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A Hierarchical Image Annotation Method Based on

SVM and Semi-supervised EM
GAO Yan-Yu1,2 YIN Yi-Xin1,2 UOZUMI Takashi3

Abstract Automatic image annotation, which aims at automatically identifying and then assigning semantic keywords to the
meaningful objects in a digital image, is not a very difficult task for human but has been regarded as a difficult and challenging problem
to machines. In this paper, we present a hierarchical annotation scheme considering that generally human′s visual identification to a
scenery object is a rough-to-fine hierarchical process. First, the input image is segmented into multiple regions and each segmented
region is roughly labeled with a general keyword using the multi-classification support vector machine. Since the results of rough
annotation affect fine annotation directly, we construct the statistical contextual relationship to revise the improper labels and
improve the accuracy of rough annotation. To obtain reasonable fine annotation for those roughly classified regions, we propose
an active semi-supervised expectation-maximization algorithm, which can not only find the representative pattern of each fine class
but also classify the roughly labeled regions into corresponded fine classes. Finally, the contextual relationship is applied again to
revise the improper fine labels. To illustrate the effectiveness of the presented approaches, a prototype image annotation system is
developed, the preliminary results of which showed that the hierarchical annotation scheme is effective.
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In recent years, a variety of image auto-annotation sys-
tems have been proposed with the development of arti-
ficial intelligence and statistical learning theory. These
auto-annotation methods can be classified into three cat-
egories: 1) image-based auto-annotation[1] which consid-
ers the whole image as an individual visual pattern and
uses visual features of the whole image to infer its semantic
contents; 2) blob-based (region-based) auto-annotation[2]

which takes the homogeneous image region or connected
homogeneous image regions with the same visual attributes
as the annotating object and extracts its visual features
for blob understanding; 3) salient-based auto-annotation[3]

which considers the salient regions as annotating objects
and extracts their visual features for image understand-
ing. Among these annotation methods, blob-based auto-
annotation received more attention. One of its first at-
tempts was reported by Mori et al.[2], who estimated the
co-occurrence probabilities between words and image re-
gions created by a regular grid and used the probabilities
to predict image contents. Jeon et al.[4] assumed image
annotation as a kind of cross-lingual retrieval problem and
built a cross-media relevance model (CMRM) to do image
annotation. Their experiments showed that the CMRM
performs better than the models proposed in [2] on the
same image set. Graph models and word correlation are
well considered in recent years. Liu et al.[5] proposed a
unified framework for image annotation, which consisted of
an image-based graph learning process and a word-based
graph learning process. Their experiments demonstrated
that their framework outperforms the CMRM and other
recently proposed methods. Syncretizing image segmenta-
tion and region recognition for image annotation is another
attractive aspect in more recent years. Kokkinos et al.[6]

integrated image segmentation and object recognition in
the framework of the expectation-maximization (EM) algo-
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rithm and adopted the active appearance models to model
objects. Their experiments on faces and cars show that
the synergy scheme is not only faster the than the other
three methods but also insensitive to occlusion. There is
also some interesting research based on authors′ prudential
observation. Jung[7] proposed an ontology-based seman-
tic annotation method to improve the understandability of
images from heterogeneous information sources consider-
ing that user′s search context should be predicted by his
annotated resources.

The above-mentioned methods made great efforts in im-
proving annotation precision and speed as well as enlarging
the scope of annotation objects. However, besides these
aspects, the following issues are also important and worth
in-depth study.

1) Object recognition by image analysis is easily affected
by impersonal elements, such as lighting conditions, and
subjective elements, such as photographing angles and dis-
tance. Extracting visual features that are insensitive to ori-
entation, scale, and lighting can decrease these influences.

2) Human′s understanding to an image is usually a

rough-to-fine hierarchical process[8]. Therefore, if an im-
age auto-annotation system could similarly perform, it may
achieve more definite annotation results.

3) Different people may give different labels to the same
scenery object because of the lingual diversities and cogni-
tion differences. Thus, forming a set of consistent annota-
tion glossary is a necessary pre-step of auto-annotation.

Focusing on these issues, in this paper, we construct
a blob-based automatic annotation system for outdoor
scenery images. The system mainly consists of five parts:
image segmentation, rough annotation, rough correction,
fine annotation, and fine correction (as shown in Fig. 1). In
the first part, the input image is segmented into multiple
regions with an assumption that each region contains no
more than a single object. Meanwhile, a questionnaire is
performed, by which a set of uniform and widely accep-
tive keywords are selected. These keywords are organized
into two hierarchies to describe objects of scenery images
in general or in detail. Corresponding to these hierarchical
keywords, two sets of visual features are defined. With the
rough features, the segmented region is classified into a ro-
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Fig. 1 Schematic illustration of the proposed automatic image
annotation system

ugh semantic category by support vector machines (SVMs)
under the consideration that the precision of rough annota-
tion would directly affect subsequent fine annotation, while
SVM along with the supervised learning method can obtain
high annotation precision. Then, an active semi-supervised
EM algorithm is proposed to set the representative patterns
of detailed keywords and to annotate the roughly labeled
regions with detailed keywords according to their fine fea-
tures. In order to further reduce annotation errors, statis-

tical information of coexistence and relative location rela-
tionship is calculated based on the training samples, which
is helpful in judging or even revising rough and fine anno-
tation results.

The rest of the paper is organized as follows. Section 1
explains image segmentation, visual feature extraction, and
annotation keywords selection. The hierarchical annotation
scheme is explained in Section 2. Annotation revision with
contextual relationship is described in Section 3. Section
4 reports the experimental results and provides some anal-
ysis. Section 5 concludes with several remarks on further
work.

1 Preprocessing

In this section, we introduce three preprocessing steps:
semantic keywords selection, image segmentation, and vi-
sual feature extraction.

1.1 Semantic keywords selection

Semantic keywords selection has a critical effect on re-
ducing lingual diversity and normalizing cognitive variety
in image annotation. However, only a few researchers have
paid attention to this issue till now.

In order to obtain a set of comprehensive and coher-
ent keywords, we performed a small-scale subjective ex-
periment, where totally eight subjects (4 males, 4 females)
with normal color vision and normal or corrected-to-normal
vision participated. Each subject was asked to watch a set
of natural scenery images selected from the Corel stock CDs
and write down names of observed objects. To obtain as
many names of scenery objects as possible and lighten the
intensity of questionnaire, two rules were followed: 1) Each
image set contained 100 images and no identical images
could be found in any two image sets; 2) Images in each set
should involve as many as possible themes. After analyzing
all names written down, we deleted the rarely used syn-
onyms. Then, by referring the WordNet lexical database,
we added scores of commonly heard object names. Finally,
we obtained 87 words, some of which were very general
and applicable to describe a large range of scenery objects
(e.g. stone), but others were only fit for describing spe-
cific objects (e.g. pebble). We grouped these words into
two hierarchies (as shown in Table 1) and referred them as
general keywords and detailed keywords, respectively.

Table 1 Semantic keywords organized in two hierarchies

General Detailed Features for

keywords keywords differentiation

Water Sea, river, lake, waterfall, rain, etc. Color, texture (directionality)

Stone Pebble, boulder, stonewall, reef, flagstone, etc. Color, texture, shape

Ground Soil, dry-land, mud, sandbeach, desert, snow-field, etc. Texture, color

Mountain Hill, cliff, ice-mountain, snow-mountain, barren-mountain, green-mountain, volcano, etc. Color, texture, shape

Sky Blue-sky, white-clouds, storm-sky, dim-sky, sunrise/sunset, etc. Color, texture

Grass Withered-grass, green-grass, crop, bamboo, reed, etc. Color, texture

Tree Bush, stub, shrub, pine, green-tree, defoliated-tree, autumn-tree, etc. Color, texture

Flower Flowerbed, red-flower, yellow-flower, purple-flower, pink-flower, varicolor-flower, etc. Color, texture, shape

Road Lane, tunnel, highway, railway, stairway, flagging, etc. Color, texture

Building Arena, temple, castle, office-building, woody-building, fence, sculpture, stairs, etc. Color, texture, shape

Vehicle Car, airplane, balloon, truck, bus, ship, train, etc. Shape, color

Animals Human, tiger, dolphin, elephant, horse, bear, penguin, etc. Shape, color
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1.2 Image segmentation

Image segmentation is the process that groups image
pixels together based on color distribution, region edge,
and spatial location, so that the segmented regions have a
strong correlation with the real-world objects. The exis-
tent image segmentation techniques can be classified into
four classes[9−10]: 1) pixel-based approach, which groups
pixels into different regions according to the low-level vi-
sual features; 2) edge-based approach, which first detects
local discontinuities and then uses the edge information to
separate the image into regions sequentially or in a parallel
way; 3) region-based approach, which starts with a seed
pixel (or a group of pixels) and then grows or splits the
seed until the original image is composed of homogeneous
regions only; 4) hybrid approach.

In this paper, we adopt the Gaussian mixture model
(GMM)-based pixel clustering technique[10], which applies
the color or intensity feature as well as the pixel location
information to determine the segments. Experimental re-
sults in [10] proved that this technique can obtain better
segmentation performance than other methods. Since the
time cost of the GMM-based clustering method is directly
proportional to the number of iterations, we did some seg-
mentation tests on several scenery images with 50, 40, 30,
and 20 iterations. The segmentation results showed that
the segments formed after 20 iterations were almost as same
as those formed after 50 iterations, but the time cost was
greatly less than that with 50 times.

1.3 Visual feature extraction

During the past semicentury, color and texture features
have received deeper investigation and gained wider appli-
cation. In this paper, we combine color moments and Ga-
bor wavelet texture[11] to describe each region roughly and
use the two features as well as Tamura directionality[12] to
describe each region finely.

1.3.1 Color moment feature

Considering that most segmented regions have homoge-
neous color distribution, we calculate the first-, second-,
third-, and fourth-order color central moments for each re-
gion as its color feature. Here, we calculate the moment
features in the CIE L∗a∗b∗ color space because it reflects
human-perceived color differences better than other spaces.
The first and second moments measure the average and
variance of color values in each color channels. The third
central moment reflects the skewness of each color channel.
If its value in a color channel is small, the color distribu-
tion of the color channel is symmetric. The fourth central
moment, also called as Kurtosis, measures the peakedness
of each color channel. If the Kurtosis of a color channel is
big, color distribution of the color channel tends to have a
distinct peak near the mean, declines rather rapidly, and
has heavy tails. Otherwise, the color distribution tends to
have a flat top near the mean. A distinct advantage of the
color moment feature is that it represents various statistical
color attributes in a compact size.

1.3.2 Gabor wavelet texture features

Gabor wavelets have achieved impressive results in an-
alyzing texture of grayscale images because they provide
the best trade-off between spatial resolution and frequency
resolution[13]. Gabor wavelets can decompose images into
components corresponding to different scales and orienta-
tions. In this paper, we convolve Gabor wavelets in 3 scales
at 6 orientations (0, π/6, π/3, π/2, 2π/3, 5π/6) with each
gray-scaled region and obtain 18 coefficients. The mean

and standard deviation of the magnitudes of these coeffi-
cients are combined to form the texture features of the re-
gion. Since Gabor wavelet transform is originally designed
for rectangular images and the segmented regions are in ar-
bitrary shapes, we perform the transform on the maximum
rectangular region inside each segment.

1.3.3 Tamura directionality

Directionality refers to the placement rule of texture
primitives. It is very important to differentiate fine se-
mantic classes. We adopt the Tamura method to calculate
the directionality of a region, which is represented by a 16-
point histogram HD corresponding to 16 direction scopes
(2k−1)π/32≤θ<(2k+1)π/32, with k = 0, 1,· · · , 15. If HD

is nearly flat, the region is regarded as having isotropic tex-
ture. Otherwise, the angle corresponding to the histogram
peak is regarded as the texture direction of the region.

1.3.4 Features for rough and fine annotation

In this paper, we propose a parallel feature representa-
tion scheme and apply it in rough and fine annotation. In
rough annotation, color moments and Gabor wavelet tex-
ture are reassembled into a group of feature vectors, each of
which consists of a pair of Gabor wavelet texture extracted
from one scale and one orientation as well as 12 color fea-
tures. Each training sample is represented by eighteen 14-
dimensional feature vectors, while each test region is repre-
sented by a 14-dimensional vector randomly selected from
its feature group. If the test vector is nearest to one vec-
tor of a training feature group, the test region is regarded
as belonging to the same class with the training sample.
Such kind of feature representation can effectively decrease
influences from inconsistent image scales and various pho-
tographing angles.

As for the fine annotation, each feature vector includes
a pair of Gabor wavelet features extracted from one scale
and one orientation, 12 color moments, and 16 direction-
ality features. As same as the rough annotation, each
training sample is represented by eighteen 30-dimensional
feature vectors, while each test region is represented by a
30-dimensional vector randomly selected from the feature
group. To eliminate the inconsistent ranges of various vi-
sual features, we normalize each feature vector to be of zero
mean and unit variance.

2 Hierarchical image annotation

This section explains the idea and process of applying
SVM technique for rough annotation and an active semi-
supervised EM algorithm for fine annotation.

2.1 Rough annotation by SVM

Denoting the segmented regions as sss = {s1, s2, · · · , sϑ},
the goal of rough annotation is to assign a set of general
keywords {g1, g2, · · · , gϑ} to these regions and hope that
the assignment is as accurate as possible. This, indeed,
can be viewed as a pattern-classification problem, namely,
classify each region into one of the predefined rough se-
mantic classes. To obtain high recognition precision, SVM
is recommended, which seeks the optimal separating hy-
perplane between two classes by focusing on the training
samples that lie on the class boundaries while discarding
other training samples effectively[14].

The simplest classification problem that SVM could deal
with is the linearly separable binary classification. Given a
set of training samples, {(xi, yi)}N

i=1, xi ∈ Rd, yi = {−1, 1},
SVM separates these samples into two classes by the opti-
mal hyperplane wTx + b = 0, which runs between the two
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classes with the distance to the closest training samples
in both classes as large as possible. Here, w is an adap-
tive weight vector and is normal to the hyperplane, b is
a bias. The optimal hyperplane can be obtained by solv-
ing the optimization problem: min{ 1

2
‖w‖2}, subject to the

constraints of yi(w
Txi +b)≥+1. By introducing the La-

grange multiplier αi, the quadratic optimization problem
with linear inequality constraints can be converted into the
following dual problem:

max Q(a) =

m∑
i=1

αi − 0.5

m∑
i,j=1

αiαjyiyj(xi · xj) (1)

where αi ≥ 0 and
∑m

i=1 yiαi = 0. With the standard
quadratic programming (QP) method, the optimum La-
grange multipliers {αi}m

i=1 as well as the discriminant func-
tion associated with the optimal hyperplane can be decided.
As for the commonly faced non-separable case, the objec-
tive function becomes min{ 1

2
‖w‖2 + C(

∑
i ξi)}, subject to

the constraints of yi(w
Txi+b) ≥ 1−ξi, where ξi are positive

slack variables and C is a user-specified positive parame-
ter. Its dual problem is almost the same as the separable
case except that the Lagrange multipliers αi have an upper
bound of C, i.e., 0 ≤ αi ≤ C.

The linear SVM can be extended to solve the nonlinear
classification problem by introducing the nonlinear oper-
ator φ(x) to map the input pattern x into a higher di-
mensional space H. Accordingly, the inner products in
the original space (xi · xj) defined in (1) would be re-
placed by (φ(xi) · φ(xj)). Since the explicit computation
of φ(xi) is expensive and sometimes unfeasible, the kernel
function K(·, ·) was introduced, which satisfies the condi-
tions of Mercer′s theorem and corresponds to some type
of inner product in the high-dimensional space H, i.e.,
K(xi, xj) = φ(xi)

Tφ(xj). In this study, the nonlinear
SVMs with the Gaussian radial basis function (RBF) kernel
are used considering that the Gaussian RBF kernel usually
yields excellent results compared with linear and polyno-
mial kernels. The RBF kernel is defined as

K(xi, yj) = exp(γ‖xi − yj‖2), γ > 0 (2)

where γ shapes the kernel function. Since the hyper-
parameters C and γ decisively affect the classification
performance (C controls the trade-off between low train-
ing error and large margin, while γ can alter the effec-
tiveness of the eventual separating surface), so far many

hyperparameter tuning methods have been proposed[15],
such as k-fold cross-validation, leave-one-out (LOO), Xi-
alpha bound, and generalized approximate cross-validation
(GACV), etc. We combine the 3-fold cross-validation and
grid-search algorithm and apply them to the prelabeled
training images to find the best C and γ.

SVM was originally designed for binary classification.
To make it competent for multiclass classification, three
strategies have been proposed, namely one-against-all, one-
against-one, and directed acyclic graph SVM (DAGSVM).
We adopt the DAGSVM in rough annotation since the
DAGSVM needs less testing time than the one-against-one
SVM and has better generalization ability than the one-
against-all SVM[16].

2.2 Fine annotation by EM algorithm

To complete fine annotation, we first need to find out
the representative pattern of each detailed keyword. Here,
the unsupervised learning method — EM algorithm[17] is
adopted, which assumes that the scenery objects of the

same rough category are generated by a multi-component
Gaussian mixture model (GMM) with each Gaussian com-
ponent corresponding to a fine semantic class.

Let X = {xi}N
i=1 be N samples that belong to the

same rough category and xi =
[
x1

i , · · · , xd
i

]T
represents

d-dimensional feature vector of the i-th sample. The fea-
ture distribution of XXX is assumed to follow a K-component
Gaussian mixture model:

p(xi|Θ) =

K∑

k=1

αk
1

(2π)
d
2 σ

1
2
k

×

exp

[
−1

2
(xi − µk)T

−1∑

k

(xi − µk)

]
(3)

where αk is the probability of choosing the k-th
mixture component and

∑K
k=1 αk = 1; Θ =

{µ1, · · · , µK , σ1, · · · , σK , α1, · · · , αK} are the parameters
of Gaussian mixture model that we need to estimate.

Assume that Y = {y1, · · · , yN} represents the fine labels

of image samples {xi}N
i=1. Each label yi =

[
y1

i , · · · , yK
i

]N

i=1
is a binary vector that indicates which component of the
Gaussian mixture model produces the image sample xi. If
xi is produced by the k-th component, then yk

i = 1 and
yj

i = 0 for j 6= k, and k, j ∈ [1, K]. EM algorithm cal-
culates the maximum likelihood (ML) estimation of labels
{yi}N

i=1 and parameters Θ by alternately performing the
expectation step (E-step) and the maximization step (M-
step) until convergence. At the (t + 1)-th iteration, the
E-step calculates the expected value of the complete-data
log-likelihood function

Q(Θ|Θ(t)) =

N∑
i=1

K∑

k=1

log(αkp(xi|θ(t)
k ))P (yk

i = 1|xi; Θ
(t)) (4)

where P (yk
i = 1|xi; Θ

(t)) estimates the labels {yi}N
i=1 ac-

cording to the observed visual features and the model pa-
rameters in the t-th iteration Θ(t):

P (yk
i = 1|xi; Θ

(t)) =
αt

kp(xi|θ(t)
k )

K∑
l=1

αt
lp(xi|θ(t)

l )

(5)

In the M-step, the model parameters of the (t + 1)-th

iteration are estimated by maximizing Q(Θ|Θ(t)).

µt+1
k =

N∑
i=1

xiP (yk
i = 1|xi; Θ

(t))

N∑
i=1

P (yk
i = 1|xi; Θ(t))

(6)

σt+1
k =

N∑
i=1

P (yk
i = 1|xi; Θ

(t)){(xi − µt+1
k )(xi − µt+1

k )T}
N∑

i=1

P (yk
i = 1|xi; Θ(t))

(7)

at+1
k =

1

N

N∑
i=1

P (yk
i =1|xi; Θ

(t)) (8)

On convergence, the maximum likelihood estimation of la-
bels {yi}N

i=1 represent the fine class that the roughly labeled
region belongs to.
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In practice, three problems hampered the application of
EM algorithm in fine annotation. First, the performance
of EM algorithm depends strongly on the choice of the ini-
tial parameters Θ(0). Second, a premise of EM algorithm is
that the number of component densities K is known or pre-
defined. In our case, although we have obtained plenty of
detailed keywords, those words are not comprehensive yet
and their number might be less than the real component
number K. Third, the fine label of a region is directly af-
fected by its rough label due to the hierarchical relationship
between the general keywords and the detailed keywords.
If a region has been labeled falsely with a general keyword,
no matter how strong the fine classifier is, the region cannot
be recognized correctly.

In order to decide the component number K and the ini-
tial parameters, and to decrease the negative influence from
rough annotation, we propose a semi-supervised active EM
algorithm that adopts the active learning technique to se-
lect the most informative samples to train the EM classifier
and retrain the rough classifier. The whole algorithm con-
sists of 10 steps.

Step 1. Prepare some training samples Xl that have
been manually labeled with general and detailed keywords,
and involve at least two samples for each fine class. Prepare
a larger amount of segmented regions Xu ={xi}n

i=1, which
have been roughly labeled by DAGSVM but not finely la-
beled. Prepare Xd for retraining DAGSVM classifier, and
initialize it as Xd = ∅.

Step 2. Assuming that K fine semantic classes have
been defined under the rough category Cr, we use Xl ∈ Cr

to train the K-components GMM of Cr and obtain its pa-
rameters Θ from (6) ∼ (8).

Step 3. The trained GMM is used to classify the Xu

that has been roughly labeled as Cr. Their posterior prob-
abilities are P (yk

i =1|xi; Θ) for all k∈ [1, K] by (5).
Step 4. If a region xm ∈ Xu has

maxk=1,··· ,KP (yk
i = 1|xm; Θ) < Tf , the region is regarded

as unsure and requires manual annotation.
Step 5. If the rough annotation that is manually la-

beled to xm is different from Cr, set Xd = Xd ∪ xm,
Xu = Xu − xm, and Xl = Xl ∪ xm.

Step 6. If the manual rough label of xm is Cr, but
its fine label is different from currently existed detailed
keywords, xm is regarded as the representative sample of
new fine-class. Set K = K + 1, Xl = Xl ∪ xm, and
Xu = Xu − xm.

Step 7. If a region xm ∈ Xu has
maxk=1,··· ,KP (yk

i = 1|xm; Θ) ≥ Tf , then xm ∈ fine-class j,

where P (yj
i = 1|xm; Θ) = maxk=1,··· ,KP (yk

i = 1|xm; Θ).
Step 8. Return to Step 2 until all regions in Xu ∈ Cr

being finely classified.
Step 9. When all Xu are finely classified, we check the

set Xd. If Xd 6= ∅, Xd along with Xl are used to retrain
the DAGSVM rough classifier.

Step 10. Return to Step 2 to retrain the GMM model
of each rough category with renewed set Xl and K.

In the above-mentioned course, Step 1 is for initializa-
tion; Steps 2 ∼ 8 train the fine classifier and complete fine
annotation; Step 9 retrains the rough classifier; and Step 10
retrains the fine classifier. Tf is the threshold deciding the
sample numbers of manual annotation. If Tf is too small,
not enough informative images could be selected for manual
annotation. If Tf is too large, too many images would be
regarded as informative and too much manual annotation
is required. The Tf for different rough categories may be
different and commonly complex rough classes need larger

Tf so as to obtain a preferable accuracy with acceptable
labor cost.

3 Annotation correction by contextual
relationship

Due to the segmentation error, unusual lighting condi-
tions, and similar appearance of different scenery objects,
recognizing an isolated region is error-prone. Semantic con-
text, although received comparatively little attention, can
play an important role in reducing ambiguity and error[18].
Here, we investigate the coexistence relationship and rela-
tive location relationship, and use them to judge or even re-
vise the improper annotation. Coexistence judges whether
two objects could coexist in an image. For example, sea is
more often associated with sandbeach but less often with
desert. If an image was labeled as “sea, sky, desert”, we
would like to revise it as “sea, sky, sandbeach”. Relative
location judges the annotation of a region according to its
relative location to its neighbors. For example, sea and
blue sky sometimes have similar visual features. However,
if the upper part of an image is labeled with sea and the
lower part is labeled as sky, in common sense, we regard
such annotation as illogical.

The 800 images that have been used in questionnaire
in Subsection 1.1 are adopted here to extract the ba-
sic probability information of coexistence and relative lo-
cation relationship. For any pair of rough categories
RCi and RCj , we calculate their coexistence probability
p(RCi, RCj |RCj). If the coexistence probability of two
rough classes is not zero, we calculate their relative loca-
tion probability p(Li,j |RCi, RCj), which reflects the prob-
ability of two rough categories in relative location Li,j .
In order to simplify the probability calculation, we only
set two kinds of relative locations: upper and lower. If
Li,j is upper, p(Li,j |RCi, RCj) represents the probabil-
ity that RCi is higher than RCj . Then, we list all sub-
classes of the pair of coexistent rough classes and calculate
the coexistence probability between any pair of subclasses
p(FCi, FCj |FCj). If the coexistence probability of two fine
classes is not zero, we calculate their relative location prob-
ability p(Li,j |FCi, FCj). The process of computing the
contextual probability information is shown in Fig. 2.

Fig. 2 The process of computing the probability information

Coexistence probabilities of five rough categories—
stone, water, grass, sky, mountain, and five fine classes —
desert, waterfall, green grass, blue sky, snow mountain are
listed in Tables 2 and 3, respectively.
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Table 2 Coexistence probabilities of five rough categories

p(RCi, RCj |RCj) RCj=1 RCj=2 RCj=3 RCj=4 RCj=5

RCi=1 − 0.232 0.133 0.113 0.063

RCi=2 0.509 − 0.217 0.306 0.303

RCi=3 0.4 0.353 − 0.452 0.493

RCi=4 0.527 0.554 0.584 − 0.951

RCi=5 0.136 0.201 0.248 0.308 −
Notes. RC1 stands for stone, RC2 stands for water, RC3

stands for grass, RC4 stands for sky, and RC5 stands for moun-
tain.

Table 3 Coexistence probabilities of five fine classes

p(FCi, FCj |FCj) FCj=1 FCj=2 FCj=3 FCj=4 FCj=5

FCi=1 − 0 0.014 0.076 0

FCi=2 0 − 0.053 0.007 0

FCi=3 0.154 0.533 − 0.348 0.25

FCi=4 0.731 0.067 0.372 − 0.659

FCi=5 0 0 0.029 0.113 −
Notes. FC1 stands for desert, FC2 stands for waterfall, FC3

stands for green grass, FC4 stands for blue sky, and FC5 stands
for snow mountain.

According to the statistical data, if the coexistence or
relative location probability of two keywords is “0”, and
they are labeled in an image or with the relative location,
we will discard or substitute one of the two labels.

4 Experiments and results

A prototype system has been developed using Matlab
platform on a Pentium 2.0GHz PC running Windows XP
operating system. The 800 images that have been used in
Subsection 1.1 and Section 3, as well as another 500 scenery
images selected from the Corel stock photo library consti-
tute our image database, which involve various themes and
contents, such as field, waterfall, sunset, flowers, and desert.
We manually cropped 390 single-object regions from 300
images and labeled them with general and detailed key-
words (as shown in Table 4). Since rough classes “vehicle”
and “animal” as well as their subclasses are mainly de-
pendent on shape feature for classification and recognition,
we disregard the two classes in this study and only make
training samples for the rest 10 rough classes, in which
each subclass has at least 2 samples. To obtain exact vi-
sual description, those regions are required to be cropped
as large as possible. The visual features of these samples
are then used to pre-train the DAGSVM rough classifier
and to find the best parameters of C and γ by the 3-
fold cross-validation and grid-search algorithm. Here, C
and γ are selected from exponentially growing sequences
C ∈ [2−3, 2−1, · · · , 211] and γ ∈ [2−11, 2−9, · · · , 23], re-
spectively. The experimental results show that the pair
[27, 2−11] gives the maximum 3-fold cross-validation accu-
racy (as shown in Table 5). Therefore, it is selected as the
optimal parameters and used in our system. The 390 re-
gional images also form set Xl for pretraining the EM fine
classifier.

Then, the rest 1 000 images are divided into two parts
evenly. One part is used for validation, and the other part is
used for testing. In the validation phase, 500 images are di-
vided into five sets randomly. Each set includes 100 images.
We adopt the 5-fold cross-validation to estimate annota-
tion accuracy of the hierarchical annotation scheme. First,
all images are segmented by spatially constrained mixture
model. Although different images may have different num-
bers of segments, we set their initial region number as c = 5

uniformly. After segmentation, if a region is smaller than
a given threshold Tmin, it will be disregarded in respect
that visual features of a small region cannot represent the
scenery object well and easily engender recognition error.
Here, we set Tmin as 2.5% of the image area empirically.
Second, for segmented regions of 100 training images of
a training-test partition, we calculate their rough visual
features and use the pre-trained DAGSVM to find their
rough labels. After logical correction, the regions labeled
with the same general keyword Cr form the set Xu ∈ Cr.
Following Steps 3 ∼ 8 of the semi-supervised active EM
algorithm, we obtain the fine labels of these regions. Fol-
lowing Steps 9 and 10, the DAGSVM rough classifier and
the EM fine classifier are retrained. Third, we apply the
retrained DAGSVM and EM classifiers to annotate the 400
test images. After logical correction, we compute their
rough and fine annotation accuracies. In the same way, the
annotation accuracies of the other 4 training-test partitions
are calculated. It is worth noting that in this experiment
the retrained DAGSVM rough classifier in the preceding
training-test trial is regarded as the pretrained DAGSVM
classifier of the next trial, meanwhile the renewed Xl and
K in the preceding training-test trial are regarded as the
initial Xl and K of the next trial. The rough annotation
accuracies of the 5 trials and their average accuracy are
80.62 %, 81.36%, 81.97%, 82.38%, 82.74%, and 81.814%,
respectively. The fine annotation accuracies of the 5 trials
and their average accuracy are 65.28%, 66.87%, 67.52%,
68.24 %, 68.61%, and 67.304%, respectively. In the testing
phase, the renewed DAGSVM and EM classifiers updated
in the last training-test trial are applied to annotate 500
test images. Three test images, their segmentation results,
step by step automatic annotation, and manual labels are
listed in Table 6.

Table 4 Cropped samples of rough classes
ground, sky, and water

Ground

Desert Dry land Soil

Sky

Dim sky Sunset Blue sky

Water

Waterfall Lake Sea

Table 5 The results of grid-search using 3-fold cross-validation

γC
2−11 2−9 2−7 2−5 2−3 2−1 21 23

2−3 68.57 68.57 68.57 68.57 68.57 56.33 39.2 26.2

2−1 69.23 70.2 71.93 73.47 66.97 58.67 39.2 27.83

21 70.57 72.63 73.87 68.13 66.2 52.97 40.73 27.83

23 75.03 76.37 74.6 67.5 64.67 52.97 40.73 27.83

25 78.5 77.03 71.6 67.13 65.53 52.97 40.73 27.83

27 80.17 72.43 67.03 66.87 65.53 52.97 40.73 27.83

29 76.93 68.27 66.97 66.4 65.53 52.97 40.73 27.83

211 67.47 66.53 66.2 65.63 65.63 52.97 40.73 27.83
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From Table 6, we find that although automatic annota-
tion is not as detailed as manual annotation, it is usually
exact, especially the rough annotation. However, the bene-
ficial effect of logical correction is not prominent. It corrects
some errors in annotation results, but sometimes it deletes
the correct annotation. To our knowledge, one possible rea-
son is that the context relationship defined in this paper is
incomplete and greatly dependent on the training samples.
The more the training images are, the more representative
the context relationship is.

We also developed the retrieval function upon the anno-
tation system, which brings forward images with at least
one region having been labeled with the query keyword.
Retrieval precisions Pr = Nc/Nr and recalls Re = Nc/Ne

of 6 pairs of general and detailed keywords (sky, blue sky,
tree, bush, grass, withered grass, ground, desert, water,
waterfall, mountain, snow mountain) are calculated, where
Nc is the number of correctly retrieved images, Nr is the
number of images that have been labeled with the keyword
by the annotation system, Ne is the number of images that
contain the keyword in their actual annotation (manual an-
notation). The recall-precision (R-P) curves of these gen-
eral and detailed keywords are shown in Figs. 3 and 4.

Fig. 3 shows that the retrieval precisions of general key-
words sky, tree, and grass are much higher than that of
mountain under the same recall rate. We also did retrieval
tests for road, stone, flower, and building. However, their
R-P curves are similar to or even lower than that of moun-
tain. We boil down the reasons into two sides. Firstly,
shape feature that plays an important role in describing
objects such as buildings and flowers, has not been intro-
duced in this study considering that exact shape descrip-
tion always has low generality and is fragile to uncomplete
profile, while rough shape description usually has low dif-
ferentiating ability. Second, some subclasses of different
rough classes have similar appearance, which increases the
difficulty of rough annotation. For example, “flagstone” in
stone class looks like “flagging” in road class; “stairway” in
road class looks similar to “stairs” in building class; the

mountain covered with trees is easily mistaken as trees
only, while the barren mountain is easily misunderstood
as ground. Besides, because of the annotation errors, the
recall rates of R-P curves of all general keywords cannot
reach to 1.0. Here, we set the maximum recall of the 6
general keywords to 0.9 equally.

Fig. 3 The recall-precision curves of 6 general keywords

Fig. 4 The recall-precision curves of 6 detailed keywords

As for the detailed keywords retrieval, since under the
hierarchical annotation structure the available keywords of
fine annotation are restricted to the rough annotation re-
sults, the maximum recall rates of many detailed keywords
are less than that of their corresponding general keywords.
Despite this, the R-P curves of some detailed keywords are
higher than those of their corresponding general keywords,
which indicates that our system is valuable in real applica-
tions as people usually hope to obtain detailed and exact
image description.

Finally, we give some comments to the time cost and
feasibility of the annotation scheme. It is obvious that the
training phase of the scheme is quite onerous and time-
consuming. It includes getting parameters of DAGSVM
classifier with 390 manually cropped single-object regions,
training EM and DAGSVM classifiers with 500 images by
5-fold cross validation, and calculating coexistence proba-
bility and relative location probability manually by using
800 images. However, its test process is comparatively fast.
Usually it takes us 18 s to segment a test image, 1.7 s to
roughly annotate it, and 1.5 s more to get its fine anno-
tation. Furthermore, the annotation time can be greatly
reduced if the algorithm is implemented in C language.
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5 Conclusions and discussions

Automatic image annotation has been investigated for
many years. In order to clearly annotate scenery images, in
this paper, a hierarchical annotation scheme was presented
that consists of five steps: image segmentation, rough an-
notation, auto-correction of rough labels, fine annotation,
and fine-labels correction. The scheme not only accords
with human′s rough-to-fine hierarchical understanding pro-
cess, but also effectively decreases annotation errors due to
lingual diversities and cognition differences as well as var-
ious image scales and photographing angles. Experiments
have been performed on 1 000 scenery images with some
encouraging results being achieved.

In the future, we will investigate more visual features,
especially shape description, and combine them with cur-
rent features to describe regions and improve annotation
accuracy. In addition, although we have paid attention to
keywords selection and constructed a hierarchical relation-
ship between general and detailed keywords, we found that
the same general keyword may have different sets of sub-
class modes. For example, the rough category “flower” may
include rose, tulip, chrysanthemum by species definition; or
red flower, white flower, varicolored flower by color feature;
or big flower, small flower, clustering flower based on shape
feature. To enlarge the application range of the annota-
tion scheme, we intend to apply the ontology technique to
organize and describe hierarchical keywords.
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