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Abstract The problem of absolute stability analysis for Lurie systems with time-varying delay and norm-bounded parameter
uncertainties is considered. By using a new Lyapunov-Krasovskii functional, which splits the whole delay interval into two subintervals
and defining a different energy function on each subinterval, some new delay-dependent robust absolute stability criteria are presented
in terms of strict linear matrix inequalities (LMIs). The obtained delay-dependent criteria are less conservative than previous ones,

which are illustrated by numerical examples.
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Lurie and his colleagues first studied absolute stability
for the plant of automatic pilot in 1940s. Since the pio-
neering work of Lurie, the problem of absolute stability of
a class of nonlinear systems with a fixed matrix in the linear
part of the system and one or multiple uncertain nonlinear-
ities satisfying the sector constraint has been extensively
investigated®2.  On the other hand, time delay is fre-
quently encountered in engineering systems, such as nuclear
reactors, chemical engineering systems, biological systems,
and population dynamic models. Over a long period, the
problem of absolute stability for time-delayed Lurie systems
has been the subject of considerable research efforts®—91.
It should be pointed out that most of the existing results
in the literature are delay-independent and the considered
systems are time-invariant. When the time-delay is small
or time-varying, these results are often quite conservative.
Recently, many efforts have been made to obtain less con-
servative delay-dependent criteria. In these criteria, an im-
portant index of measuring the conservativeness of the de-
rived criteria is the upper bound of delays guaranteeing
the stability of the considered system, which is termed as
maximum allowable delay bound (MADB). Thus, consider-
able research efforts have been paid to the delay-dependent
absolute stability of Lurie systems® =1 Model trans-
formation method combined with bounding technique for
cross terms, such as Park’s or Moon et al.’s inequality, are
used to derive the delay-dependent absolute stability con-
ditions in [12—13]. Without using bounding technique for
cross terms, some new absolute stability conditions by us-
ing Jensen’s inequality or extended Jensen’s inequality are
presented subsequently in [8,11]. Free-weighting matrices
method is applied to express the relationships between the
terms in the Leibniz-Newton formula in [14], which over-
comes the conservativeness of methods involving a fixed
model transformation. Nevertheless, all above works con-
cern with the absolute stability of Lurie systems only with
constant time delay. Lately, Han et al. proposed a method
to analyze the absolute stability of Lurie systems with time-
varying delay in [15]. Some new Lyapunov-Krasovskii ap-
proaches using delay-decomposition for analysis of time-
delay systems are also reported!!6— 18,

The main contribution of this article is that the delay in-
terval is divided into two subintervals. Based on this, a new
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Lyapunov-Krasovskii functional, which splits the whole de-
lay interval into two subintervals is used to obtain some
new absolute stability conditions. The problems of abso-
lute stability and robust absolute stability for Lurie systems
with time-varying delay are discussed by using this idea.
The delay-dependent criteria are derived in terms of strict
linear matrix inequalities (LMIs) that can be easily solved
using the interior point algorithm. It should be pointed out
that this delay decomposition method is especially useful
for the delay systems whose characteristic of each subinter-
val is not identical, such as delay caused by different plant
components. For example, liquid flows through different
pipelines with different delay characteristics of each subin-
terval. In these subintervals, the full information of delay
are used and hence conservativeness has comparatively re-
duced. Different from the reported approaches, sufficient
information of time-delay splitting into two definite subin-
tervals is considered such that much lesser conservative re-
sults are obtained. Numerical examples are presented to
show the effectiveness and the superiority of our approach.

1 Problem formulation

Consider the following Lurie control system >:

z(t) = (A+ AA)z(t) + (B+ AB)x(t — h(t))+
(D + AD)w(t) 1)
z(t) = Mxz(t) + Nx(t — h(t))

where z(t) € R", w(t) € R?, and z(t) € R? are the state
vector, input vector, and output vector of the system, re-
spectively. A, B, D, M, and N are real constant matrices
with appropriate dimensions. AA, AB, and AD denote
real-valued matrix functions representing parameter uncer-
tainties, which are assumed to have the form

[AA AB AD]|=GF(t)[E. E, Eq (2)

where G, E,, Ep, and E4 are known constant matrices with
appropriate dimensions, and F(t) € R"*’ is an unknown
matrix with Lebesgue-measurable elements and satisfies

FYWF(@t) <TI
The nonlinear feedback conjunction is described as
w(t) = —p(t, 2(t))
where (t,2(t)) : [0,00) X R? — RP is a class of memo-

ryless, time-varying, nonlinear vector-valued function that
is piecewise continuous in ¢, globally Lipschitz in z(t),
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©(t,0) = 0 and satisfies the following sector condition for
Vi >0,Vz(t) € RY,

[p(t,2) — K12] " [ip(t, 2) — K22] <0 (3)

0" (t,2)[p(t,z) — K2 <0 (4)

where K; and K32 are constant real matrices with appropri-
ate dimensions, and K2— K is a symmetric positive definite
matrix. It is well known that the nonlinear function (¢, z)
satisfying (3) is said to belong to a sector [Ki, Kz]. When
nonlinear function ¢(t,z) belongs to a sector [0, K], then
o(t, z) satisfies (4).

Time-varying delay h(t) is subject to

0<h(t)<h<oo, h(t) < hg <oo, Vt>0  (5)

The initial condition of system (1) specified on [—h, 0] is
defined as
I(S) = ¢(S)7 Vs € [_hv 0]

where ¢(s) is a first-order continuously differentiable
vector-valued function.

For Lurie system (1), the delay-dependent stability prob-
lem has been widely studied by using Lyapunov-Krasovskii
functional method!® 8 11-12,14-15] , whose objective is to
obtain an MADB guaranteeing the absolute stability of the
considered system. The MADB is an important perfor-
mance index to measure the conservativeness of criteria. A
great number of above results have been reported by choos-
ing the following Lyapunov-Krasovskii functional:

t

V(z:) =" (t)Px(t) + / 2" (5)Qx(s)ds +

t—h(t)

¢ (6)
h/tih(h —t+a)i (a)Zz(a)da

where P, QQ, and Z are symmetric positive-definite matri-
ces to be determined. However, these works cannot signif-
icantly reduce the conservativeness of the previous results.
To further enlarge the MADB, we introduce the following
new Lyapunov-Krasovskii functional:

Vi) = Vi) (M

/* /t;a @' () Zri(@)dadB +

h [~ Yoo ;
2/7h /t+6x (@) Z22(a)dadf

Va(z0) :/ttg xT(s)le(s)ds—F/tiﬁ 27 (5)Qa(s)ds

—h(t)

with P, Q1, Q2, Z1, and Z3 are symmetric positive-definite
matrices to be determined. Compared with the conven-
tional Lyapunov functional (6), it is observed that Va(z:)
and Vz(z¢) in (6) split the whole interval [—h, 0] into two
subintervals, that is, [—h, —h/2] and [—h/2,0] such that
each half subinterval has a different Lyapunov matrix. This
Lyapunov-Krasovskii functional will give some new delay-
dependent stability criteria for Lurie system (1). It should
be mentioned that if we choose Q1 = Q2 and Z7 = Zj,

that is, the same Lyapunov matrices are designed for two
subintervals. Lyapunov functional (7) reduces to (6) and
the results in this article reduce to the reported stability
criteria in literatures.

Before proceeding further, the following technical lem-
mas and definition are introduced, which will be used in
the proof of the main results.

Lemma 1'%, Given matrices I', 2, and  with Q sym-
metric,

Q+TF()Z4+Z"F (o)l <0

holds for any F(o) satisfying F'* (0)F(c) < I, if and only
if there exists a scalar € > 0 such that

Q+e'ITY + 272 <0

Lemma 2 (Jensen’s inequality>”)). For any sym-
metric positive-definite matrix Z, scalar 0 < h(t) < h, and
vector-valued function z(-) : [—h(t),0] — R"™ with first-
order continuous-derivative entries such that the following
integral inequality is well defined, then

0
fh/ Tt + ) Zi(t + a)da <
h(t)

[ T N A

Remark 1. Zhang et al.?!l extended the Jensen’s
inequality to the following form: Given any symmetric
positive-definite matrix Z, matrices My, Mz, scalar 0 <
h(t) < h, and vector value function %(t) : [-h, 0] — R"
such that the following integration is well defined, then

(8)

(t— h(t))} e
b v | T TP ESC

[afi(?(t»f %} z" [%W L(tx—(t'z@))}

It can be easily verified that Jensen’s inequality (8) can
be regarded as a special case of extended inequality (9) with
My, = —Z and M = Z. Then, it is natural to ask if this
extension brings extra freedom and gives less conservative
results. The answer is no. It will be shown in Remark 2 and
Appendix that the stability criterion obtained using (9) is
equivalent to that using (8) in the sense of conservativeness,
though more free variables are involved in (9).

Definition 1. The Lurie system (1) with AA=AB =0
is said to be absolutely stable in the given sector [K1, K3]
or [0, K], if this system is globally uniformly asymptoti-
cally stable for any nonlinear function ¢(t, z) satisfying (3)
or (4).

— ’ T 3V A o) do x(t)
h[h(t) (t+ ) Zi(t + a)d g[w

2 Main results

The robust stability criteria for system (1) will be given
in this section. To this end, we first give an absolute sta-
bility criterion for nominal Lurie system (1):

z(t) = Az(t) + Bz(t — h(t)) + Dw(t)

2(t) = Mx(t) + Nz(t — h(t)) (10)
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2.1 Stability issue

Theorem 1. Given a scalar h > 0, the nominal Lurie
system (10) with nonlinear function satisfying (4) is abso-
lutely stable, if there exist symmetric positive-definite ma-
trices P, Q1, Q2, Z1, Z2, and a positive scalar € such that
LMI (11) holds,

r _ h B
En Z1 PB  Euy 5AT(Zl + Z2)
* =oo Zo 0 0
== * * Zaz3 eNTKT gBT(ZlJFZ?) <0
* * * —2el gDT(Zl + Z2)
L * * * * —(Zl + ZZ) J

(11)
where
211 =ATP+ PA— 7, +Q2, Z1u=PD+ecMTKT
Soo=—Z1—Z2+ Q1 —Q2,Z33 = —Z> — (1 — ha)@Q1
Proof. Choose a Lyapunov-Krasovskii functional candi-
date V(x¢) as (7). Taking the derivative of Vi(x¢), 7 =1,2,3
with respect to ¢ along the trajectory of system (10) yields

Va(wo) = 207 ()P [ Ax(t) + Ba(t — h(t) + Dw(t)|  (12)

V() = (@)2 Z150) + (5) 4" () 220 -

h/ a)Zvi(a
/ o) Z2i(ar) da

Va(z:) = 2" <t - §>Q1x(t — g) _
(1= ha)a™(t — h(t))Qua(t — h(t)) + (14)
2T (0)Qar(t) — ™ (1= ) Qa1 — 1)

Applying Jensen's inequality (8), the following inequalities
are true:

;‘/tt_; i () Z1i(a)da <
[ x(t), r [le 7 } [ #(t) } (15)
at—2 |2 -7 |zt — 1)
and
~(n-3) /h i (@) Z2i(0) da < "

e(t—21"[-2 Z ][ at-1

Lv(t - h(t))] { Z *Z2:| { (t— h(t))}
From (1) and (4), it follows
—w  (Hw(t) +w" () K(Mz(t) + Nz(t — h(t))) >0 (17)
Combining (12) ~ (17) gives that
V(xe) = Vi(ze) + Valxe) + Va(ze) <
Vi (z¢) + V2($t) + VS(xt) +
2e [— wT(t)w(t) +awT K (Mz(t)+

Na(t —h(t)] = €7 (£)OE(1)

(18)

where
Z1 Z1 PB PD+eMTKT
- * 522 ZQ 0
o=\, L = eNTKT | T
* * * —2el
A Al"
N2 |0 0
(5) | (&1 +2) | p
D D

and E(t) = [«7(1) «T(t—1) 2T(t—h(t) & @)]"

Using Schur complement lemma, it is shown that = < 0
implies © < 0, and then V(azz) < 0. Hence, there must
exists a scalar p > 0 such that V(z:) < —pllz(t)|?,
P = Amin(—0) > 0, which implies the absolute stability
of system (10). O

Remark 2. If the extended Jensen’s inequality (9)
is used, an absolute stability criterion equivalent to
Theorem 1 is given as: The nominal Lurie system (10)
with nonlinear function satisfying (4) is absolutely stable,
if there exist symmetric positive-definite matrices P, Q1,
Q2, Z1, Z2, matrices My, Mo, Ms, My, and a positive
scalar € such that LMI (19) holds:

h

h
T 5LiZi SLiZe Ly L
r=1, ) ~Z, 0o o |<0 (19
* * * —71 0
* * * * —Zs
where
\1111 —Mir + M2 PB \1114
T o * \1/22 —M:’;T+M4 0
= * * W3g —eNTKT
* * * —2el
Li=[A 0 B D
Ly = [M1 My O 0]

=[0 Ms M, 0]
n=ATP+PA+ M} +M +Q:
Wap = Q1 — Q2 — My — Mo+ My + Ms
a3 = —(1 — ha)Q1 — My — M
Wy =PD+eM K"

The proof is given in Appendix.

Remark 3. For the nonlinearity ¢(t, z) satisfying more
general sector condition (3), by using the well-known loop
transformation[22], it can be obtained that the absolute sta-
bility of system (10) in the sector [K;, K2] is equivalent to
that of the following system

z(t) = (A— DK1M)z(t) + (B— DK1N)x
z(t — h(t)) + Dw(t) (20)
z(t) = Mx(t) + Nx(t — h(t))

in the sector [0, K2 — K1]. Following the similar philosophy
as in the proof of Theorem 1, the absolute stability criterion
for Lurie system (10) with nonlinear function satisfying (3)
can be easily obtained in Corollary 1.
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Corollary 1. Given a scalar h > 0, the nominal Lurie
system (10) with nonlinear function satisfying (3) is abso-
lutely stable, if there exist symmetric positive-definite ma-
trices P, Q1, Q2, Z1, Z2, and a positive scalar € such that
LMI (21) holds:

M Zy Iz IIia ;5
* 522 ZQ 0 0
M= | = *  EHzz s I35 <0 (21)
* * —2el 1145
* * * * —(Z1+ Z2)

where =20 and Z33 follow the same definitions as those in
(11) and

My = (A= DK{M)"P + P(A— DK M) — Z1 + Qo
i3 = P(B— DKN), 14 = PD +eM™ (K2 — K1)

h
IIi5 =

§(A—DK1M)T(Zl—|—Z2), M3y = eNT(Ko—K1)7T

h h
I35 = 5(3 —DEK\N)Y(Z1 + Z), Tlus = §DT(Z1 + Z3)

2.2 Robust stability

Extending Theorem 1 to uncertain Lurie system (1) with
time-varying parameter uncertainties yields the following
delay-dependent robust absolute stability criterion.

Theorem 2. Given a scalar h > 0, the uncertain Lurie
system (1) with nonlinear function satisfying (4) is robustly
absolutely stable, if there exist symmetric positive-definite
matrices P, Q1, Q2, Z1, Z2, and positive scalars €, u, such
that LMI (22) holds:

E Y12 pdas
Y= |x —pul 0 [ <0 (22)
* * —ul

where = follows the same definition as (11) and
L2=[GTP 0 0 0 gGT(Zl + Zo)|"

Si3=[E. 0 E, Eq 0"

Proof. Replacing A, B, and D in (11) with A +
GF(t)Eq, B+ GF(t)Ep, and D + GF(t)Ea, respectively,
then (11) for uncertain Lurie system (1) is equivalent to
the following condition:

E4+ S F)Sh +SFT )2l <0 (23)

where 312 and X3 are defined in (22). Using Lemma 1, a
sufficient and necessary condition guaranteeing (23) is the
existence of a scalar p > 0 such that

44 'S0l 4 pSizEls <0 (24)

Applying the Schur complement shows that (24) is equiva-
lent to (22). O

When the nonlinear function satisfies (3), Corollary 2 is
obtained.

Corollary 2. Given a scalar h > 0, the uncertain Lurie
system (1) with nonlinear function satisfying (3) is robustly
absolutely stable, if there exist symmetric positive-definite
matrices P, Q1, Q2, Z1, Z2, and positive scalars e, u such
that LMI (25) holds:

I Y12 pfus
Q= |+ —ul 0 | <0 (25)
* * —ul

where II is defined in (21), ¥12 is defined in (22), and
Qs = [Ea — EdK1M 0 E,— EqKAN Eq 0T
Proof. Replacing A, B, and D in (21) with A +
GF(t)E., B + GF(t)Ey, and D + GF(t)Eq, respectively,
then (21) for the uncertain Lurie system (1) is equivalent

to
T+ D1 F ()05 + Qs F ()21, < 0 (26)

Using Lemma 1, a sufficient and necessary condition guar-
anteeing (26) is that there exists a scalar g > 0 such that

I+ 5~ S1a 85 + pi3Q5 < 0 (27)

which is equivalent to (22) in the sense of Schur comple-
ment. g

3 Numerical examples

The following numerical examples are presented to illus-
trate the effectiveness of the proposed theoretical results
given in Sections 1 and 2.

Example 1. Consider the nominal Lurie system (10)
with nonlinearity satisfying (4). The system’s parameters
are the same as in [5, 12], that is,

-2 0 —-0.2 -0.5 —0.2
A= {71 72} B = { 0.5 70.2} » D= {70.3}
M=1[0.6 08,N=[0 0, K=0.5, ha=0
The calculation results for MADB h of Lurie system (10)
with different methods are listed in Table 1, which shows
that our methods give less conservative result. Obviously,

the methods used by Theorem 1 or Remark 2 yield larger
MADB h than [5, 12].

Table 1 The MADB h using different methods

He et al.l'4]
9.989 x 108

Nian!%]

0.305

Different methods
The MADB h

Theorem 1
9.094 x 10°

Example 2. Consider the uncertain Lurie control sys-
tem (1) with the parameters as follows

-2 0 -1 0 —0.2
A= [0 —0.9} » B= {—1 —1} » D= {—0.3}

0.3]" 011" 01 0 0
M= [0.1} N = [0.2} ) H = {0 0.1]’Ed* M
1 0
0 1
where the system matrices considered here are of those as
in [15]. This problem cannot be solved by the method of [8]
which only considers the constant time-delay case. Table 2

lists the MADB A for robust absolute stability of uncertain
Lurie system (1).

Table 2 The MADB h for different hy

Ea:Eb:{ },KI:O.Q,K2=O.5

hq 0.00 1.00 2.00 > 2.00
Han et al.l'%] 3.3057 0.7638 0.7638 0.7638
Corollary 2 4.5549 1.5275 1.5275 1.5275

4 Conclusion

The problem of robust absolute stability for Lurie control
system with time-varying delay and norm-bounded param-
eter uncertainties is investigated. By introducing a new
Lyapunov-Krasovskii functional that divides the whole de-
lay interval into two subintervals, some much less conserva-
tive conditions for robust absolute stability of Lurie control
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systems are proposed in terms of strict LMIs. Numerical
examples are provided to demonstrate the feasibility and
the superiority of the proposed approach.

Appendix. The proof of Remark 1

The LMI condition (19) is equivalent to a much simpler form
(11).
Proof. Rewriting I' < 0 in (10) as

T =T|ay=0,m9=0 + Ui[M1 Ma]Vi + V' [M1 M)TUT (A1)

with
Uy=[I —-I 0 0 0 o I 0
I 00 00O O O (A2)

Vi=lo 7 0000 0 0

and using the well-known Elimination lemma, I' < 0 for some
M; and M, if and only if

q>1=V1’iFV1L <0, ‘I>2:U1LFUE‘L <0 (A3)

where U;; and Vi, are the null matrices of U; and Vi, respec-
tively, i.e.,

I I 0 0 0 O O O
o I 0 0 0 o I o
0O 0 I 0 0 O O O 0
U,=|0 0 0 T 0 0 0 0, Viu= { }XG] (A4)
0000 I 00O 6
0O 0 0 0 0 I 0 O
0 0 0 0 0 0 0 I
Simplifying inequality (A3), we get
_\I/33 —ENTKT BTzl BTZQ 0 M;lr
* —2el DvZ, D'Z, 0 0
o — * * —7Z 0 0 0
1= * * * —Zs 0
* * * * —7Z4 0 (AB)
L * * * * * —Zs
Dy Do
¢2 - * @24:|
with
D11 Poi2 Dans
Py = * Dy 20 P
* * Wis
[ Wy, ATZ, AYZ, MY
(I>22 = 0 0 0 MdT
| -eNTKT BvZ, BYZ, M}
[—2¢I DTZ, D¥Z, 0
P, — * —7Z1 0 0
24 = * * —Zs 0
* * * —Zs

@511 =ATP+ PA+ Q1+ M + M;
D00 =Q1 — Qa2+ MS + M; — Z;
‘P2,12=Q1*Q2+M3T+M3
®513=PB— MS + M,

_ h _ h
Do o3 = —MS + My, Z1 = §Zlv Zy = §Z2

Note that Mj is present in @5 only, not in ®;. Rewriting &2
as
Dy = Do|nrz—0 + U2 MV + VT MUY (A6)
where
U= I -1 0 0 0 II*
. (A7)
Vo=[I I 0 0 0 0 0]
and applying the Elimination Lemma again, ®5 < 0 for some

M3 if and only if

<I>3 = V21‘I>2V2L < 0; &, = U2L¢’2U;:L <0 (AS)

where
rl -1 0 0 0O 0 O
o I 0 0 0 o0 -—I
Us i — o 0O I 0 0 0 o
22=1o0 0 0 I 0 0 O
o 0O O O I 0 O
1O 0 0 0O O I ©
r7 0 0 0 0 0 (A9)
—-I 0 0 0 0 O
o I 0 0O 0 o
Vouy=10 0 I 0 O O
o 0 o0 I 0 O
o 0 0 O I o
LO O O 0 0 I
Simplifying &5 and ®4 gives
=11 PB Wiy ATzl ATzl 0 7
¥ Wgy —eNTKT BYZ, BTZ, M[F
By = * * —2¢el DYZ, DTZ, 0
* * * -7 0 0
* * * * —Zs 0
* * * * * —Z4 ]
=11 Z1 PB Wy ATzl ATZf
* Zao Zs 0 0 0
| * * —Q1 — Zy —eNTKT BTZ1 BTZz
T« * * —2el D*Z, DTZ,
* * * * —7Z1 0
* * * * * —Zs
(A10)

Note that &; < 0if Z; > 0 and $3 < 0. But Z; > 0 is implied
by ®;5 < 0. Hence, I < 0 for some My, M», and M3 if and only
1f<I>3 < 0and &, < 0.

Since M, is present only in @3, not in $,. Rewriting ®3 as

@3 = ®3|nr,—0 + Us My Vs + V,SMTUT (A11)
with
Us=[0 -1 0 0 o I"

A12
Vs=[0 I 0 0 0 0" (A12)

and applying the Elimination Lemma again, we get ®3 < 0 for
some M, if and only if

&5 =V, ®3Vs, <0, &g =Us, P3U;, <0 (A13)
where
I 00000 L0 000
0 0 0 0 O
0o I 0 0 O I 0o I 0 0 0
Us; =10 0 I 0 0 Of Vs =
0 0 I 0 O
0 0 0 I 0 O
0000 I 0 0 0 0 10
0 0 0 o0 I
(A14)
Simplifying the above gives
[E11 Wiy ATZ; ATZ:1 0
* —2¢I DvZ, DvZ, 0
o5 = * * —7Z1 0 0
* * * —Zy 0
L * * * * —Z3
_ _ _ (A15)
Ell PB \I/14 ATgl ATzl
* -Q1— %, —eNTKT BTZ, BTZ,
bs = | « * —2¢l DYz, DTZ,
* * * -7 0
| * * * * —Zs

We see that the left-top 4 x 4 block of @5 can be obtained from
®,4 by removing its second and third rows and columns and that
Zs > 0 is implied by &, < 0. Therefore, &5 < 0 if &, < 0.
Similarly, s < 0 can be obtained from ®, by removing second
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row and column. So again, ®¢ < 0 if &, < 0. Hence, I' < 0 for
some My, My, M3, and M, if and only if &, < 0.

Finally, using Schur complement, &, < 0 if and only if & < 0,
Zy >0 and Z; > 0. And the latter two conditions are assumed.

The equivalence between (19) and (11) raises the following
question: Supposing (11) holds, how do we choose M1, M>, M3,
and M, to satisfy (19)? The answer turns out to be rather
simple:

My, =—Zy, My =2y, My =—Zs, My =Z,4 (A16)

Indeed, using Schur complement, (19) is equivalent to
h 2 T Trr—1 T r7—1
@y, + (E) LT(Zy 4 Z2) Ly + LY 27 Ly + LY Z5 'Ly < 0 (AL7)

which becomes (11) by taking (A16). O
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