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Auxiliary Model-based Stochastic Gradient Algorithm for

Multivariable Output Error Systems
DING Feng1 LIU Xiao-Ping2, 3

Abstract The identification problem of multivariable output error systems is considered in this paper. By constructing an auxiliary
model using available input-output data and by replacing the unknown inner variables in the information vector with the outputs
of the auxiliary model, an auxiliary model-based stochastic gradient (AM-SG) identification algorithm is presented. Convergence
analysis using the martingale convergence theorem indicates that the parameter estimates given by the AM-SG algorithm converge
to their true values. The AM-SG algorithm with a forgetting factor is given to improve its convergence rate. The simulation results
confirm the theoretical findings.
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Parameter estimation has had wide applications in many
areas, including signal processing, adaptive prediction and
control, time-series analysis, process modeling, and so on.
In the area of system identification, Zheng used the bias
correction method in the identification of linear dynamic
errors-in-variables systems[1], Yang et al. made compar-
isons of some bias compensation methods and other identi-
fication approaches for Box-Jenkins models[2], Zhang et al.
presented a bias compensation recursive least squares iden-
tification for output error systems with colored noises[3],
Zong et al. studied the iterative identification problem re-
lated to control design[4], Zhong et al. discussed the hi-
erarchical optimization identification for linear state space
systems[5].

The least squares identification algorithms have fast con-
vergence rates. Recently, Wang presented an auxiliary
model-based recursive extended least squares identifica-
tion method for output error moving average systems[6].
The stochastic gradient (SG) parameter estimation algo-
rithms have less computation load and have received much
attention in self-tuning control and system identification.
In the literature, many gradient-based identification ap-
proaches were reported. For example, Ding et al. proposed
a hierarchical SG algorithm for multivariable systems[7]

and a multi-innovation SG algorithm for linear regression
model[8]. Wang et al. developed an auxiliary model-based
multi-innovation generalized extended stochastic gradient
(ESG) identification algorithm for Box-Jenkins models[9]

using the multi-innovation identification theory[8], but no
convergence analysis was carried out. Also, Wang et al.
gave an ESG identification algorithm for Hammerstein-
Wiener nonlinear ARMAX systems[10].

This paper studies the gradient-based identification ap-
proach and convergence for multivariable systems with out-
put measurement noises. For such a system, the difficulty
in identification is that the information vector contains un-
measurable variables. Our solution is to use the auxiliary
model technique[11−12], to replace these unknown variables
with the outputs of the auxiliary model, to present an aux-
iliary model-based stochastic gradient (AM-SG) identifi-
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cation algorithm, and further to analyze the convergence
of the proposed algorithm. To improve the convergence
rate of the gradient-based algorithm, an AM-SG algorithm
with a forgetting factor (AM-FFSG algorithm) is given.
Compared with the auxiliary model-based recursive least
squares algorithm, the AM-FFSG algorithm has less com-
putation burden. The simulation results indicate that if we
choose the forgetting factor appropriately, the AM-FFSG
algorithm can achieve faster convergence rate and the pa-
rameter estimation accuracy is closer to that of the least
squares algorithm. The AM-SG algorithm with the un-
known information vector for the output error systems in
this paper differs from the standard SG algorithm in [13],
which assumes that each entry of the information vector is
known.

Briefly, the rest of the paper is organized as follows. Sec-
tion 1 simply describes the identification problem to be dis-
cussed in the paper. Section 2 derives a basic identification
algorithm for multivariable systems based on the auxiliary
model technique. Sections 3 analyzes the performance of
the proposed algorithm. Section 4 presents an illustrative
example for the results in this paper. Finally, concluding
remarks are given in Section 5.

1 Problem formulation

Consider a multivariable, i.e., multi-input multi-output
(MIMO) output error system

xxx(t) = G(z)uuu(t) (1)

yyy(t) = xxx(t) + vvv(t) = G(z)uuu(t) + vvv(t) (2)

which is different from the equation-error systems
(CAR/ARX model) in [13], where uuu(t) ∈ Rr is the sys-
tem input vector, xxx(t) ∈ Rm the system output vector (the
true output or noise-free output), yyy(t) ∈ Rm is the mea-
surement of xxx(t) contaminated by the noise vvv(t) ∈ Rm, as
depicted in Fig. 1, G(z) ∈ Rm×r is the transfer matrix of
the system with z−1 representing the unit delay operator
z−1 [z−1uuu(t) = uuu(t− 1)].

According to the matrix polynomial theory[14], any
strictly proper rational fraction matrix can be decomposed
into a matrix fraction description: G(z) = A−1(z)B(z),
where A(z) and B(z) are polynomial matrices in z−1 and
defined as
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A(z) = I + A1z
−1 + A2z

−2 + · · ·+ Anaz−na ∈ Rm×m

B(z) = B1z
−1 + B2z

−2 + · · ·+ Bnbz−nb ∈ Rm×r

Fig. 1 The output-error system

Here, the inner variable xxx(t) is unknown, yyy(t) is the
measurement output vector, and vvv(t) is the observation
noise vector with zero mean. {uuu(t), yyy(t)} are the measure-
ment input-output data, and Ai ∈ Rm×m and Bi ∈ Rm×r

are the parameter matrices to be identified. Assume that
na and nb are known and that uuu(t) = 0, yyy(t) = 0, and
vvv(t) = 0 for t ≤ 0. The system in (1) and (2) con-
tains m2na + mrnb = S1 parameters. The objective is
to present an AM-SG algorithm to estimate the unknown
parameter matrices Ai and Bi using the input-output data
{uuu(t), yyy(t)}.

The model in (1) and (2) may be equivalently written as

an MIMO ARMAX model[15−16]:

A(z)yyy(t) = B(z)uuu(t) + D(z)vvv(t), D(z) = A(z)

This model can be identified by using the extended least
squares (ELS) or ESG algorithm[16]. Using the ELS al-
gorithm to estimate the parameters of such a special AR-
MAX model indeed requires identifying m2na number of
more parameters than the actual model parameters. Al-
though the noise model D(z) equals A(z), their estimates
are different. In other words, the size of the parameter
matrix increases, so this directly leads to a heavier com-
putational burden. Therefore, exploring computationally
efficient identification approach is the goal of this paper.
The following is to derive auxiliary model identification al-
gorithms with less computation.

2 Basic algorithms

Let us introduce some notations first. The symbol I
(Im) stands for an identity matrix of appropriate size (of
m×m), the superscript T denotes the matrix transpose, the
norm of a matrix X is defined by ‖X‖2 = tr[XXT], 1m×n

represents an m×n matrix whose elements are 1 and 1n =
1n×1, λmax[X] and λmin[X] represent the maximum and
minimum eigenvalues of the square matrix X, respectively;
for g(t) ≥ 0, we write f(t) = O(g(t)) if there exist positive
constants δ1 and t0 such that |f(t)| ≤ δ1g(t) for t ≥ t0;
f(t) = o(g(t)) represents f(t)/g(t) → 0 as t →∞.

Let n = mna + rnb. Define the parameter matrix θ and
information vector ϕϕϕ0(t) as

θT = [A1, A2, · · · , Ana , B1, B2, · · · , Bnb ] ∈ Rm×n

ϕϕϕ0(t) = [−xxxT(t− 1),−xxxT(t− 2), · · · ,−xxxT(t− na),

uuuT(t− 1),uuuT(t− 2), · · · ,uuuT(t− nb)]
T ∈ Rn

Then, from (1) to (2), we have

xxx(t) = θTϕϕϕ0(t)

yyy(t) = θTϕϕϕ0(t) + vvv(t) (3)

Here, a difficulty arises in that the information vector
ϕϕϕ0(t) contains unknown xxx(t − i) so that the standard SG

methods cannot be applied to (3) directly. The objective
of this work is to establish an auxiliary model by using the
available data {uuu(t), yyy(t)}, to present auxiliary model-based
SG algorithms by using the output xxxa(t) of this auxiliary
model in place of the unknown xxx(t), and to analyze the
performance of the proposed algorithms.

Let θ̂(t) be the estimate of θ at time t:

θ̂T(t) = [Â1(t), · · · , Âna(t), B̂1(t), · · · , B̂nb(t)]

and use the entries of the estimate θ̂(t) to form the poly-
nomials:

Â(z) = I + Â1(t)z
−1 + Â2(t)z

−2 + · · ·+ Âna(t)z−na

B̂(z) = B̂1(t)z
−1 + B̂2(t)z

−2 + · · ·+ B̂nb(t)z
−nb

In terms of Â(z) and B̂(z), we construct an auxiliary model:

xxxa(t) = Ga(z)uuu(t), Ga(z) = Â−1(z)B̂(z) (4)

where Ga(z) denotes the estimate of G(z) and is used as
the transfer function matrix of the the auxiliary model.

Equation (4) may also be written in the matrix form:

xxxa(t) = θ̂T(t)ϕϕϕ(t)

ϕϕϕ(t) = [−xxxT
a (t− 1), · · · ,−xxxT

a (t− na)

uuuT(t− 1), · · · ,uuuT(t− nb)]
T

If we use ϕϕϕ(t) to replace ϕϕϕ0(t) in (3), the identification
problem of θ can be solved. Using this idea, we can obtain
an AM-SG algorithm of estimating the parameter matrix
θ of the multivariable systems

θ̂(t) = θ̂(t− 1) +
ϕϕϕ(t)

r(t)
eeeT(t) (5)

eee(t) = yyy(t)− θ̂T(t− 1)ϕϕϕ(t) (6)

r(t) = r(t− 1) + ‖ϕϕϕ(t)‖2, r(0) = 1 (7)

ϕϕϕ(t) = [−xxxT
a (t− 1), · · · ,−xxxT

a (t− na),

uuuT(t− 1), · · · ,uuuT(t− nb)]
T (8)

xxxa(t) = θ̂T(t)ϕϕϕ(t) (9)

The initial value is generally chosen to be a real matrix

with smaller entries, e.g., θ̂(0) = 10−61m×n.

3 Main convergence results

We assume that {vvv(t),FFF t} is a martingale difference
vector sequence defined on a probability space {Ω,FFF , P},
where {FFF t} is the σ algebra sequence generated by the ob-

servation data up to and including time t[16]. The sequence
{vvv(t)} satisfies:

Assumption 1. E[vvv(t)|FFF t−1] = 0, a.s.;
Assumption 2. E[‖vvv(t)‖2|FFF t−1] = σ2rε(t − 1), σ2 <

∞, ε < 1, a.s..
where a.s. means almost surely.

Lemma 1[13]. For the algorithm in (5) ∼ (9), the fol-
lowing inequality holds:

t∑
i=1

‖ϕϕϕ(i)‖2
r(i)

≤ ln r(t), a.s.

Theorem 1. For the system in (3) and algorithm in (5)
∼ (9), define the data product moment matrix:
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Q(t) =

t∑
i=1

ϕϕϕ(i)ϕϕϕT(i)

and assume that Assumptions 1 and 2 hold, A(z) is a
strictly positive real matrix, r(t) → ∞. Then, the pa-

rameter estimation matrix θ̂(t) consistently converges to θ.
The stochastic martingale theory is one of the main

tools of analyzing the convergence of identification
algorithms[11−12]. The following proves this theorem by
formulating a martingale process and by using the martin-
gale convergence theorem in [16] and the method in [13].

Proof. Define the parameter estimation error matrix:

θ̃(t) = θ̂(t)− θ

Using (5) gives

θ̃(t) = θ̃(t− 1) +
ϕϕϕ(t)

r(t)
eeeT(t) (10)

Let

ỹyy(t) =−θ̃T(t)ϕϕϕ(t)

ηηη(t) = yyy(t)− θ̂T(t)ϕϕϕ(t) (11)

Using (6), it follows that

ηηη(t) =
r(t− 1)

r(t)
eee(t) = yyy(t)− xxxa(t) =

xxx(t) + vvv(t)− xxxa(t) (12)

Taking the norm of both sides of (10) and using (11) yield

‖θ̃(t)‖2 = ‖θ̃(t− 1)‖2 − 2ỹyyT(t)[ηηη(t)− vvv(t)]

r(t− 1)
+

2ϕϕϕT(t)θ̃(t− 1)vvv(t)

r(t− 1)
+

2‖ϕϕϕ(t)‖2
r(t− 1)r(t)

[eee(t)− vvv(t)]Tvvv(t) +

2‖ϕϕϕ(t)‖2‖vvv(t)‖2
r(t− 1)r(t)

− ‖ϕϕϕ(t)‖2
r2(t)

‖eee(t)‖2 (13)

From (12), we have

A(z)[ηηη(t)− vvv(t)] = A(z)xxx(t)−A(z)xxxa(t) =

B(z)uuu(t)−A(z)xxxa(t) = θTϕϕϕ(t)− xxxa(t) =

θTϕϕϕ(t)− θ̂T(t)ϕϕϕ(t) = −θ̃T(t)ϕϕϕ(t) = ỹyy(t) (14)

Since A(z) is strictly positive real, referring to Appendix C
in [16], the following inequality holds:

S(t) =

t∑
i=1

2ỹyyT(i)[ηηη(i)− vvv(i)]

r(t− 1)
≥ 0, a.s.

Let W (t) = ‖θ̃(t)‖2 + S(t). Adding both sides of (13) by
S(t) gives

W (t) = W (t− 1) +
2ϕϕϕT(t)θ̃(t− 1)vvv(t)

r(t− 1)
+

2‖ϕϕϕ(t)‖2
r(t− 1)r(t)

[eee(t)− vvv(t)]Tvvv(t) +

2‖ϕϕϕ(t)‖2‖vvv(t)‖2
r(t− 1)r(t)

− ‖ϕϕϕ(t)‖2
r2(t)

‖eee(t)‖2

Since S(t − 1), ϕϕϕT(t)θ̃(t − 1), r(t − 1), ϕϕϕ(t), r(t), and
eee(t) − vvv(t) are uncorrelated with vvv(t), and FFF t−1 measur-
able, taking the conditional expectation of both sides of
the above equation with respect to FFF t−1 and using As-
sumptions 1 and 2 yield

E[W (t)|FFF t−1] = W (t− 1) +
2‖ϕϕϕ(t)‖2σ2rε(t− 1)

r(t− 1)r(t)
−

E

[‖ϕϕϕ(t)‖2
r2(t)

‖eee(t)‖2|FFF t−1

]
, a.s. (15)

The summation of the second term on the right-hand side
of the above equation from t = 1 to t = ∞ is finite[16] , i.e.,

σ2
∞∑

t=1

‖ϕϕϕ(t)‖2
[r(t− 1)]1−εr(t)

< ∞, a.s., 1− ε > 0

Applying the martingale convergence theorem (Lemma
D.5.3 in [16]) to (15) to get that W (t) almost surely (a.s.)
converges to a finite random variable, say, C, i.e.,

lim
t→∞

‖θ̃(t)‖2 + S(t) = C < ∞, a.s. (16)

and also
∞∑

t=1

‖ϕϕϕ(t)‖2
r2(t)

‖eee(t)‖2 < ∞, a.s. (17)

Hence,

∞∑
t=1

‖ỹyy(t)‖2
r(t− 1)

< ∞, a.s.

∞∑
t=1

‖ηηη(t)− vvv(t)‖2
r(t− 1)

< ∞, a.s. (18)

Using the Kronecker lemma (Lemma D.5.5 in [16]), it fol-
lows that

lim
t→∞

1

r(t− 1)

t∑
i=1

‖ỹyy(i)‖2 = 0, a.s.

lim
t→∞

1

r(t− 1)

t∑
i=1

‖ηηη(i)− vvv(i)‖2 = 0, a.s.

Equation (16) shows that the parameter estimation error
is consistent bounded. From (10), we have

θ̃(t) = θ̃(t− i) +

i−1∑
j=0

ϕϕϕ(t− j)

r(t− j)
eeeT(t− j), i ≥ 1 (19)

Thus, we have

∞∑
t=i

‖θ̃(t)− θ̃(t− i)‖2 =

∞∑
t=i

‖θ̂(t)− θ̂(t− i)‖2 =

∞∑
t=i

∥∥∥∥∥
i−1∑
j=0

ϕϕϕ(t− j)

r(t− j)
eeeT(t− j)

∥∥∥∥∥

2

≤

i

i−1∑
j=0

∞∑
t=i

‖ϕϕϕ(t− j)‖2
r2(t− j)

‖eee(t− j)‖2 < ∞, a.s., i < ∞
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∞∑
t=1

‖eee(t)− vvv(t)‖2
r(t− 1)

=

∞∑
t=1

‖yyy(t)−θ̂T(t− 1)ϕϕϕ(t)−vvv(t)‖2
r(t− 1)

=

∞∑
t=1

‖yyy(t)−θ̂T(t)ϕϕϕ(t)−vvv(t)+[θ̂T(t)−θ̂T(t− 1)]ϕϕϕ(t)‖2
r(t− 1)

=

∞∑
t=1

‖ηηη(t)− vvv(t) + [θ̃T(t)− θ̃T(t− 1)]ϕϕϕ(t)‖2
r(t− 1)

≤

∞∑
t=1

2‖ηηη(t)− vvv(t)‖2
r(t− 1)

+

∞∑
t=1

2‖[θ̃T(t)− θ̃T(t− 1)]ϕϕϕ(t)‖2
r(t− 1)

≤
∞∑

t=1

2‖yyy(t)− vvv(t)‖2
r(t− 1)

+ 2

∞∑
t=1

‖ϕϕϕ(t)‖2
r(t− 1)

‖θ̃(t)− θ̃(t− 1)‖2 ≤
∞∑

t=1

2‖ηηη(t)− vvv(t)‖2
r(t− 1)

+ 2C1

∞∑
t=1

‖θ̃(t)− θ̃(t− 1)‖2 =

C2 < ∞, a.s., C1 < ∞
Here, we have assumed that ‖ϕϕϕ(t)‖2 ≤ C1r(t − 1). Using
the Kronecker lemma gives

lim
t→∞

1

r(t− 1)

t∑
j=1

‖eee(j)− vvv(j)‖2 = 0, a.s.

From (19), we have

θ̃(t− i) = θ̃(t)−
i−1∑
j=0

ϕϕϕ(t− j)

r(t− j)
eeeT(t− j) (20)

Replacing t in (11) by t− i yields

ϕϕϕT(t− i)θ̃(t− i) = −ỹyyT(t− i)

Using (20), we have

ϕϕϕT(t− i)θ̃(t) = −ỹyyT(t− i)+ϕϕϕT(t− i)

i−1∑
j=0

ϕϕϕ(t− j)

r(t− j)
eeeT(t− j)

To some extent, the rest of the proof is similar to that of
[13]. Squaring and using the relation, (a+ b)2 ≤ 2(a2 + b2),
yield

‖ϕϕϕT(t− i)θ̃(t)‖2 ≤ 2‖ỹyy(t− i)‖2 + 2‖ϕϕϕ(t− i)‖2 ×
∥∥∥∥∥

i−1∑
j=0

ϕϕϕ(t− j)

r(t− j)
{[eee(t− j)− vvv(t− j)] + vvv(t− j)}T

∥∥∥∥∥

2

Since eee(t − j) − vvv(t − j) is uncorrelated with vvv(t − j) and
is FFF t−1 measurable, taking the conditional expectation on
both sides with respect to FFF t−1 and using Assumptions 1
and 2 give

E[‖ϕϕϕT(t− i)θ̃(t)‖2|FFF t−1] ≤

2‖ỹyy(t− i)‖2 + 2‖ϕϕϕ(t− i)‖2
i−1∑
j=0

‖ϕϕϕ(t− j)‖2
r2(t− j)

×

{‖eee(t− j)− vvv(t− j)‖2 + σ2rε(t− 1)}
Summing for i from 0 to t − 1 on both sides and dividing
by r(t) yield

E{tr[θ̃T(t)Q(t)θ̃(t)]|FFF t−1}
r(t)

=
2

r(t)

t∑
i=1

‖ỹyy(i)‖2 + S1(t) + S2(t)

where

S1(t) = 2

t−1∑
i=1

‖ϕϕϕ(t− i)‖2
r(t)

i−1∑
j=0

‖ϕϕϕ(t− j)‖2
r2(t− j)

σ2rε(t− 1)

S2(t) = 2

t−1∑
i=1

‖ϕϕϕ(t− i)‖2
r(t)

i−1∑
j=0

‖ϕϕϕ(t− j)‖2
r2(t− j)

×

‖eee(t− j)− vvv(t− j)‖2

Using Lemma 1, we have

S1(t) =
2

r(t)

t∑
i=2

[r(i− 1)− r(0)]‖ϕϕϕ(i)‖2
r2(i)

σ2rε(t− 1) ≤

2

[r(t)]1−ε

t∑
i=2

‖ϕϕϕ(i)‖2
r(i)

σ2 ≤ 2σ2 ln r(t)

[r(t)]1−ε
→ 0, a.s.

S2(t) =
2

r(t)

t−1∑
i=2

[r(i− 1)− r(0)]‖ϕϕϕ(i)‖2
r2(i)

‖eee(i)− vvv(i)‖2 ≤

2

r(t)

t∑
i=2

‖ϕϕϕ(i)‖2
r(i)

‖eee(i)− vvv(i)‖2 ≤

2

r(t)

t∑
i=2

‖eee(i)− vvv(i)‖2 → 0, a.s. as t →∞

Hence,

‖θ̃(t)‖2 = o

(
r(t)

λmin[Q(t)]

)
, a.s.

This proves Theorem 1. ¤
The AM-SG algorithm has low computational burden,

but its convergence is slow, just like the SG algorithm of
scalar systems in [16]. To improve the convergence rate and
tracking performance, we introduce a forgetting factor λ in
the AM-SG algorithm to have the AM-SG algorithm with
a forgetting factor (the AM-FFSG algorithm for short) as
follows:

θ̂(t) = θ̂(t− 1) +
ϕϕϕ(t)

r(t)
[yyyT(t)−ϕϕϕT(t)θ̂(t− 1)] (21)

r(t) = λ r(t− 1) + ‖ϕϕϕ(t)‖2, 0 < λ < 1, r(0) = 1 (22)

ϕϕϕ(t) = [−ϕϕϕT(t− 1)θ̂(t− 1), · · · ,−ϕϕϕT(t− na)θ̂(t− na),

uuuT(t− 1), · · · ,uuuT(t− nb)]
T (23)

When λ = 1, the AM-FFSG algorithm reduces to the AM-
SG algorithm; when λ = 0, the AM-FFSG algorithm is the
auxiliary model projection algorithm.

For comparison, the following equation gives the auxil-
iary model-based recursive least squares (AM-RLS) algo-
rithm for estimating θ:

θ̂(t) = θ̂(t− 1) + P (t)ϕϕϕ(t)[yyyT(t)−ϕϕϕT(t)θ̂(t− 1)] (24)

P (t) = P (t− 1)− P (t− 1)ϕϕϕ(t)ϕϕϕT(t)P (t− 1)

1 + ϕϕϕT(t)P (t− 1)ϕϕϕ(t)
(25)
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4 Simulation tests

Consider the following 2-input and 2-output system (the
output error system):

[
x1(t)
x2(t)

]
+

[ −0.50 0.30
0.30 −0.70

][
x1(t− 1)
x2(t− 1)

]
=

[
2.00 0.80
0.60 1.50

][
u1(t− 1)
u2(t− 1)

]

[
y1(t)
y2(t)

]
=

[
x1(t)
x2(t)

]
+

[
v1(t)
v2(t)

]

In simulation, the inputs {u1(t)} and {u2(t)} are taken
as two independent persistent excitation sequences with
zero mean and unit variances, and v1(t) and v2(t) as two
white noise sequences with zero mean and variances σ2

1 and
σ2

2 . We apply the AM-SG, AM-FFSG, and AM-RLS al-
gorithms to estimate the parameters of this system. The
parameter estimates are shown in Tables 1 ∼ 3 and the
estimation errors δ vs. t are shown in Figs. 2 and 3, where

δ = ‖θ̂(t) − θ‖/‖θ‖ × 100% is the parameter estimation
error.

Fig. 2 The estimation errors δ vs. t with different forgetting
factors (σ2

1 = 0.202 and σ2
2 = 0.202)

Changing the noise variances σ2
1 and σ2

2 can adjust the
noise-to-signal ratios δns(1) and δns(2) of two output chan-
nels. When σ2

1 = 0.202 and σ2
2 = 0.202, the noise-to-

signal ratios are δns(1) = 7.61% and δns(2) = 7.99%; when
σ2

1 = 1.002 and σ2
2 = 1.002, the noise-to-signal ratios are

δns(1) = 38.06% and δns(2) = 39.96%.

Fig. 3 The estimation errors δ vs. t with different forgetting
factors (σ2

1 = 1.002 and σ2
2 = 1.002)

From the simulation results of Tables 1 ∼ 3 and Figs. 2
and 3, we can draw the following conclusions: 1) A lower
noise level leads to a faster rate of convergence of the pa-
rameter estimates to the true parameters; 2) As long as
an appropriate forgetting factor is chosen, the faster con-
vergence rate can be achieved and the smaller estimation
errors may be obtained; 3) The estimation errors δ become
smaller (in general) as the data length t increases. In other
words, increasing data length generally results in smaller
parameter estimation errors; 4) If we choose an appropri-
ate forgetting factor, the parameter estimation error of the
AM-FFSG algorithm is very close to that of the AM-RLS
algorithm; 5) These show the effectiveness of the proposed
algorithms.

Table 1 The AM-SG estimates and errors (σ2
1 = 0.202 and σ2

2 = 0.202)

t a11 a12 b11 b12 a21 a22 b21 b22 δ (%)

100 −0.59922 0.17140 1.48708 −0.30071 0.33764 −0.71091 0.31219 1.11802 46.03369

200 −0.60059 0.17094 1.51063 −0.24293 0.31021 −0.69470 0.32900 1.13286 43.72964

500 −0.59547 0.16413 1.54290 −0.16607 0.30202 −0.68306 0.34396 1.16092 40.65912

1 000 −0.59658 0.16547 1.56834 −0.10671 0.29320 −0.68347 0.35884 1.18001 38.27283

2 000 −0.59529 0.16723 1.59320 −0.05864 0.29220 −0.69037 0.37232 1.19823 36.23175

3 000 −0.59712 0.16900 1.60756 −0.02985 0.29159 −0.69500 0.38084 1.20899 35.02159

4 000 −0.59702 0.17187 1.61694 −0.00982 0.29265 −0.69681 0.38608 1.21616 34.18509

True values −0.50000 0.30000 2.00000 0.80000 0.30000 −0.70000 0.60000 1.50000

Table 2 The AM-FFSG estimates and errors with λ = 0.99 and λ = 0.98 (σ2
1 = 0.202 and σ2

2 = 0.202)

λ t a11 a12 b11 b12 a21 a22 b21 b22 δ (%)

100 −0.60777 0.17692 1.51146 −0.25885 0.32854 −0.70781 0.31572 1.14094 44.21498
200 −0.61377 0.18746 1.55035 −0.16457 0.29378 −0.70023 0.34521 1.16656 40.41276
500 −0.57355 0.18923 1.65060 0.06882 0.30173 −0.68181 0.39410 1.24891 30.90156

0.99 1 000 −0.55986 0.22650 1.75541 0.30436 0.28222 −0.69776 0.45650 1.32641 21.15147
2 000 −0.52576 0.26546 1.88925 0.55857 0.29103 −0.70166 0.53029 1.42339 10.09261
3 000 −0.51682 0.28012 1.94452 0.67591 0.29855 −0.69931 0.57385 1.46477 5.07976
4 000 −0.50970 0.29168 1.97003 0.73266 0.30409 −0.69537 0.58706 1.48132 2.74364

100 −0.61258 0.18144 1.53585 −0.21435 0.31580 −0.69947 0.32049 1.16407 42.30653
200 −0.61699 0.20207 1.59079 −0.07974 0.27566 −0.70259 0.36541 1.20042 36.86039
500 −0.54834 0.23167 1.75031 0.28612 0.31004 −0.68227 0.44480 1.32795 21.77915

0.98 1 000 −0.53044 0.26963 1.87190 0.54686 0.28936 −0.70362 0.51873 1.41278 10.87786
2 000 −0.50726 0.28972 1.96794 0.72901 0.29620 −0.69964 0.57536 1.48445 2.94576
3 000 −0.50522 0.29662 1.98799 0.77670 0.30052 −0.69631 0.60452 1.50000 0.96454
4 000 −0.50621 0.29923 1.99316 0.78825 0.30504 −0.69347 0.60168 1.49924 0.60126

True values −0.50000 0.30000 2.00000 0.80000 0.30000 −0.70000 0.60000 1.50000
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Table 3 The AM-RLS estimates and errors (σ2
1 = 0.202 and σ2

2 = 0.202)

t a11 a12 b11 b12 a21 a22 b21 b22 δ (%)

100 −0.50892 0.28087 2.02473 0.73734 0.29262 −0.69484 0.54565 1.48989 3.15273

200 −0.50403 0.30380 2.00898 0.77285 0.28644 −0.70340 0.57779 1.47845 1.56517

500 −0.50247 0.30326 2.00902 0.78733 0.29335 −0.69865 0.59075 1.49674 0.70049

1 000 −0.49955 0.30134 2.00597 0.79384 0.29455 −0.70053 0.59248 1.49277 0.51227

2 000 −0.50093 0.29993 1.99891 0.78932 0.29720 −0.70082 0.59432 1.49749 0.44703

3 000 −0.50041 0.29945 1.99776 0.79155 0.29832 −0.70002 0.60076 1.49984 0.31355

4 000 −0.50115 0.29986 1.99770 0.79179 0.30042 −0.70001 0.60161 1.49924 0.30776

True values −0.50000 0.30000 2.00000 0.80000 0.30000 −0.70000 0.60000 1.50000

5 Conclusions

Using the auxiliary model technique, the auxiliary
model-based stochastic gradient algorithms are presented
for MIMO systems. The convergence of the proposed al-
gorithm is analyzed by using the martingale convergence
theorem. The simulation results show that the proposed
algorithms are effective. The proposed methods can be ex-
tended to output error moving average (OEMA) systems[17]

and non-uniform sampled systems[18].
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