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PolSAR Image Segmentation by Mean Shift

Clustering in the Tensor Space

WANG Ying-Hua1 HAN Chong-Zhao1

Abstract We present an unsupervised segmentation algorithm for fully polarimetric synthetic aperture radar (PolSAR) data

by using the mean shift clustering. The previous work using the span values of the PolSAR data as the features in the mean

shift clustering, however, does not sufficiently exploit the full information contained in the polarimetric covariance matrix. When

considering the polarimetric covariance matrices as the feature vectors, the traditional mean shift clustering in the Euclidean space is

not applicable anymore, since these matrices do not form a Euclidean space. We first show that by regarding each Hermitian positive

definite polarimetric covariance matrix at per pixel as a tensor, the tensor space can be represented as a Riemannian manifold. Then,

the mean shift clustering is extended to the Riemannian manifold to explain the theoretical meanings of the tensor clustering and a

practical segmentation algorithm based on the metric lying on the manifold is proposed. Experimental results using the real fully

PolSAR data and simulated data verify the effectiveness of the proposed method.
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The fully polarimetric synthetic aperture radar (Pol-

SAR) involves transmission and reception of both the hori-

zontally and vertically polarized radar pulses, thus provides

data containing the complete polarimetric scattering infor-

mation. Therefore, these data has drawn more attention in

recent years. Among various applications of PolSAR im-

ages, the unsupervised segmentation is an important step

toward the automatic understanding of the data. The un-

supervised segmentation schemes for PolSAR images can

be categorized into two groups as suggested in [1]: the first

one is based on the analysis of the polarimetric informa-

tion (physical scattering mechanisms); the other applies the

conventional image segmentation techniques to the PolSAR

data.

For the first group of approaches, the polarimetric target

decomposition theorems[2] provide powerful tools for ex-

tracting polarimetric parameters from the data. These pa-

rameters are used as features to segment the images. Take

for instance the well-known H/α[3] and H/A/α[4] decom-

position of PolSAR data. The segmentation is carried out

by dividing the H/α plane into eight zones or the H/A/α

space into sixteen zones. However, such division of the fea-

ture space is somewhat arbitrary.

In the second group, the clustering algorithms are most

widely explored for the unsupervised segmentation of Pol-

SAR images. The clustering of data aims at finding a natu-

ral grouping of clusters in the feature space. In the follow-

ing, the various clustering algorithms are simply divided

into the parametric ones and the non-parametric ones.

The parametric clustering usually relies upon a priori

knowledge about the number of clusters or the distribution

of the feature vectors. One example is the H/α Wishart

classifier[5]. It uses the H/α decomposition results to get

an initial segmentation into eight clusters, then the K-mean
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clustering is implemented by considering the polarimetric

covariance matrices as the feature vectors, which are as-

sumed to follow the complex Wishart distribution[6]. How-

ever, when the feature space becomes more complex, a pre-

defined number of clusters based on the polarimetric pa-

rameters may be less meaningful. Moreover, for some cases,

the Wishart distribution may not be suitable to character-

ize the polarimetric covariance matrices[7].

The nonparametric clustering does not impose any em-

bedded assumptions, so it may be more appropriate for

analyzing the complicated and arbitrarily structured fea-

ture space. The mean shift clustering proves to be a robust

density-based clustering algorithm and has been applied to

the color image filtering and segmentation[8]. In [9], the

mean shift clustering is employed to segment the PolSAR

data; nevertheless, only the span value is used as the feature

for each pixel, and the full polarimetric information carried

by the polarimetric covariance matrix or coherency matrix

is not explored sufficiently. References [10−11] show that

the use of full polarimetric information provides better clas-

sification results. Therefore, it is expected that using the

polarimetric covariance matrices or coherency matrices as

the feature vectors will improve the results, but these Her-

mitian positive definite matrices do not form a Euclidean

space. Thanks to the work[12−13], where the mean shift

clustering was extended to the analytic manifolds. More-

over, in [14] each real symmetric positive definite matrix is

also called a tensor, and the tensor space is represented as

a Riemannian manifold.

In the light of these new techniques, we present a

new segmentation method for the PolSAR data by

using the mean shift clustering, in which each 3 × 3

Hermitian positive definite polarimetric covariance matrix

or coherency matrix at per pixel is used as the feature

vector. The rest of the paper is organized as follows. The

mean shift clustering and segmentation will be briefly re-

viewed in Section 1. In Section 2, we show that the PolSAR
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data space can be represented as a Riemannian manifold.

In Section 3, the mean shift clustering algorithm is ex-

tended to the Riemannian manifold, and the new segmenta-

tion method for PolSAR data is presented. The evaluation

of segmentations is described in Section 4. Experimental

results and conclusions are provided in Sections 5 and 6,

respectively.

1 Mean shift clustering and segmenta-

tion

The mean shift clustering algorithm is based on the ker-

nel density estimation methods such as the Parzen window

technique[15]. By estimating the density gradient, the mean

shift vector is derived, which always points toward the di-

rection of maximum increase in density. The local maxima

of the density, i.e., the density modes in the feature space

can thus be located by computing the mean shift vector in

an iterative way.

Given n data points xxxi, i = 1, 2, · · · , n, in the d-

dimensional Euclidean space Rd, the kernel density esti-

mator at point xxx with kernel K(xxx) and bandwidth h is

given by

f̂h,K(xxx) =
1

nhd

n∑
i=1

K
(xxx− xxxi

h

)
(1)

Usually, the radially symmetric kernels are used which sat-

isfy
K(xxx) = ck,dk(‖xxx‖2) (2)

where k(x) is called the profile of the kernel and ck,d is the

normalization constant. Thus, the density estimator in (1)

can be rewritten as

f̂h,K(xxx) =
ck,d

nhd

n∑
i=1

k

(∥∥∥xxx− xxxi

h

∥∥∥
2
)

(3)

According to [8], the gradient of f̂h,K(xxx) can be expressed

as

5f̂h,K(xxx) = f̂h,G(xxx)
2ck,d

h2cg,d
mh,G(xxx) (4)

where G is another kernel and its profile g(x) = −k′(x);

mh,G(xxx) is the mean shift vector and can be expressed as

mh,G(xxx) =

n∑
i=1

xxxig(‖xxx−xxxi
h
‖2)

n∑
i=1

g(‖xxx−xxxi
h
‖2)

− xxx (5)

For each data point xxx, its convergence point is computed

by the following mean shift procedures:

1) Initialize yyy0 with yyy0 = xxx.

2) Update yyyj by yyyj+1 until the difference between yyyj+1

and yyyj is small enough, where

yyyj+1 = yyyj + mh,G(yyyj) =

n∑
i=1

xxxig(‖yyyj−xxxi

h
‖2)

n∑
i=1

g(‖yyyj−xxxi

h
‖2)

(6)

After we get the convergence points of all the data points

based on the above procedure, the local maxima are de-

tected as the density modes. The data points visited by

all the mean shift procedures converging to the same mode

form a cluster of arbitrary shape. Thus, the mean shift

clustering is completed. Based on mean shift clustering,

the mean shift segmentation algorithm is proposed in [8].

Usually, the joint spatial-range domain is considered, which

implies adding the pixel coordinates into the feature vector

xxxi. More details can be found in [8].

2 PolSAR data space

We first review some main results for representing the

space of real symmetric positive definite matrices as a Rie-

mannian manifold. Then, we present that the PolSAR data

space can also be represented as a Riemannian manifold.

2.1 The space of real symmetric positive definite

matrices

It is sometimes encountered in image processing that

the pixel value is a real symmetric positive definite matrix.

For instance, the pixel value used for pedestrain detection

in [16] is the covariance matrix. Another example is that

each pixel value in the image obtained by the diffusion ten-

sor image technique[17] is a real symmetric positive definite

matrix. In [18], the 2 × 2 real symmetric positive definite

matrices are used to exemplify that such matrices form a

non-Euclidean space. Given a 2×2 real symmetric positive

definite matrix A = [a b; b c], where ac − b2 > 0 and

a > 0, if we consider the matrix A as a point (a, b, c) ∈ R3,

the whole set of such matrices form a cone. The distance of

two such matrices should be the length of the geodesic that

connects the two points along the cone surface, but not the

length of the straight line connecting the two points in R3.

When each pixel in an image is composed of a real sym-

metric positive definite matrix, such matrix space is not a

Euclidean space. In [14], each symmetric positive definite

matrix is also termed as a tensor, and the tensor space is

represented as a Riemannian manifold M. Some proper-

ties of the Riemannian manifold described in [14] are briefly

reviewed in the following.

For each point X ∈ M, its tangent space TXM is the

plane tangent to the surface of the manifold at that point.

The exponential map expX: TXM → M maps each tan-

gent vector y ∈ TXM to the point Y ∈ M. The inverse

of the exponential map at point X is the logarithm map

logX: M → TXM, which maps each point Y ∈ M to the

tangent vector y ∈ TXM. Thus, the two maps provide

a one-to-one mapping between the tensor space and the

tangent space around point X.

For each point X, the Riemannian metric assigns to its

tangent space TXM an inner product as

〈y, z〉X = tr
(
X− 1

2 yX−1zX− 1
2

)
(7)

which varies smoothly from point to point. With this inner

product, the norm of the tangent vector y in the tangent

space TXM can be computed by

‖y‖2X = 〈y, y〉X (8)

The associated Riemannian exponential map and loga-
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rithm map are defined as

expX(y) = X
1
2 exp

(
X− 1

2 yX− 1
2

)
X

1
2 (9)

logX(Y ) = X
1
2 log

(
X− 1

2 Y X− 1
2

)
X

1
2 (10)

where exp(·) and log(·) are the matrix exponential and nat-

ural logarithm, respectively.

The Riemannian distance of two points dist(X, Y ) is de-

fined as the length of the geodesic connecting the points X

and Y on the manifold surface. This distance is given by

‖y‖X in the tangent space, where y = logX(Y ). In [14], the

Riemannian affine invariant distance of two tensors X and

Y can be computed by

dist2(X, Y ) = ‖y‖2X = ‖logX(Y )‖2X =
∥∥∥X− 1

2 logX(Y )X− 1
2

∥∥∥
2

I
=

∥∥∥log
(
X− 1

2 Y X− 1
2

)∥∥∥
2

2

(11)

where I is the identity matrix and ‖ · ‖2 is the Euclidean

norm. Note that ‖ · ‖X and ‖ · ‖I are respectively the

norm defined in TXM and TIM, and they can be com-

puted by (7) and (8). Equation (11) indicates that from

a certain reference point X, the distance of another tensor

Y can be computed by the Euclidean norm of the vector

log
(
X− 1

2 Y X− 1
2

)
in the tangent space.

Under this Riemannian framework, the mean value µ̄

of a set of tensors X1, X2, · · · , Xn ∈ M is defined as the

tensor that minimizes the sum of the squared distances:

µ̄ = arg minX∈M
∑n

i=1 dist2(X, Xi). Thus, it can be com-

puted by the gradient descent algorithm as follows:

µ̄t+1 = expµ̄t

(
1

n

n∑
i=1

logµ̄t
(Xi)

)
=

µ̄
1
2
t exp

(
1

n

n∑
i=1

log

(
µ̄
− 1

2
t Xiµ̄

− 1
2

t

))
µ̄

1
2
t

(12)

Similarly, the weighted mean of a set of tensors is defined as

the tensor that minimizes the sum of the weighted squared

distances, and can be computed by the following iterative

algorithm:

µ̄t+1 = expµ̄t

(
n∑

i=1

ωilogµ̄t
(Xi)

)
=

µ̄
1
2
t exp

(
n∑

i=1

ωi log

(
µ̄
− 1

2
t Xiµ̄

− 1
2

t

))
µ̄

1
2
t

(13)

where ωi, i = 1, 2, · · · , n, are the weighting parameters.

2.2 PolSAR data space represented as a Rieman-

nian manifold

The PolSAR data is usually obtained as a set of 3 × 3

Hermitian positive definite polarimetric covariance matri-

ces or coherency matrices. It has already been mentioned

in Subsection 2.1 that the real symmetric positive definite

matrices do not form a Euclidean space. Similarly, the

Hermitian positive definite matrices also do not from a Eu-

clidean space. In the following, we show the Riemannian

framework for the Hermitian positive definite matrices.

The Hermitian positive definite matrix space can also be

represented as a Riemannian manifold as proposed in [19].

The Riemannian metric we choose has the same form as

proposed in [14], but in this work, all the corresponding

computations are extended to the complex matrices. The

associated exponential map, logarithm map, and Rieman-

nian distance of two tensors also have the same expres-

sions as shown in Subsection 2.1, however the correspond-

ing computations will be carried out on complex matrices

now, but not the real matrices. These computations are

based on the matrix exponential, matrix logarithm, and

matrix power, which are well defined for the real symmet-

ric matrices in [14]. According to [20], these computations

can also be well defined for the Hermitian matrices. Thus,

the Riemannian framework for the Hermitian positive def-

inite matrices is formed.

Henceforth, each pixel value in the PolSAR data, i.e., the

polarimetric covariance matrix or the coherency matrix, is

also termed as a tensor, and the tensor space is represented

as a Riemannian manifold.

3 Mean shift clustering in the tensor

space

Since the PolSAR data space can be represented as a

Riemannian manifold, in Subsection 3.1, the original mean

shift clustering algorithm is extended to the Riemannian

manifold. The derived iterative algorithm has clear theo-

retical meanings, however, it involves extensive computa-

tional effort, which hinders its practical usefulness. To ob-

tain similar results in practice while decreasing the compu-

tation burden, a new segmentation method is put forward

in Subsection 3.2.

3.1 Extending the mean shift clustering to the

Riemannian manifold

In [13], the original mean shift clustering is extended to

the analytic manifolds. In [21], the mean shift clustering is

extended to the space of symmetric positive definite matri-

ces, and the extended algorithm is applied to the filtering.

In the same way, the mean shift clustering is extended to

the Hermitian positive definite matrix space in this section.

According to [13], the kernel density estimator in (3)

can be extended to the manifolds by using the manifold

distance as

f̂h,K(X) =
ck,d

nhd

n∑
i=1

k

(
dist2(X, Xi)

h2

)
(14)

The gradient of (14) is expressed as

5 f̂h,K(X) =

f̂h,G(X)
ck,d

h2cg,d


−

n∑
i=1

5dist2(X, Xi)g

(
dist2(X, Xi)

h2

)

n∑
i=1

g

(
dist2(X, Xi)

h2

)




(15)
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where G is another kernel and its profile g(x) = −k′(x).

Based on the Riemannian distance in (11), for a fixed

Xi,

5dist2(X, Xi) = 5‖xi‖2X = −2xi (16)

as suggested in [22]. Equation (16) shows that

5dist2(X, Xi) is a tangent vector. Introducing (16) into

(15) yields

5f̂h,K(X) = f̂h,G(X)
2ck,d

h2cg,d




n∑
i=1

xig

(
dist2(X, Xi)

h2

)

n∑
i=1

g

(
dist2(X, Xi)

h2

)




(17)

Thus, the mean shift vector for tensors over the Rieman-

nian manifold is

mh,G(X) =

n∑
i=1

xig

(
dist2(X, Xi)

h2

)

n∑
i=1

g

(
dist2(X, Xi)

h2

) (18)

It is known that g
(

dist2(X,Xi)

h2

)
is a scalar. Thus, mh,G(X)

is a weighted sum of the tangent vectors, which implies

mh,G(X) is also a tangent vector itself in TXM. Given the

j-th kernel center Yj , the next kernel center Yj+1 on the

manifold surface is obtained by moving Yj along the mean

shift vector direction. Therefore, the updating relies on the

Riemannian exponential map as:

Yj+1 =

expYj (mh,G(Yj)) =

Y
1
2

j exp




n∑
i=1

g

(
dist2(Yj , Xi)

h2

)
log

(
Y
− 1

2
j XiY

− 1
2

j

)

n∑
i=1

g

(
dist2(Yj , Xi)

h2

)


 Y

1
2

j

(19)

In this way, the mean shift clustering for tensors can

be interpreted as the alternate computation in the tangent

space and the tensor space. For each point X ∈ M, the

mean shift vector in TXM is computed first. Then, X is

moved along the geodesic on the manifold surface corre-

sponding to that tangent vector. By initializing Y0 = X,

the convergence point of (19) provides the mode that X

belongs to.

3.2 The mean shift segmentation of PolSAR data

In [12−13], the mean shift clustering over the analytic

manifolds is applied to the 3-D motion segmentation prob-

lems. Similarly, it is expected that the mean shift cluster-

ing algorithm for tensors derived in Subsection 3.1 can be

directly applied to the PolSAR image segmentation. Nev-

ertheless, it is observed that the mean shift iterative com-

putation in (19) requires calculating the matrix powers,

logarithm, and exponential for each data point in each it-

eration. This involves extensive computational effort even

for a small image.

Now, we focus on a new segmentation method that de-

creases the computation burden but yields similar results

in practice. In [23], the framework using the Log-Euclidean

metric and the Riemannian framework mentioned in Sub-

section 2.1 are compared experimentally, and the results

show that the Log-Euclidean metric can yield similar re-

sults in practice but with much less computations. The

Log-Euclidean distance is defined as

dist2(X, Xi) = ‖ log(X)− log(Xi)‖22 (20)

which is equivalent to map all the tensors to the tangent

space of the I matrix, i.e., the logarithm map logI : M →
TIM is used. By introducing the Log-Euclidean distance

and the logarithm map logI into (19), a much simplified

algorithm can be obtained.

The computational burden of each mean shift iteration

by using (19) or using the simplified algorithm based on

the Log-Euclidean metric are compared in the following.

We have n data points {Xi}n
i=1. For a certain data point,

the j-th kernel center is known to be Yj . For both meth-

ods, the computation of Yj+1 contains four steps, which

are depicted in Table 1. From Table 1, we can note that

Step 3 is the same for both methods. We only need to com-

pare the computational effort of Steps 1, 2, and 4. All the

computations involved in Steps 1, 2, and 4 for both meth-

ods can be regarded as the combinations of some matrix

operations, including the matrix multiplication, matrix ad-

dition, matrix power, matrix logarithm, matrix exponen-

tial, and matrix Euclidean norm. For P × P matrices, the

computation complexity of matrix multiplication, matrix

addition, and matrix Euclidean norm are O(P 3), O(P 2)

and O(P 2), respectively. By using the method proposed in

[14] to compute the matrix power, matrix exponential, and

matrix logarithm, their respective computation complexity

is all approximately O(2P 3). Knowing the computation

Table 1 The procedures for updating the kernel center by using (19) and the Log-Euclidean metric

Using (19) Using Log-Euclidean metric

Step 1. For each Xi, Vi = Y
1
2

j log(Y
− 1

2
j XiY

− 1
2

j )Y
1
2

j Step 1. For each Xi, Vi = log(Xi)

Step 2. For each Xi, dist2(Yj , Xi) =

∥∥∥∥log(Y
− 1

2
j XiY

− 1
2

j )

∥∥∥∥
2

2
Step 2. For each Xi, dist2(Yj , Xi) = ‖log(Yj)− Vi‖22

Step 3. m(Yj) =

n∑
i=1

Vig

(
dist2 (Yj , Xi)

h2

)

n∑
i=1

g

(
dist2 (Yj, Xi)

h2

) Step 3. m(Yj) =

∑n
i=1 Vig




dist2 (Yj , Xi)

h2




∑n
i=1 g




dist2 (Yj , Xi)

h2




Step 4. Yj+1 = Y
1
2

j exp

(
Y
− 1

2
j m(Yj)Y

− 1
2

j

)
Y

1
2

j Step 4. Yj+1 = exp(m(Yj))
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complexity for each matrix operation, we evaluate the com-

putational effort by the total number of each matrix oper-

ation. The computation complexity for each matrix oper-

ation and the total number of matrix operations used for

Steps 1, 2 and 4 of the two methods are listed in Table 2.

Table 2 The computational effort evaluated by the number of

matrix operations for Steps 1, 2, and 4 of the two methods

shown in Table 1

Using (19) Using Log-

Euclidean metric

Matrix multiplication (O(P 3)) 6n + 4 0

Matrix addition (O(P 2)) 0 n

Matrix power (≈ O(2P 3)) 6n + 4 0

Matrix logarithm (≈ O(2P 3)) 2n n + 1

Matrix exponential (≈ O(2P 3)) 1 1

Matrix Euclidean norm (O(P 2)) n n

Table 2 verifies that using the Log-Euclidean metric de-

creases the computation burden. Therefore, we propose

a new segmentation method for PolSAR data using the

mean shift clustering based on this metric. By observing

the four steps using Log-Euclidean metric shown in Ta-

ble 1, we can note that the exp(·) operation in Step 4 can

counteract the log(·) operation in Step 2. Thus, by using

the Log-Euclidean metric, the tensor space is in fact con-

verted into a vector space as proposed in [23]. In this vector

space, the original mean shift clustering can be used. The

proposed new algorithm is depicted in the following. For

each pixel s ∈ S, where S is the pixel set, the input is the

3×3 coherency matrix Ts, and the output is the label value

Ls.

Algorithm 1. The new mean shift based segmen-

tation algorithm for PolSAR data.

Input: Ts, s ∈ S.

Step 1. For each pixel s,

1) Map Ts into the tangent space using Vs = logI(Ts);

2) Change the 3×3 matrix Vs into a 6×1 vector vvvs using

the minimal representation[14];

3) if the joint domain is considered, add the pixel coor-

dinates into the vector vvvs;

4) Compute the convergence point yyys corresponding to

vvvs using (6).

Step 2. Obtain the clustering results according to [8]

1) if only the range domain is considered, each cluster is

formed by the pixels whose yyys values are closer than hr in

the range domain;

2) if the joint domain is considered, each cluster is formed

by the pixels whose yyys values are closer than hr in the range

domain and hs in the spatial domain.

Step 3. Eliminate the clusters containing less than M

pixels, which results in Nc clusters {Cp}Nc
p=1.

Step 4. For each pixel s, assign Ls = p if yyys ∈ Cp.

Output: Ls, s ∈ S.

4 Evaluation of segmentations

Similar to [9], the segmentation algorithms are evalu-

ated in the way proposed in [24]. Given a segment Q and a

ground truth region G, Q′s degree of spatial support with

respect to G is evaluated by the normalized overlap score

OS(Q, G) ∈ [0, 1], computed as

OS(Q, G) =
|Q ⋂

G|
|Q ⋃

G| (21)

The best spatial score (BSS) is the maximum normalized

overlap score of a group of segments with respect to a

ground truth region G. It measures how well the best seg-

ment covers the region G.

For an entire data set, the performance of a segmentation

algorithm can thus be evaluated by computing the mean

BSS value across each ground-truth region in the data set.

The segmentation with higher mean BSS value implies bet-

ter spatial support. Moreover, the number of segments in

the segmentation result is another index to evaluate the seg-

mentation. A small number of segments will decrease the

computation burden for further processing. To sum up,

a high-quality segmentation should have high mean BSS

value and low number of segments.

5 Experimental results

The fully PolSAR data1 obtained from German

Aerospace Centre (DLR) E-SAR L-band are used for ex-

periments. The original images have 1 540 × 2 816 pixels.

The span image is shown in Fig. 1. Two sites from the im-

age are tested first. Then, a simulated image constructed

from this data set is tested.

Fig. 1 The span image of the original data set (The test sites

used are chosen as the areas in the two boxes. The data in the

six ellipses are used to construct the six class simulated

images.)

Before all our segmentation experiments, the speckle fil-

tering is implemented using Lee′s filter[25]. Several segmen-

tation algorithms are tested and compared in our experi-

ments, including the H/α Wishart classifier, the H/A/α

Wishart classifier[4], the mean shift clustering using the

span image (denoted by “MSS”) proposed in [9], and our

proposed method using the mean shift clustering of tensors

(denoted by “MST”). For the last two methods, the uniform

kernel is used in all the experiments. For the parameter M

contained in the algorithm shown in Algorithm1, the values

1These data are downloaded from http://earth.esa.int/polsarpro/
datasets.
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20, 40, 60, and 80 are tested, and it is found that M = 40

yields good results for this data set. And for the spatial do-

main bandwidth hs and the range domain bandwidth hr,

different values are tested in the experiments, which brings

on different Nc in the final results. If the hs value is not

given for one result, it means that this result only consid-

ers the range domain. The label values of the segmentation

results are first sorted according to the average span values

of all the clusters, then the results are rendered using the

color code shown in Fig. 2. For example, the cluster with

label value 1 has the lowest average span value and is in

black color, while the cluster with label value Nc has the

highest average span value and is in white color. This color

code is used in all our segmentation results.

Fig. 2 The color code for the segmentation results

The first test site is the small image with 176 × 152 pix-

els in the small rectangle in Fig. 1. We select this test site

as in [26] since it is obviously composed of three classes.

Thus, we could check if it is rightly segmented into three

clusters as expected. Moreover, it will help us to select

the appropriate hs and hr values, which will then be fixed

when segmenting the other test sites. Because the H/α

and H/A/α Wishart classifiers will segment the image into

Nc = 8 or Nc = 16 classes, we only compare the seg-

mentation results using MSS and MST. For the MSS re-

sults, hr = 0.125, 0.25, 0.375, 0.5 are tested, while for the

MST results, hr is varied with values 0.5, 1, 1.5, and 2.

For both MSS and MST, if the spatial domain is also

considered, then hs = 4, 6, 8, 16, 64 are tested. We se-

lect some results for exposition, which are comparatively

good. The segmentation results using MSS are shown in

Fig. 3 and the segmentation results using MST are shown

in Fig. 4. From Fig. 3, we can observe that with hr = 0.25,

the image is rightly segmented into 3 classes as shown in

Fig. 3 (f). Meanwhile, from Fig. 4, when hr = 1, the image

is also rightly segmented into 3 classes as shown in Fig. 4

(c) or Fig. 4 (e). Let us focus on Fig. 3 (f) and Fig. 4 (c).

Fig. 4 (c) using MST is smoother than Fig. 3 (f) using MSS.

For example, many pixels in the top-left homogenous re-

gion in Fig. 3 (f) are misclassified into the gray class, but

in Fig. 4 (c), almost all the pixels in this homogenous re-

gion are rightly classified into the same class (the white

class). This phenomenon can be interpreted as follows. It

is observed from the span image in Fig. 1 that, even in a

homogeneous region, the speckle effects cause the span val-

ues of the pixels vary greatly. Consider two pixels belong-

ing to the same cluster, and the difference between their

span values is big. In the MSS algorithm, the feature val-

ues used are their span values. Therefore, these two pixels

can be easily segmented into different classes. However, in

the MST algorithm, the feature values are computed from

their polarimetric covariance matrices or coherency matri-

ces. These matrices contain the full polarimetric informa-

tion, which includes not only the span values but also other

information. Thus, the MST feature values provide more

complete and accurate descriptions for the pixels. And it

is possible that these two pixels will be rightly classified

into the same cluster by MST. The experimental results

in Figs. 3 and 4 also provide information for choosing the

appropriate parameter values for the mean shift algorithm.

For the following test sites, only the range domain is con-

sidered in the mean shift clustering. For MSS, hr is set to

0.25 and, for MST, hr is set to 1.

The second test site is selected as the image enclosed

by the big rectangle in Fig. 1 with 512 × 512 pixels. This

test site is chosen because its scene is quite complex, and it

contains plenty of classes. Moreover, some salient objects

shown in this test site as the buildings and the landing field

(a) hs = 6, hr = 0.125, Nc = 39 (b) hs = 8, hr = 0.125, Nc = 14 (c) hr = 0.125, Nc = 4

(d) hs = 4, hr = 0.25, Nc = 42 (e) hs = 6, hr = 0.25, Nc = 13 (f) hr = 0.25, Nc = 3

Fig. 3 The segmentation results using MSS for the test site enclosed by the small rectangle in Fig. 1
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(a) hs = 8, hr = 1, Nc = 48 (b) hs = 64, hr = 1, Nc = 5 (c) hr = 1, Nc = 3

(d) hr = 0.5, Nc = 11 (e) hr = 1, Nc = 3 (f) hr = 2, Nc = 2

Fig. 4 The segmentation results using MST for the test site enclosed by the small rectangle in Fig. 1

can help us find the corresponding optical image, which is

shown in Fig. 5 (a). The optical image illustrates that this

test site has enough different classes, including buildings,

different kinds of grassy ground, smooth ground, forests

and so on. The results of the H/A/α Wishart classifier,

MSS, and MST are compared in the following. Fig. 5 (b)

is the segmentation result using the H/A/α Wishart clas-

sifier; Fig. 5 (c) is the segmentation result using MSS; and

Fig. 5 (d) is the segmentation result using MST. First, the

MST result in Fig. 5 (d) is compared with the H/A/α

Wishart classifier result in Fig. 5 (b). It is observed that

many homogeneous regions in the original image are seg-

mented into less clusters in Fig. 5 (d) than that in Fig. 5 (b).

For example, the grassy ground in the top-right part is

rightly delineated as a single cluster in Fig. 5 (d) while sev-

eral clusters in Fig. 5 (b). And the forest area in the top-

left part is almost rightly delineated as one cluster (how-

ever two clusters with different gray colors are detected) in

Fig. 5 (d), but a lot of meaningless small regions of different

classes in Fig. 5 (b). Then, we focus on the MST result in

Fig. 5 (d) and the MSS result in Fig 5 (c). We compare both

of them with the optical image. By comparing with the op-

tical image in Fig. 5 (a), some regions belonging to differ-

ent classes are segmented into the same cluster in Fig. 5 (c).

For instance, the grassy ground in the top-right part and

the forest area in the top-left part are segmented into the

same cluster in Fig. 5 (c). But these two areas are well seg-

mented into two clusters in Fig. 5 (d). Also, the buildings

are segmented into the same cluster as the grassy ground in

the gray color in Fig. 5 (c). But in Fig. 5 (d), the buildings

and the grassy ground are rightly delineated, i.e., they are

segmented into clusters with different colors. When two

distinct regions have close span values, they cannot be dis-

criminated by the MSS since only the span value is used

as the feature. However, by using the MST, two distinct

classes with close span values can be well differentiated.

Finally, to evaluate the segmentation algorithms quan-

titatively, a simulated data set is constructed in the way

similar to that in [27]. A ground-truth six class label im-

age is first designed as shown in Fig. 6 (a). Then, some

homogeneous regions are manually selected from the real

E-SAR data set as shown in the ellipses in Fig. 1. The

data contained in the six ellipses are finally used to fill

in the six classes in the simulated PolSAR images. The

span image of the derived simulated data set is shown in

Fig. 6 (b). Since the image contains six classes, the results

of the H/α Wishart classifier, MSS, and MST are compared

in the following. For the MSS and MST, the same hr val-

ues as before are used since this synthetic image is con-

structed from the same E-SAR data set. The H/α Wishart

classification result is shown in Fig. 6 (c). Fig. 6 (d) is the

segmentation result using MSS. The result using MST is

shown in Fig. 6 (e). It is clearly observed that the MST

result in Fig. 6 (e) has better visual quality than that in

Fig. 6 (c) or Fig. 6 (d). Table 3 shows the number of clus-

ters Nc and the mean BSS values for the three results in

Fig. 6 (c)∼ (e). The MST result in Fig. 6 (e) has the highest

mean BSS value, which verifies the effectiveness of the pro-

posed method and its performance improvement compared

with the other two existing approaches.

Table 3 The mean BSS values for the segmentation

results of the simulated data set

Nc Mean BSS value

H/α Wishart 8 0.7717

MSS 5 0.6849

MST 6 0.9277

6 Conclusion and perspective

The mean shift clustering is employed to fulfill the

segmentation of PolSAR data in this paper, and the

polarimetriccovariance matrix or coherencymatrix is used

as the featurefor each pixel, but notthe span value as in

some existing approaches. To fulfill this purpose, we first
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(a) The optical image of the

test site from Google Earth

c©2008 GoogleTM, Image

c©2008 Geocontent, c©2008

Tele Atlas[28]

(b) H/A/α Wishart classifier

result with Nc = 16

(c) MSS result with

hr = 0.25 and Nc = 7

(d) MST result with

hr = 1 and Nc = 11

Fig. 5 The segmentation results for the test site enclosed by the big rectangle in Fig. 1

(a) The ground-truth label image (b) The span image of the simulated data set

(c) H/α Wishart classifier

result with Nc = 8
(d) MSS result with hr = 0.25 and Nc = 5 (e) MST result with hr = 1 and Nc = 6

Fig. 6 The experimental results for the simulated data set

show that the PolSAR data space can be represented as a

Riemannian manifold. Then, the mean shift clustering is

extended to the Riemannian manifold to explain the the-

oretical meanings of the tensor clustering. Finally, a new

segmentation algorithm based on the Log-Euclidean met-

ric is proposed. The efficiency of the proposed method is

substantiated by the experiments on the real fully PolSAR

data and synthetic images. Performance improvement is

observed compared with several existing approaches.

The future work includes the following two aspects. 1)

The mean shift clustering results depend greatly on the

band width, which is determined empirically in this paper.

The proposed method may be improved by introducing an

adaptive band width based on analyzing the local structure

of the PolSAR data or evaluating the clustering quality un-

der different bandwidth values. 2) In the results of the pro-

posed segmentation method, each class does not have any

specific physical meanings. The proposed approach can be

further improved so that each class in the results can be

associated to some specific terrain types, thus to fulfill the

terrain classification of PolSAR data.
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