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Abstract This paper investigates the synchronization prob-
lem of clock oscillators in nonlinear dynamical network with ar-
bitrary time-delays. First, a dynamic synchronization algorithm
based on consensus control strategy, named fast averaging syn-
chronization algorithm (FASA), is presented to find a solution
to the synchronization problem. This algorithm can compen-
sate the clock skew and offset differences between clock nodes,
achieving the synchronization of clock nodes in a shorter time
as compared to previous synchronization methods. Second, be-
cause of the dynamical performance of FASA, it is characterized
from the perspective of compartmental dynamical system with
arbitrary time-delays. In this case, the algorithm guarantees
the states of all clock nodes in dynamical network converge to
Lyapunov stable equilibria. Finally, numerical simulations and
experimental results demonstrate the correctness and efficiency
of the FASA, which means that the clock nodes can reach global
consensus, and the synchronization error can reach nanosecond
order of magnitude.
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The clock synchronization in nonlinear dynamical net-
work is extremely useful to coordinate activities between
cooperating processors. The accuracy and convergence rate
are two important factors of clock synchronization. Syn-
chronization of clock nodes in dynamical network raises
several difficulties[1−5]. First, in the real world, the environ-
mental pressure, ambient temperature, varying frequencies
and humidity fluctuation over time make the synchroniza-
tion of clock oscillators more challenging. Second, some
clock oscillator nodes in nonlinear dynamical network can-
not communicate directly with each other, and they have
to achieve the communication by multi-hop. In this case, it
is impossible to choose an internal reference node to which
the other nodes can be synchronized. Third, due to the un-
predictable time-delays between clock oscillator nodes, the
delivery time of messages is subject to random variation.
In fact, the magnitude of delays can be larger than the re-
quired precision of synchronization. Finally, several nodes
may be able to communicate with only a small subset of all
clock nodes. Also, the communication links between clock
nodes may fail over time.

The contribution of this paper is to develop a fast global
dynamic algorithm that solves the synchronization problem
of clock oscillator nodes connected through the nonlinear
dynamical network with random time-delays. The rest of
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the paper is organized as follows. In Section 1, we present a
survey on available literature related to the subject of syn-
chronization of clock oscillator nodes in dynamical network.
The mathematical model of clock oscillators and synchro-
nization problem of clock oscillators in dynamical network,
as well as some preliminaries, are given in Section 2. The
proposed fast averaging synchronization algorithm (FASA)
based on consensus control strategy and its convergence
analysis are presented in Section 3. Simulation results are
demonstrated and analyzed in Section 4. Section 5 con-
cludes the paper.

1 Related work
In one aspect, the synchronization of clock oscillators in

dynamical network shares much similarity with the “con-
sensus” problem put forward in the research field of multi-
agents[6−7]. In networks of multi-agents, “consensus” prob-
lem means to reach an agreement regarding a certain quan-
tity of interest that depends on the state of all agents. A
consensus algorithm is an interaction rule that specifies the
information exchange between an agent and all of its neigh-
bors in the network. Clock oscillators and clock time can be
viewed as agents and common quantity of interest, respec-
tively. Therefore, it is reasonable and natural to develop
consensus algorithm for solving the synchronization prob-
lem of clock oscillators in dynamical network with time-
delays. The synchronization of clock oscillators in dynami-
cal network under variable time-delays was recently studied
in [8]. Also, there have been different strategies proposed
to solve the clock synchronization problem in dynamical
network. One common approach is the flooding time syn-
chronization protocol (FTSP)[9], which models the network
as a rooted tree. Another approach is called the reference
broadcast synchronization (RBS) scheme[10]. In this pro-
tocol, a reference clock node is selected to synchronize the
other nodes in a cluster. Reference clock nodes in differ-
ent clusters are synchronized together and act as gateways
by converting local clock nodes in one cluster into those in
another cluster. However, RBS scheme suffers from large
overhead which is necessary to divide the dynamical net-
work into clusters and to elect the reference clock nodes,
and it is fragile to clock node failures. Furthermore, a fully
distributed communication topology in which there are no
special nodes such as roots or gateways was employed to
overcome the disadvantage of FTSP and RBS. One example
of a distributed synchronization strategy is the reachback
firefly algorithm (RFA), inspired by firefly synchronization

mechanism[11]. But this approach could not compensate
clock skew. Then, Solis et al.[12] proposed the distributer
time synchronization protocol (DTSP), which is fully dis-
tributed and can compensate the skews and offsets of clock
oscillators. DTSP is formulated as a distributed gradient
descent optimization problem. Compared with DSTP, the
FASA proposed in this paper is also fully distributed and
includes the offset and skew compensation of clock oscilla-
tors.

From another perspective, the clock oscillators in
dynamical network are always highly interconnected and
interdependent. Such system is commonly referred to
as nonnegative dynamical system in [13]. A subclass of
nonnegative dynamical systems are called compartmental
systems[14−15]. Each compartmental system is assumed to
be kinetically homogeneous, that is, any material entering
the compartment is instantaneously mixed with that
of the compartment. To describe the evolution of the
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aforementioned dynamical systems accurately, it is neces-
sary to include some information of the past system states
in a mathematical model. The system state at a given time
involves a piece of trajectories which are defined in contin-
uous functions. And these functions can be viewed as an
interval in the nonnegative or that of the state space. Thus,
it is natural to put such theory to time-delayed dynamical
systems[16]. Nonnegative and compartmental models are
also widely used in the agreement problems by using di-
rected graphs[17−19]. We believe that the convergence anal-
ysis that utilizes the properties of nonnegative and com-
partmental models combined with directed graph will shed
light on the performance of synchronization algorithm in
the dynamical network of clock oscillators.

2 Problem formulation and preliminaries

2.1 Clock model and clock synchronization

Consider the nonlinear dynamical network with random
time-delays, which is depicted in Fig. 1.

Fig. 1 The structure of clock oscillator nodes in nonlinear
dynamical network with time-delays

Every clock node i has its own local state whose dynam-
ics is given by[20−21]

ξi(t) = αi + βi · t + γi · t2 + ∆t (1)

where ξi(t) denotes the local clock oscillator reading; αi is
the local clock offset; βi is the local clock skew which deter-
mines the clock oscillator speed; γi is the clock drift. Fur-
thermore, ∆t represents the clock jitter, which is modeled
as zero mean white Gaussian noise with standard deviation
σn, n is the number of clock nodes, i = 1, · · · , n.

In the following sections, to find the solutions to main
clock parameters by dynamic algorithm, for convenience
we will restrict ourselves to a simplified model where the
quadratic term in (1), often referred to as clock aging[22],
is neglected. The clock jitter ∆t also has little influence on
the clock reading. Therefore, we denote the clock value at
time t:

ξi(t) = αi + βi · t (2)

Usually, the absolute reference time t is not available in
each node, so it is impossible to compute the parameters
αi and βi. However, we can obtain these indirectly by mea-
suring the local clock of node i with respect to node j . If
we solve (2) for t and put it into the equation for oscillator
node j, we can get:

ξj = αij + βij · ξi (3)

As a matter of fact, the “virtual” reference clock node
to which we want to synchronize all nodes is denoted by

ξv(t) = αv + βv · t (4)

Remark 1. The selected “virtual” reference node is fic-
titious, and the exact values of (αv, βv) are not important.
What really concerns here is that all clock nodes converge
to one common “virtual” reference node. Also, the pa-
rameters (αv, βv) depend on the initial condition and the
dynamical network topology, which will be mentioned in
Section 3.

Every local clock node keeps an estimate of the virtual
time from (4) using a linear function described as follows:

ξ̂i = ôi + ŝi · ξi (5)

As depicted in Fig. 1, we want to find (ŝi, ôi) for every
oscillator node in dynamical system such that

lim
t→∞

ξ̂i(t) = ξv(t), i = 1, · · · , n (6)

That is, all clock nodes will have a common global ref-
erence and will get synchronized soon. Fig. 2 shows the
dynamic process of compensation for synchronization er-
rors of each clock node in detail. FASA estimates how fast
the local clock node to be synchronized is running with re-
spect to the reference clock node and then it uses the value
to compensate for the synchronizing clock, which is shown
in Fig. 2. By using the clock skew and offset compensa-
tions, it is possible to keep each node synchronized for long
periods of time.

Fig. 2 The dynamic synchronization process of
each clock node by using FASA

According to Fig. 2, we can convert linear equation (1)
into a first-order system in the same segmental interval:

ξ̇i(t) = f(ξi(t)) (7)

where f ∈ R is Lipschitz continuous and smooth and
f(0) = 0, tk ≤ t < tk+1, k = 0, · · · , n− 1, i = 1, · · · , n.

For each clock oscillator node, we substitute (2) into (5),
and the previous expression can be written differently as:

ξ̂i(t) = ŝiβi · t + ŝiαi + ôi (8)

lim
t→∞

ŝi(t) =
βv

βi
(9)

lim
t→∞

ôi(t) = αv − ŝi(t) · αi = αv − βv

βi
· αi, i = 1, · · · , n

(10)
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Remark 2. Solving the synchronization problem of
clock nodes is a dynamic process whose network trajec-
tories are characterized by the dynamical system (7). The
goal is to establish a dynamic algorithm that enables a
group of clock nodes in a network to agree upon certain
quantities of interest with directed information flow which
maybe delayed.

2.2 Preliminaries

As mentioned in Section 1, directed graphs are used to
represent the dynamical network, and Section 1 have pre-
sented solutions to the consensus problem for the network
with graph topologies and unknown random time-delays.
For convenience, notations in this paper are summarized in
Table 1.

Table 1 Notations

Symbols Meaning

Rn n-dimensional Euclidean space

R̄n
+ Nonnegative orthants of Rn

Rn
+ Positive orthants of Rn

xxx ≥≥ 0,xxx ∈ Rn Every component of xxx is nonnegative

xxx À 0,xxx ∈ Rn Every component of xxx is positive

A ≥≥ 0, A ∈ Rn×m Nonnegative matrix

A À 0, A ∈ Rn×m Positive matrix

A ≥ 0, A ∈ Rn×n Nonnegative definite matrix

(·)T Matrix transpose

(·)D Drazin generalized inverse

‖ · ‖ Euclidean vector norm

G = (V, E,A) Weighted directed graph

V = {1, · · · , n} Set of vertices

E ⊆ V × V Direction of information flow

A(i,j) = aij > 0 Weighted adjacency matrix

aij Weight of each edge

Following definitions are necessary for the convergence
analysis of clock synchronization algorithm.

Definition 1. The dynamical network G with time-
delays takes the following form:

ξ̇ξξ(t) = fff(ξξξ(t)) + fffd(ξξξ(t− τ1), · · · , ξξξ(t− τnd))

ξξξ(θ) = φφφ(θ), −τ∗ ≤ θ ≤ 0, t ≥ 0 (11)

where fffd : Rn×· · ·×Rn → Rn is locally Lipschitz continu-
ous, fffd(0, · · · , 0) = 0, τ∗ = maxi∈{1,··· ,nd} τi, i = 1, · · · , nd

and the vector ξξξ(t) = [ξ1(t), · · · , ξn(t)]T is the state of net-
worked clock nodes; φφφ(·) ∈ C = C([−τ∗, 0],Rn) is a con-
tinuous vector-valued function and satisfies the initial state
of (11).

Definition 2. The clock synchronization problem is
a dynamic process involving the trajectories of dynamical
network described by the dynamical system:

ξ̇ξξ(t) = uuu(t), ξξξ(0) = ξξξ0, t ≥ 0 (12)

where uuu(t) = [uuu1(t),uuu2(t) · · · ,uuun(t)]T is a clock synchro-
nization algorithm. uuui(t) represents each input component
of uuu(t), i = 1, · · · , n. And uuui(t) depends on the states of
clock nodes i and its neighbors.

In a sense, the synchronization problem deals with the
design of a clock synchronization algorithm uuu(t) such that

ξ̂i(t) satisfies (6). Due to the presence of directional con-
straints on information flow and system time-delays, uuui(t)
is constrained to the feedback form uuui(t) = fff i(ξi(t), ξj1(t−
τij1), · · · , ξjmi(t − τijmi)), where τijk > 0, jk ∈ Ni = {j ∈

{1, · · · , n} : (j, i) ∈ E} are unknown communication time-
delays between node i and node jk. It is usually defined
that τij = 0 if (j, i) /∈ E .

Definition 3. The nonlinear time-delay dy-
namical system (11) is a compartmental dynamical
system if FFF (·) is compartmental with FFF (ξξξ(t)) =

fff(ξξξ(t)) + fffd(ξξξ

n︷ ︸︸ ︷
(t), ξξξ(t), · · · , ξξξ(t)), where fff(·) and fffd(·) =

[fffd1, fffd2 · · · , fffdn]T are given by

fff i(ξξξ(t)) = −
n∑

j=1,j 6=i

aji(ξξξ(t))

fffdi(ξξξ(t− τ1), · · · , ξξξ(t− τnd)) =

n∑

j=1,j 6=i

aji(ξξξ(t− τij))

(13)

aij(ξξξ(·)) ≥ 0, ξξξ(·) ∈ C+, i 6= j, i, j ∈ {1, · · · , n} denotes
the instantaneous rate of material flow from the j-th to the
i-th compartment; and τij , i 6= j, i, j ∈ {1, · · · , n} denotes
the transfer time of material flow from the j-th to the i-th
compartment.

From above, the form of nonlinear dynamical network G
with time-delays can be written as:

uuu(t) = ξ̇ξξ(t) = f(ξξξ(t)) +

nd∑
i=1

fdi(ξξξ(t− τi))

ξξξ(θ) = φφφ(θ), −τ∗ ≤ θ ≤ 0, t ≥ 0 (14)

where fff : R̄n
+ → R̄n

+ is given by fff(ξξξ(t)) =

[fff1(ξ1(t)), fff2(ξ2(t)), · · · , fffn(ξn(t))]T, fff(0) = 0, fffdi
:

R̄n
+ → R̄n

+, i = 1, · · · , nd, and fffd(0) = 0. Furthermore,
it is assumed that fffdi

(·), i = 1, · · · , n are strictly decreas-

ing functions and fffdi
(0) = 0.

3 Clock synchronization algorithm and its
convergence analysis

3.1 Fast averaging synchronization algorithm

In this section, a clock synchronization algorithm, which
is called FASA, is proposed and described. The main idea
is to use a distributed consensus algorithm based on lo-
cal information exchange. More explicitly, FASA forces all
nodes to converge to a common “virtual” node as defined
in (4) and implements the skew estimation, skew compen-
sation, and offset compensation of clock oscillators in the
dynamical network.

3.1.1 Relative clock skew estimation

FASA is concerned with estimating the relative clock
skew βij of node i with respect to its neighbor j. It is
assumed that the readings of the two local clock nodes are
instantaneous and clock node j stores the current local time
ξj(t1) into a communication packet, and then, node i re-
ceives this packet for a while and records its own local time
ξi(t1). At the same time, each node i records the pair
(ξi(t1), ξj(t1)). When a new information packet from node
i reaches node j, the same operation is applied to get the
new pair (ξi(t2), ξj(t2)).

Remark 3. By using media access control (MAC)-layer
time-stamping in our experimental facilities of four oscil-
lators which are shown in Section 4, it is easy to get the
current local clock time ξi(t1), packet transmission, and
reading of the local clock time ξj(t2) of node i. In the same
way, we can get ξi(t2) and ξj(t1) of node j.
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The estimation of βij is written as follows:

µijnew = λµµij + (1− λµ)
ξj(t2)− ξj(t1)

ξi(t2)− ξi(t1)
(15)

where µijnew indicates the new value of variable µij , and
λµ ∈ (0, 1) is a tuning parameter. If there is no measure-
ment error and the skew is a constant, then µij converges
to βij as stated in the following theorem.

Theorem 1. Consider the update equation (15), where
λµ ∈ (0, 1) and each ξi evolves according to (7). Then, we
have

lim
k→∞

µij(tk) = βij (16)

where tk implies the instants of updating, µij(0) = µ(0).

Proof. Considering the fact that βij =
ξj(t2)−ξj(t1)

ξi(t2)−ξi(t1)
re-

gardless of the two instants t1 and t2, it is easy to know that
µij(tk) = λk

µµ(0)+
∑k−1

l=1 (1−λµ)lβij = λk
µµ(0)+βij(1−λk

µ).
Since λµ ∈ (0, 1), we take the limit for k →∞. Therefore,
Theorem 1 is completed. ¤

Remark 4. The quantity βij is time-varying, and af-
fected by noise. So, it is not necessary to perform the up-
date at a fixed frequency.

3.1.2 Clock skew compensation

Usually in practice, every clock node bootstraps each
other till all of them converge to a global value. In detail,
every clock node stores its own “virtual” clock skew esti-
mation ŝi, which is defined in (5). When the clock node i
receives an information packet from node j, it updates ŝi

as follows:
ŝinew = λω ŝi + (1− λω)µij ŝj (17)

where ŝj is the “virtual” clock skew estimation of the neigh-
bor node j and ŝi(0) = 1. From (9), we can obtain an
equivalent equation such that limt→∞ ŝiβi = βv. To do so,
we define the useful variant Ξi = ŝiβi. It is known that
after an initial transient period of (16), we have µij = βij .
Also, if we multiply all the terms in (17) by βi, then it can
be presented as the following:

Ξinew = λωΞi + (1− λω)Ξj (18)

In the sequel, we use a summary of several results related
to the necessary and sufficient conditions[7, 23] to show the
proposed skew estimation and compensation mechanism.

Theorem 2. Consider the update equation (17) with
initial condition ŝi(0) = 1 and λµ ∈ (0, 1). Also assume
that µij = βij for all i, j and the communication graph of
dynamical systems G is strongly connected. Then,

lim
t→∞

ŝi(t)βi = βv, ∀i (19)

where βv is a constant parameter satisfying the condition
βv ∈ [mini(βi(0)), maxi(βi(0))].

Proof. Let ΞΞΞ(t) = (Ξ1(t), Ξ2(t), · · · , Ξn(t))T, Ξi(t) =
βiŝi(t), and eee = (1, 1, · · · , 1)T. Consider the time sequence
tp = pT , where T is the length of time window. Let ςp

h de-
notes the district ordered communication instants of all the
clock nodes within t ∈ [tp, tp+1). Let jςp,h transmits its ŝj

which is described in (17) at the time instant jςp,h and all
its neighbors receive the message which updates their ŝi ac-
cording to (17). Then, we define a time varying stochastic
matrix Aςp,h, which has some important properties given
in [18] such matrix depends on nodes that are exchanging
synchronization messages such that all are zeros except for
[Aςp,h]i,jςp,h = 1−λω and [Aςp,h]i,i = λω, where i is a neigh-

bor of jςp,h. According to this terminology, it can be de-
scribed as ΞΞΞ(tp+1) = Aςp,hpAςp,hp−1 · · ·Aςp,2Aςp,1ΞΞΞ(tp) =

ApΞΞΞ(tp). Because each clock node communicates at least
once in the p-th time window, where t ∈ [tp, tp+1), we know
from [23] that Ap is strongly connected and also rooted at
some node ω independent of p. Now, define the new time se-
quence t̄q = qnT , then we get the following form: ΞΞΞ(t̄q+1) =
Aqn+n−1 · · ·Aqn+1AqnΞΞΞ(t̄) = ĀqΞΞΞ(t̄). According to the
proposition in [23], the graph corresponding to the ma-
trices Āq is strongly rooted at the same node ω, which

is a sufficient condition[7] to ensure that: limt→∞ΞΞΞ(t) =
limq→∞ΞΞΞ(tq) =

∏∞
m=1 ĀmΞΞΞ(0) = ΞΞΞsse, where ΞΞΞss ∈ R.

Because all Ām, m = 1, 2, · · · are stochastic, we can get
max(ĀmΞΞΞ) ≤ max(ΞΞΞ) and min(ĀmΞΞΞ) ≥ min(ΞΞΞ), from
which it follows that ΞΞΞss ∈ [min(ΞΞΞ(0)), max(ΞΞΞ(0))]. Having
Ξi(t) = βiŝi(t) and Ξi(0) = βiŝi(0), we prove the Theorem
2. ¤

Remark 5. It is known that the algorithm does not
depend on exact time instants at which the nodes trans-
mit as long as they transmit from time to time. The only
important condition is that the graph must be sufficiently
connected and strongly rooted, which implies that FASA is
robust to link failure and packet collision.

3.1.3 Clock offset compensation

According to the previous analysis, after the clock skew
compensation based on FASA is applied, all “virtual” clock
estimators have the same skews. So (8) can be written as:

ξ̂i(t) = βvt +
βv

βi
αi + ôi (20)

It is also necessary to compensate the possible clock offset
errors. By FASA, we update the “virtual” clock offset (5)
as follows:

ôinew = ôi+(1−λo)(ξ̂j−ξ̂i)= ôi+(1−λo)(ŝjξj +ôj−ŝiξi−ôi)
(21)

where ξj and ξi are computed at the same time instant. Ac-
cording to (10), we need to know whether the clock offset
update equation guarantees αv = limt→∞(ôi + βv/βi · αi)
for all clock nodes, where λo ∈ (0, 1). To simplify the prob-
lem, let Ωi = (ôi + βv/βi · αi); if we substitute (20) into
(21), we get the following equation:

Ωinew = λoΩi + (1− λo)Ωj (22)

It is observed that (22) has the same structure as (21).
Hence, under the same hypotheses of Theorem 2, all Ωi, i =
1, 2, · · · , n will converge to the same value.

Remark 6. From above, it is clear that FASA includes
three main steps, which are shown in (15), (18), and (22).
First, FASA estimates for each clock the relative skew with
respect to its neighbors, and then, each node updates its
value by averaging it relative to the estimate of its neigh-
bors. Finally, when all the clock nodes have the same skews,
we use FASA to update the clock offset. Following this
course, all the clock nodes in dynamical network will be
synchronized soon via FASA.

3.2 Convergence analysis

Because of the dynamic behavior of FASA, we adopt
compartmental system model which is defined in (14) to
characterize FASA. In this section, we will prove that such
dynamical system with time-delays accords with the re-
quirements of semistable. To begin with, one presents a
rigorous mathematical definition for the network synchro-
nization.

Definition 4. If there is a nonempty subset D ⊆ R
with ξ0(t) ∈ D, such that ξ(t) ∈ R for all t ≥ 0, and

lim
t→∞

‖ξi(t)− ξv(t)‖ = 0, 1 ≤ i ≤ n (23)
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then the dynamical network G is said to achieve network
synchronization and D × · · · × D is called the region of
synchrony for the dynamical network.

Note that for addressing the stability of the zero solution
to a time-delayed nonnegative system, the usual stability
definitions given in [16, 24−25] need to be slightly modi-
fied. In fact, the system needs to be defined with respect
to relatively open subsets of R̄n

+ containing the equilib-
rium solution ξi(t) = 0. According to a similar definition
in [13], standard Lyapunov stability definition for nonlin-
ear time-delayed system, which is mentioned in [16], can be
used directly with the required sufficient condition verified
on R̄n

+. The following definitions generalize the notions of
nonnegativity to vector fields.

Definition 5[13]. fff is essentially nonnegative if fff i(ξξξ) ≥
0 for all i = 1, · · · , n and ξξξ(t) ∈ R̄n

+ such that ξi(t) = 0,

where fff = [fff1, fff2, · · · , fffn]T : H → Rn, and H is an open
subset of Rn that contains R̄n

+.

Definition 6[26]. Consider the nonlinear time-delayed
dynamical system given by (11). If fff(·) is essentially non-
negative and fffd(·) is nonnegative so that every φφφ(·) ∈
C+,C+ = {ϕ(·) ∈ C : ϕ(θ) ≥ 0, θ ∈ [−τ∗, 0]}, then the
solution ξi(t) with t ≥ 0 and G are nonnegative.

Lemma 1[26]. If eeeT(fff(ξξξ) +
∑nd

i=1 fffdi
(ξξξ)) = 0, there ex-

ist nonnegative diagonal matrices Qi ∈ R̄n×n
+ , such that

Q =
∑nd

i=1 Qi > 0,

QD
i Qifffdi

(ξξξ) = fffdi
(ξξξ), ξξξ ∈ R̄n

+, i = 1, · · · , nd (24)

nd∑
i=1

fffT
di

(ξξξ)Qifffdi
(ξξξ) ≤ fffT(ξξξ)Qfff(ξξξ), ξξξ ∈ R̄n

+ (25)

Theorem 3. Consider the nonlinear dynamical net-
work system with time-delays given by (14). If fff(ξξξ) +∑nd

i=1 fffdi
(ξξξ) = 0, ξξξ ∈ R̄n

+, then for any M ≥ 0, M · eee is a

semistable equilibrium point. That is, limt→∞ΞΞΞ(t) = M∗ ·eee
and it has the same meaning as (26) and M∗ satisfies

nM∗+
nd∑
i=1

τ∗i eeeTfffdi
(M∗eee) = eeeTφφφ(0)+

nd∑
i=1

∫ 0

−τi

eeeTfffdi
(φφφ(θ))dθ

(26)
Proof. Consider the Lyapunov function V : C+ →

R is given by V (ζ(·)) = −∑n
i=1

∫ ζi(0)

0
Q(i,i)fff i(ϑ)dϑ +∑nd

i=1

∫ 0

−τi
fffT

di
(ζ(θ))Qifffdi

(ζ(θ))dθ. It follows that v(ζ) ≥∑n
i=1 Q(i,i)[−fff i(δiζi(0))]ζi(0) > 0 for all ζ(0) 6= 0, where

0 < δi < 1. Because fff i(·) is a strictly decreasing func-
tion, there exists a class κ function M(·) such that V (ζ) >
M(‖ζ(0)‖). The derivative of V (ξξξt) along the trajectories
of (14) is

V̇ (ξ(t)) = −fffT(ξξξ(t)Qξ̇ξξ(t)) +

nd∑
i=1

fffT
di

(ξξξ(t))Qifffdi
(ξξξ(t))−

nd∑
i=1

fffT
di

(ξξξ(t− τi))Qifffdi
(ξξξ(t− τi)) =

− fffT(ξξξ(t))Qfff(ξξξ(t))−
nd∑
i=1

fffT(ξξξ(t))Qfffdi
(ξξξ(t− τi))+

nd∑
i=1

fffT
di

(ξξξ(t))Qifffdi
(ξξξ(t))−

nd∑
i=1

fffT
di

(ξξξ(t− τi))Qifffdi
(ξξξ(t− τi)) ≤

− fffT(ξξξ(t))Qfff(ξξξ(t))−
nd∑
i=1

fffT(ξξξ(t))QQD
i Qifffdi

(ξξξ(t− τi))−
nd∑
i=1

fffT
di

(ξξξ(t− τi))QiQ
D
i Qifffdi

(ξξξ(t− τi))−
nd∑
i=1

[Qfff(ξξξ(t)) + Qifffdi
(ξξξ(t− τi))]

T×

QD
i [Qfff(ξξξ(t)) + Qifffdi

(ξξξ(t− τi))] ≤ 0, t ≥ 0

where the first inequality follows from (24) and (25) in
Lemma 1, and the last equality follows the fact that
fffT(ξξξ)Qfff(ξξξ) =

∑nd
i=1 fffT(ξξξ)QQD

i Qfff(ξ), ξ ∈ R̄n
+. Let P =

{ζ(·) ∈ C+ : Qfff(ζ(0)) + Qifffdi
(ζ(−τi)) = 0, i = 1, · · · , nd},

and since the positive orbit ρ+(φφφ(θ)) of (14) is bounded,
where ρ+(φφφ(θ)) ∈ C+. From the theorem in [16], we

know that limt→∞ ξξξ(t) = P̂. Then, we consider the fol-
lowing function W : C+ → R by W(ζ(·)) = eeeTφφφ(0) +∑nd

i=1

∫ 0

−τi
eeeTfdi(φφφ(θ))dθ. Thus, for all t ≥ 0, along the

trajectories of (14): W(ξ(t)) = W(φφφ(·)) = eeeTφφφ(0) +∑nd
i=1

∫ 0

−τi
eeeTfffdi

(φφφ(θ))dθ, which implies that ξξξ(t) → P̂∩T ,

where T = {ζ(·) ∈ C+ : W(ζ(·)) = W(φφφ(·))}. Hence,

P̂ ∩ T = {M∗ · eee}, and limt→∞ ξξξ(t) = M∗ · eee, where
M∗ satisfies (26). Finally, we consider the following

Lyapunov function V (ζ(·)) = −∑n
i=1

∫ ζi(0)

M
Q(i,i)(fff i(ϑ) −

fff i(M))dϑ+
∑nd

i=1

∫ 0

−τi
[fffdi

(ζ(θ))−fffdi
(Meee)]TQi[fffdi

(ζ(θ))−
fffdi

(Meee)]dθ, and noting that V (ζ) ≥ ∑nd
i=1 Q(i,i)[fff i(M) −

fff i(M + δi(ζi(0)−M))] · (ζi(0)−M) > 0, for all ζi(0) 6= M ,
where 0 < δi < 1. So M · eee, M ≥ 0 is a semistable equilib-
rium point of (14). ¤

Remark 7. Theorem 3 characterizes the operating pro-
cess of FASA and establishes the semistability for the spe-
cial case of nonlinear dynamical system of the form (14)
where fff(·) and fffd(·), i = 1, · · · , n satisfy (13), (24), and
(25).

4 Simulation and experimental results

The experimental facilities which are often called inverse
GPS (IGPS) base station network[27] are shown in Fig. 3.
Each clock node is equipped with an external oscillator run-
ning at 5MHz frequency which has a granularity of about
10 ns per tic. The communication time-delays between ev-
ery clock nodes are measured through electric wires.

And then, consider the vector figure in Fig. 4
which is corresponding to the real system in
Fig. 3. Here, we choose the values V = {1, 2, 3, 4},
E = {(1, 2), (2, 3), (3, 4), (4, 3), (4, 1)} with adjacency ma-
trix A such that a21 > 0, a34 > 0, a43 > 0, and a14 > 0,
and with the remaining elements being zeros.

In this case, the input to the network is given by: uuu1(t) =
fff1(ξ1(t), ξ4(t− τ14)), uuu2(t) = fff2(ξ2(t), ξ1(t− τ21)), uuu3(t) =
fff3(ξ3(t), ξ2(t − τ32), ξ4(t − τ34)), uuu4(t) = fff4(ξ4(t), ξ1(t −
τ43)). For i=1, 2, 3, 4, ξ̇i(t) is only dependent on the states
of the clock nodes that are accessible by clock node i and
with τij . After every one second, an external standard os-
cillator node simultaneously inquire the four synchronizing
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clock nodes of their estimated virtual time ξ̂i. From Section
1, we know that DTSP[12] is similar to our FASA.

Fig. 3 The experimental facilities of IGPS base
station network with time-delays

Fig. 4 Vector figure of nonlinear dynamical network with
time-delays of four clock oscillator nodes

(a) State trajectories of clock nodes based on FASA

(b) State trajectories of clock nodes based on DTSP

Fig. 5 State trajectories of clock oscillator nodes
based on two different algorithms

As a result, in the first simulation experiment using Mat-
lab, we test the FASA compared with the DTSP to cope
with dynamical network changes of four oscillator nodes.
We choose the initial input states of four oscillator nodes
as ξξξo = [−9,−5, 10, 16]T and aij = 1, τij = 1 s, if (i, j) ∈ E .
Two different methods are adopted when four clock oscil-
lator nodes are utilized. The synchronous value of clock
oscillator nodes is determined solely by the communica-
tion topologies and initial state. With the passage of time,
all oscillator nodes learn their neighbors information and
use the information to improve their performance. After
a period of time, all nodes are placed close to each other
and they rapidly become synchronized. Fig. 5 (a) shows the
state trajectories of four clock oscillator nodes using FASA,
and that of the method presented in [12] is illustrated in
Fig. 5 (b).

It is observed that the synchronization time in Fig. 5 (a)
is evidently shorter than that in Fig. 5 (b), which means
that the performance of FASA is superior to DTSP.

In the second simulation experiment, we test the per-
formance of the FASA to find the clock skews and offsets
with the communication of random time-delays. We use
λµ =0.25, λω =0.2, λo =0.3, and aij = 1 if (i, j) ∈ E in the
following simulations cases all the time. First, we plot the

error between each oscillator ξ̂i(t) from the node instanta-
neous mean, which is shown in Fig. 6.

Fig. 6 Errors between four clock oscillator nodes from
their instantaneous means (1 tic ≈ 10 ns)

It is obvious that due to measurement and quantization
errors, the estimator shows very small errors, which is com-
parable to the maximum resolution limited by quantization
error. Then, we consider cases in different communication
time-delays.

The results shown in Figs. 7 (a) and (b) and Figs. 8 (a)
and (b) are the clock oscillator skew and offset estima-
tions by FASA with the communication delay τij = 0.5 s.
Figs. 9 (a) and (b) present the results by FASA with the
communication delay τij = 2.5 s.

From the simulation results, it is evident that we can get
synchronization eventually from the mechanisms of clock
skew and offset compensation by FASA. The offset and
skew compensation mechanisms initially reduce the offsets
and skews, but the different clock oscillator offsets and
skews show the typical saw-tooth behavior as mentioned in
Section 3. Furthermore, it is observed that errors between
four clock oscillator nodes are close to the communication
delays in nonlinear dynamical network. The errors in case
of longer time delays are larger than those in smaller ones.

In the last experiment, we present the example where
it is shown that the reading value of each clock synchro-
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nizes to the reading value of “virtual” reference clock by
using FASA. We have preset the reading value at 50 Hz
frequency and 100 µs pulse width in the “virtual” reference
clock (Fig. 10), and then we install the FASA programme in

each oscillator facility. Each oscillator facility exchanges its
information with the others. After 1.7 s, we can find that
the reading of each oscillator facility is almost the same as
the preset reading which is shown in Fig. 11.

(a) The skew estimation ŝi of each clock oscillator (b) Errors between four clock skews

Fig. 7 Clock skew estimation and error by using FASA algorithm with τij = 0.5 s, i, j = 1, 2, 3, 4

(a) The offset estimation ôi of each clock oscillator (b) Errors between four clock offsets

Fig. 8 Clock oscillator offset estimation and errors by using FASA algorithm with τij = 0.5 s, i, j = 1, 2, 3, 4

(a) The skew estimation ŝi of each clock oscillator (b) The skew estimation ôi of each clock oscillator

Fig. 9 Clock oscillator skew and offset estimation by FASA algorithm with τij = 2.5 s, i, j = 1, 2, 3, 4

Fig. 10 The preset reading of “virtual” reference clock Fig. 11 The reading of each clock oscillator facility
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5 Conclusion
The synchronization problem of clock oscillator nodes

coupled with the nonlinear dynamical network with random
time-delays was investigated in this paper. A novel syn-
chronization algorithm, the fast averaging synchronization
algorithm (FASA), is proposed, which is fully distributed,
online, and global, including the clock skew estimation,
skew compensation, and offset compensation. The dynamic
algorithm is characterized by compartmental system with
time-delays and we find the Lyapunov asymptotic stable
equilibrium of the dynamical network in order to prove the
convergence of FASA. The comparison between FASA and
the powerful DTSP method also indicates the superiority of
our proposed method. FASA has been successfully applied
to the dynamical network with time-delays of IGPS base
stations. It is also observed that FASA works well when a
network has to be swiftly synchronized.
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