of all the extreme states of
all the evolving processes (i.e., ρ such that V̇ (ρ) = 0). It is
not hard to find from (3) ∼ (5) that S can be characterized
by the following proposition.

Proposition 3. Assume that the closed-loop system
(1) evolves to an extreme state ρ(t0) at time t0. Then, the
following three conditions are equivalent:

V̇ (ρ(t0)) = 0 (6)

tr(ρ(t0)[P, Hk]) = 0, k = 1, · · · , m (7)

uk(t0) = 0, k = 1, · · · , m (8)

Remark 2. Since (3) ∼ (5) do not involve concrete
initial states, (6) ∼ (8) represent all the extreme states
during the evolving processes starting from all the initial
states. From tr(A[B, C]) = tr(C[A, B]), and Proposition 1
and (6), it is easily known that the extreme points of the
Lyapunov function (2) with respect to ρ must be in S.

For the largest invariant set contained in S, we have the
following theorem.

Theorem 1. Consider the closed-loop system (1) with
the control field (5) and the following three conditions: 1)
[P, H0] = 0; 2) The system is non-degenerate, i.e., H0 is
a non-degenerate diagonal matrix; 3) The system is tran-
sitionally non-degenerate. Then, the following conclusions
are true:

1) If Condition 1) holds, then the largest invariant set
contained in S of the closed-loop system is E = {ρ(0) :

V̇ (ρ(t)) = 0, t ∈ R}, where ρ(t) (t ∈ R) is the trajectory
of the closed-loop system associated with the initial state
ρ(0).

2) If Conditions 1) and 2) simultaneously hold, then the
largest invariant set in Conclusion 1) reduces to E = {ρ(0) :
tr(eiH0tHke−iH0t[ρ(0), P ]) = 0, k = 1, · · · , m; t ∈ R}.

3) If Conditions 1) and 3) simultaneously hold, then the
(l, j)-th element of the state ρ(0) belonging to the largest in-
variant set in Conclusion 2) satisfies (Hk)jl(pl−pj)ρlj(0) =
0 (j, l = 1, · · · , N ; k = 1, · · · , m; j < l), where pl and pj are
the l-th and j-th diagonal element of P , respectively.

Proof. See Appendix. ¤
Remark 3. The three conclusions in Theorem 1 cover

three classes of cases about the system itself: Conclusion
1) imposes no restriction on the system; Conclusion 2) re-
quires the system to be non-degenerate; while Conclusion
3) requires the system to be transitionally non-degenerate.
It can be seen from the three conclusions that the expres-
sion of the states in the largest invariant set is more and
more accessible to be analytically decided along with the
gradual strengthening of the conditions on the system itself.

Remark 4. Actually, Conditions 2) and 3) are the con-
ditions possessed by the system itself. However, the consid-
ered system in this paper satisfies Condition 3), and thereby
Condition 2). That is, the largest invariant sets in the three
conclusions of Theorem 1 are fully consistent for the system
in this paper. Thus, from Proposition 1 and Conclusion 2)
of Theorem 1, it follows that the extreme points of the Lya-
punov function (2) with respect to ρ must also be in the
largest invariant set E.

3 Bloch vector and convergent state set

Conclusion 3) of Theorem 1 shows the characteristics of
each element of any state contained in the largest invariant
set E. However, it is difficult to decide which states E is
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composed of on earth. In fact, given an initial state ρ0, all
the states which the closed-loop system may converge to
are those contained in E and isospectral to ρ0. We call the
set of such states as the convergent state set of the closed-
loop system, denoted by E(ρ0). To find E(ρ0) and achieve
the convergence to the population of its some equilibrium
state by constructing P , it is necessary to further search
for the explicit expression of the states in E. To do this,
the Bloch vector representation of density matrices will be
introduced.

3.1 Bloch vector framework of density matrices

Assume that HN is the Hilbert space associated with a
N -level quantum system and isomorphic to CN . Then, the
set of all the bounded linear operators that act on HN and
endowed with the following inner product forms a Hilbert
space, called Liouville space, denoted by L(HN ):

〈〈A|B〉〉 = tr(A+B) (9)

The inner product defined by (9) is also called the
Hilbert-Schmidt inner product. With it, one can select the
identity matrix IN and the following generators of group
SU(N) as an orthonormal basis of L(HN )[18−19]:

σx
jl = |j〉〈l|+ |l〉〈j|, 1 ≤ j < l ≤ N (10)

σy
jl = −i(|j〉〈l| − |l〉〈j|), 1 ≤ j < l ≤ N (11)

σz
j =

√
2√

j(j + 1)

( j∑
n=1

|n〉〈n| − j|j + 1〉〈j + 1|
)
,

1 ≤ j ≤ N − 1 (12)

where x, y, and z are used to distinguish different gener-
ators, and analogous to the Pauli matrices along the di-
rections x, y, and z in the case of two-level systems. For
convenience, this basis is written as

{σs}N2−1
s=0 = {IN} ∪ {σs}N2−1

s=1 =

{IN} ∪ {σx
jl, σ

y
jl, σ

z
j } = {IN , σx

jl, σ
y
jl, σ

z
j } (13)

where 1 ≤ j < l ≤ N and 1 ≤ j ≤ N − 1.
The set of all the density matrices in L(HN ) will form the

so-called density matrix space, denoted by L1(HN ). Thus,
any density matrix ρ in L1(HN ) can be expressed by the
basis (13). In view of the intrinsic properties of density
matrices, such an expression has a fixed form:

ρ =
IN

N
+

1

2

N2−1∑
s=1

γsσs =

IN

N
+

1

2

∑

j<l

γx
jlσ

x
jl +

1

2

∑

j<l

γy
jlσ

y
jl +

1

2

N−1∑
j=1

γz
j σz

j (14)

where γs = tr(ρσs) (1 ≤ s ≤ N2− 1), which can be verified
by using (9) and the orthogonality of the basis (13).

The vector γ = [γ1, γ2, · · · , γN2−1]
T is the Bloch vector

of ρ. Clearly, it is a real-valued vector in RN2−1. The set
of all the Bloch vectors forms the Bloch space of the system

in RN2−1, denoted by B(RN2−1). In general, given some
members of the basis (13), one cannot generate ρ by taking
arbitrary γ in (14). Alternatively, it should be obtained by

taking γ in the Bloch space B(RN2−1). For any N -level
quantum system, [19] proved the following proposition on
its Bloch space:

Proposition 4. Let aν(γ) be the coefficients of the
characteristic polynomial det(ηIN − ρ) with respect to ρ

in (14), and define B(RN2−1) = {γ ∈ RN2−1 : aν(γ) ≥
0 (ν = 1, · · · , N)}. Then, the map: γ ∈ B(RN2−1) −→
ρ = 1

N
IN + 1

2

∑N2−1
s=1 γsσs ∈ L1(HN ) is a bijection from

the Bloch space B(RN2−1) to the density matrix space
L1(HN ).

Proposition 4 is important in theory, as it directly in-
dicates a one-to-one correspondence between the density
matrix space and the Bloch space of any N -level system.
Particularly, it can be calculated from Proposition 4 that
the Bloch space of any two-level system is a well-known
unit ball B(R3) = {γ ∈ R3 : |γ| ≤ 1} in R3.

3.2 Convergent state set of the closed-loop system

Conclusion 3) of Theorem 1 does not cover the case
“j = l”. In fact, for j = l, the expression in Conclusion
3) naturally holds. So, all the basis members of diagonal
type, σz

j (j = 1, · · · , N − 1), will become the generators of
the largest invariant set E. For j 6= l, it can be known from
the expression in Conclusion 3) that, if at least one of the
following two conditions is satisfied:

∃ j′, l′ ∈ {1, · · · , N}, s.t. pl′ = pj′ , j′ < l′ (15)

and

∃ j′, l′ ∈ {1, · · · , N}, s.t. (Hk)j′l′ = 0,

k = 1, · · · , m, j′ < l′ (16)

then
ρl′j′(0) ∈ C, j′ < l′ (17)

Equation (17) means that the basis members σx
j′l′ and

σy
j′l′ are also the generators of E. Generally, when the

control Hamiltonians Hk (k = 1, · · · , m) are given and P
is determined beforehand, it is not difficult to find all the
pairs of the basis members acting as the generators of E.
Thus, E can be ultimately calculated via (14). Accordingly,
the following theorem is obtained.

Theorem 2. Consider the transitionally non-degenerate
system (1) with the control field (5). If [P, H0] = 0, then
any trajectory of the closed-loop system converges to the
largest invariant set contained in S, E = {ρ : ρ = 1

N
IN +

1
2

∑N−1
j=1 γz

j σz
j + 1

2

∑
j<l γx

jlσ
x
jl + 1

2

∑
j<l γy

jlσ
y
jl, ((Hk)jl =

0, k = 1, · · · , m, or pj = pl; γ ∈ B(RN2−1))}, where γ is
the Bloch vector of dimension N2 − 1 with γx

jl, γy
jl and

γz
j (j = 1, · · · , N ; j < l) as components and satisfies that

γx
jl and γy

jl (j = 1, · · · , N ; j < l) associated with (Hk)jl 6=
0 (k ∈ 1, · · · , m) are equal to 0.

Since the equilibrium states of the considered systems in
this paper are diagonal matrices, the set of all the equilib-
rium states which the closed-loop system may converge to
is the set of all the diagonal matrices in the largest invari-
ant set E, denoted by Ee. Further, given an initial state ρ0,
the set of all the equilibrium states which the closed-loop
system may converge to is the set of all the diagonal matri-
ces in the convergent state set E(ρ0), denoted by Ee(ρ0).
Evidently, the number of the elements in Ee(ρ0) is finite,
denoted by ρe1, ρe2, · · · , ρen (n ≤ N !).

Note that when P is non-degenerate and the controlled
system is fully connected, the following corollary is easily
obtained via Theorem 2, Propositions 1 and 2 (see also
[17]).

Corollary 1. For the transitionally non-degenerate sys-
tem (1) with the control field (5), if P is non-degenerate and
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the system (1) is fully connected, then the largest invariant
set in Theorem 2 reduces to the equilibrium state set Ee,
that is, any trajectory of the closed-loop system converges
to one of the equilibrium states of the system (1).

4 Determination of degrees of freedom

4.1 Considerations on the determination of PPP

In this section, the determination problem of P will be
studied so that the system (1) can converge to (or tran-
sit with a high probability to) the population of its some
equilibrium state. This task is not so formidable because
the system only needs to be steered to a state that has the
same population as the target equilibrium state.

According to Theorem 2, the largest invariant set E de-
pends not only on the pairs of the energy levels that are
not directly coupled in the control Hamiltonians but also
on the diagonal elements of P . For the considered system
in this paper, Theorem 2 and the diagonal type of the equi-
librium states ensure that all the equilibrium states are in
the largest invariant set. However, this does not mean that
any closed-loop trajectory can furthest approach the pop-
ulation of the target equilibrium state. This paper solves
this problem by constructing P .

In view of the diagonal type of P , (2) can be written as

V (ρ) =

N∑

k=1

pkρkk (18)

where ρkk is the (k, k)-th element of ρ, and represents the
population component on the k-th eigenstate. Equation
(18) and the population conservation during the evolv-
ing process ensure that the population components on the
eigenstates associated with the maximal and minimal di-
agonal elements of P changes quickly with the decreasing
of V . Based on this, the diagonal element of P associated
with the maximal diagonal element of the target equilib-
rium state should be kept minimal; the diagonal element of
P associated with the minimal diagonal element of the tar-
get equilibrium state should be kept maximal; while other
diagonal elements should suitably take values.

Such an approach of roughly determining diagonal ele-
ments cannot guarantee the utmost approach to the pop-
ulation of the target equilibrium state. So, it is neces-
sary to further adjust those diagonal elements. An idea
is to observe and alter the diagonal values of P via simu-
lation experiments to resultantly alter the changing rate of
the Lyapunov function (2) with respect to the population
components on the eigenstates. Furthermore, altering the
changing rate of the Lyapunov function (2) with respect to
time can also alter the closed-loop trajectory. Considering
(3) ∼ (5), one can obtain

V̇ (ρ) = −4

m∑

k=1

εk

( ∑

j<l

(pj − pl)=(ρjl(Hk)lj)
)2

(19)

It can be seen from (19) that the pairs of the energy
levels that are directly coupled in the control Hamiltoni-
ans decide the diagonal elements of P that impact on the
changing rate of the Lyapunov function (2). So, adjusting
the differences between the diagonal elements of P associ-
ated with the energy levels that are directly coupled can
alter the decreasing rate of the Lyapunov function (2).

4.2 Illustrative example

This subsection will expatiate on the concrete determi-
nation method of P via a numerical example. Consider a

three-level system influenced by only one control field. In
the orthonormal basis {|0〉 = [1, 0, 0]T, |1〉 = [0, 1, 0]T, |2〉 =
[0, 0, 1]T}, the inner and control Hamiltonians are given as

H0 =




0.3 0 0
0 0.5 0
0 0 0.9


 and H1 =




0 1 0
1 0 1
0 1 0


, respec-

tively. Assume that this system is initially in the state
|ψ1(0)〉 = |0〉 with probability 0.9 and the state |ψ2(0)〉 =
1√
2
|0〉+ i

2
|1〉+ i

2
|2〉 with probability 0.1, that is, the initial

density operator is ρ(0) =




0.95 (−i
√

2)
40

(−i
√

2)
40

(i
√

2)
40

0.025 0.025
(i
√

2)
40

0.025 0.025


.

According to Theorem 2, it is easy to find the largest
invariant set E and the convergent state set E(ρ0), where
the Bloch space B(R8) can be calculated by using Propo-

sition 4[19]. Also, numerical computation shows that the
three eigenvalues of ρ(0) are almost equal to 0, 0.0472, and
0.9528. That is to say, the set Ee(ρ(0)) of the equilibrium
states to which the closed-loop system may converge con-
tains 3! elements: ρe1 = diag{0, 0.0472, 0.9528}, ρe2 =
diag{0, 0.9528, 0.0472}, ρe3 = diag{0.0472, 0, 0.9528}, ρe4

= diag{0.0472, 0.9528, 0}, ρe5 = diag{0.9528, 0, 0.0472},
and ρe6 = diag{0.9528, 0.0472, 0}.

The control goal is to drive this system to the population
of ρe1 (with a high probability), i.e., to let this system
utmostly approach the quantum state with the population
0, 0.0472, and 0.9528 on the three eigenstates. Based on
Subsection 4.1, the following parameters are selected in the
simulation experiments: p1 = 1, p2 = 0.7, p3 = 0.5, and
ε1 = 0.05 in the control field (5). Simulation results show
that when the control period tf is large enough (e.g., tf >
10 000a.u.), the population on the three eigenstates finally
reaches up to about 0.0003, 0.0472, and 0.9525, which is
very close to the population on the three eigenstates of ρe1.
To clearly see the key evolving process of the closed-loop
system, the corresponding simulation curves in the time
interval [0, 1 000] are plotted in Figs. 1 and 2.

It can be seen from Figs. 1 and 2 that the population evo-
lution of the system goes through the path |1〉 → |2〉 → |3〉.
Evidently, the population exchange between the eigenstates
|1〉 and |2〉 mainly happens in the time interval [0, 380],
while the population exchange between |2〉 and |3〉 mainly
happens in [380, 880]. Numerical calculation shows that
the oscillatory frequencies of the control field in [0, 380]
and [380, 880] are about 0.1984 and 0.4021, which are very
close to the transition frequencies 0.2 (between |1〉 and |2〉)
and 0.4 (between |2〉 and |3〉), respectively.

In fact, the better control results can be obtained by
suitably adjusting the diagonal elements of P . For instance,
for p1 = 1.2, p2 = 0.7, and p3 = 0.3, the population on the
three eigenstates finally reaches up to about 0, 0.0472, and
0.9528. Further, it follows from (19) that the period which
the system arrives at the steady population decreases as
the decreasing rate of the Lyapunov function (2) increases.

5 Conclusion

For transitionally non-degenerate quantum systems, this
paper has studied the convergence or high-probability tran-
sition to the population of some equilibrium state by using
a Lyapunov function with degrees of freedom. Based on
the LaSalle principle, the largest invariant set of the closed-
loop systems has been analyzed. Particularly, the explicit
expression of the states in the largest invariant set has been
given in the framework of the Bloch vectors of density ma-
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trices. Also, we have discussed the determination problem
of P so that the controlled system can utmostly approach
the population of any target equilibrium state.

The simulation experiments on a three-level system have
verified the effectiveness of the research results. However,
when the number of the energy levels of the system is rel-
atively large or the structure of the largest invariant set is
very complex, the trial determination method in this paper
appears weak. In this case, it is necessary to develop some
new theoretical tools and further search for some more rig-
orous determination principles.

Fig. 1 The population evolving curves in the interval [0, 1 000]

Fig. 2 The changing curve of the control field in [0, 1 000]

Appendix The proof of Theorem 1

A.1 Conclusion 1)

It can be known from Proposition 3 that the states satisfying
V̇ (ρ(t)) = 0 (t ∈ R) are the ones satisfying

uk(t) = iεktr([P, Hk]ρ(t)) = 0, k = 1, · · · , m, t ∈ R (A1)

This implies that ρ(t) contained in the control field is the
free evolving state of the system. Substituting the solution of
ρ̇(t) = −i[H0, ρ(t)] into (A1) equivalently gives

tr(e−iH0tρ(0)eiH0t[P, Hk]) = 0, k = 1, · · · , m, t ∈ R (A2)

That is to say, the largest invariant set contained in S is

E = {ρ(0) : tr(e−iH0tρ(0)eiH0t[P, Hk]) = 0,

k = 1, · · · , m, t ∈ R} (A3)

Now, we use (A2) to prove the invariance and the largest
property of E. Firstly, for showing the invariance, we suppose
ρ1(0) ∈ E, i.e.,

tr(e−iH0tρ1(0)e
iH0t[P, Hk]) = 0, k = 1, · · · , m, t ∈ R (A4)

Then, the system state at any time t0 is equal to ρ1(t0) =
e−iH0t0ρ1(0)eiH0t0 . Let ρ1(t0) be a new initial state, denoted
by ρ1(t0)(0). Calculating the left-hand side of (A2) gives

tr(e−iH0tρ1(t0)(0)e
iH0t[P, Hk]) =

tr(e−iH0(t+t0)ρ1(0)e
iH0(t+t0)[P, Hk]) (A5)

Clearly, for t ∈ R, (A5) is equivalent to the left-hand side of
(A4), i.e., ρ1(t0) ∈ E. This ends the proof of the invariance.

Next, for proving the largest invariant property of E, sup-
pose E′ is any invariant set contained in S and ρ′(0) is any
point in E′. The invariance of E′ ensures that the trajectory
starting from ρ′(0) still belongs to E′ and can be written as
ρ′(t) = e−iH0tρ′(0)eiH0t (t ∈ R), i.e., ρ′(0) = eiH0tρ′(t)e−iH0t.
Replacing ρ(0) in (A2) with ρ′(0) gives tr(ρ′(t)[P, Hk]) = 0 (k =
1, · · · , m; t ∈ R). This is exactly the characteristic of E (see
(A1)). The arbitrariness of ρ′(0) in E′ ensures that E′ ⊂ E.
Further, the arbitrariness of E′ in S ensures that E is the largest
invariant set contained in S.

A.2 Conclusion 2)

Since H0 is non-degenerate and diagonal, it can be known
from Proposition 2 that P is also diagonal. So, one has
P = e−iH0tP eiH0t. Combined with tr(A[B, C]) = tr(C[A, B]),
the left-hand side of (A2) can be reduced to

tr(e−iH0tρ(0)eiH0t[P, Hk]) =

tr(Hk[e−iH0tρ(0)eiH0t, P ]) =

tr(Hk[e−iH0tρ(0)eiH0t, e−iH0tP eiH0t]) =

tr(Hke−iH0t[ρ(0), P ]eiH0t) =

tr(eiH0tHke−iH0t[ρ(0), P ])

Thus, (A2) is equivalent to

tr(eiH0tHke−iH0t[ρ(0), P ]) = 0, k = 1, · · · , m, t ∈ R (A6)

and accordingly, (A3) can be equivalently written as

E = {ρ(0) : tr(eiH0tHke−iH0t[ρ(0), P ]) = 0,

k = 1, · · · , m, t ∈ R} (A7)

A.3 Conclusion 3)

Applying eABe−A =
∑∞

n=0
[A(n),B]

n!
to (A6) gives

tr
(
eiH0tHke−iH0t[ρ(0), P ]

)
= 0 ⇐⇒

tr

( ∞∑
n=0

1

n!

[
(iH0t)

(n), Hk

]
[ρ(0), P ]

)
= 0 ⇐⇒

∞∑
n=0

(intn)

n!
tr

([
H

(n)
0 , Hk

]
[ρ(0), P ]

)
= 0 (A8)
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M =




1 · · · 1 1 · · · 1 · · · 1
ω2

12 · · · ω2
1N ω2

23 · · · ω2
2N · · · ω2

N−1,N

ω4
12 · · · ω4

1N ω4
23 · · · ω4

2N · · · ω4
N−1,N

...
. . .

...
...

. . .
...

. . .
...

ω
N(N−1)−2
12 · · · ω

N(N−1)−2
1N ω

N(N−1)−2
23 · · · ω

N(N−1)−2
2N · · · ω

N(N−1)−2
N−1,N




where
[
H

(n)
0 , Hk

]
=

[
H0,

[
H0, · · · ,

[
H0︸ ︷︷ ︸

n times

, Hk

]]]
. Particularly,

[H
(0)
0 , Hk] = Hk.
By considering the linear independence of time sequence 1, t,

t2, · · · , (A8) can be written as

tr
(
[H

(n)
0 , Hk][P, ρ(0)]

)
= 0,

n = 0, 1, 2, · · · , k = 1, · · · , m (A9)

Denoting P as P = diag{p1, p2, · · · , pN} and considering the

diagonal type of H0, one can calculate [H
(n)
0 , Hk] and [P, ρ(0)]

as

[H
(n)
0 , Hk] = ((λj − λl)

n(Hk)jl) = (ωn
jl(Hk)jl),

j, l = 1, · · · , N (A10)

and

[P, ρ(0)] = ((pj − pl)ρjl(0)) , j, l = 1, · · · , N (A11)

respectively.
Substituting (A10) and (A11) into (A9) gives

N∑

j,l=1

ωn
jl(Hk)jl(pl − pj)ρlj(0) = 0,

n = 0, 1, 2, · · · , k = 1, · · · , m (A12)

By using the Hermitian property of Hk and ρ(0), (A12) can be
further written as

∑

j<l

(
ωn

jl(Hk)jl(pl − pj)ρlj(0) + ωn
lj(Hk)∗jl(pj − pl)ρ

∗
lj(0)

)
= 0

(A13)
When n is even, (A13) can be reduced to

∑

j<l

ωn
jl=((Hk)jl(pl − pj)ρlj(0)) = 0,

n = 0, 2, · · · , k = 1, · · · , m (A14)

When n is odd, (A13) can be reduced to

∑

j<l

ωn
jl<((Hk)jl(pl − pj)ρlj(0)) = 0,

n = 1, 3, · · · , k = 1, · · · , m (A15)

Denote

ξk =




(Hk)12(p2 − p1)ρ21(0)
...

(Hk)1N (pN − p1)ρN1(0)
(Hk)23(p3 − p2)ρ32(0)

...
(Hk)2N (pN − p2)ρN2(0)

...
(Hk)N−1,N (pN − pN−1)ρN,N−1(0)




Λ = diag{ω12, · · · , ω1N , ω23, · · · , ω2N , · · · , ωN−1,N}
and the matrix M as shown at the top of this paper.

Then, (A14) and (A15) are equivalent to

M=(ξk) = 0, k = 1, · · · , m (A16)

and
MΛ<(ξk) = 0, k = 1, · · · , m (A17)

respectively.
Since the system is transitionally non-degenerate, both M and

Λ are nonsingular square matrices of order [N(N − 1)]/2. Thus,
(A16) and (A17) imply

ξk = 0, k = 1, · · · , m (A18)

that is,

(Hk)jl(pl − pj)ρlj(0) = 0, j, l = 1, · · · , N, j < l (A19)

Equation (A19) is the condition satisfied by the element ρlj(0)
of any state ρ(0) in the largest invariant set E.

Thus, we complete the proof of Theorem 1. ¤
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