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Fault Detection Filter Design for Linear Polytopic

Uncertain Continuous-time Systems
WANG Heng1 JU He-Hua1 YANG Guang-Hong2, 3

Abstract The paper studies the problem of fault detection filter design for uncertain linear continuous-time systems. A design
procedure dealing with parameter uncertainties is proposed for residual generation, the sensitivity to fault and the robustness against
disturbances are both enhanced on residual outputs through satisfying some performance indexes. By the aid of the generalized
Kalman-Yakubovich-Popov (GKYP) lemma, the fault sensitivity performance index can be dealt with in the given frequency range
directly, which avoids approximations associated with frequency weights of the existing techniques. An iterative algorithm based on
linear matrix inequality (LMI) is given to obtain the solutions. A numerical example is given to illustrate the effectiveness of the
proposed methods.
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Fault detection plays an important role in enhancing
the reliability and the safety of modern complex dynamic
systems, which has attracted more attention. Many ap-
proaches have been proposed to detect faults, e.g., the
multiple model and generalized likelihood methods, state
observer, and parameter estimation approaches[1−7].

In the literature, fault detection filters are usually de-
signed to detect faults, which rely on the use of partic-
ular type of state observers and produce the detection
residuals. For ideal systems, the classical unknown in-
put observer[8−9], and optimally robust parity relations
techniques[10] have already been proposed in the litera-
ture to eliminate or minimize the disturbance and mod-
eling error effects on residuals. However, in reality,
the system parameters may either be uncertain or time-
dependent, resulting in a mismatch between the actual
system and the associated mathematical model used for
residual generation[11]. For these cases, it is not possible
to totally decouple the fault effects from the perturbation
effects on the system, and the classical H∞ control the-
ory has been proved to be an effective tool to tackle these
issues[12−18].

Recently, the frequency domain techniques for robust
fault detection have received considerable attention. In
[19], a frequency domain fault detection and isolation fil-
ter were designed so as to make the associated residual
more robust to disturbances caused by unknown inputs. In
[11], the Kharitonov polynomials and Dasgupta geometry
were introduced to design the fault detection filter in the
frequency domain. In [20], a tool was developed for the
analysis of sampled-data systems in the frequency domain
from the fault detection and isolation viewpoint.

In this paper, we consider the fault detection filter de-
sign problem for linear uncertain systems in frequency do-
main with frequency ranges of faults being known before-
hand. By satisfying some performance indexes, the sensi-
tivity to fault and the robustness against disturbances are
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both enhanced on residual outputs. Different from the clas-
sical methods which use the weighting matrices to restrict
the frequency ranges of faults[21−25], the recently devel-
oped Kalman-Yakubovich-Popov (GKYP) lemma[26] is in-
troduced in this study to give direct treatment of the finite
frequency performances, completely avoiding approxima-
tions associated with frequency weights. An iterative lin-
ear matrix inequality (LMI) approach is given to solve the
fault detection filter design problem since it is nonconvex
in nature. It should be pointed out that the GKYP lemma
has already been applied in [27−28] for fault detection and
estimation, however, the fault sensitivity performance was
not considered in [27] and the approach proposed in [28]
cannot deal with the linear continuous-time systems with
uncertainties. These will all be investigated in this paper
to improve the approaches proposed in [27−28]. This pa-
per is organized as follows. Section 1 presents the problem
under consideration and some preliminaries. Section 2 con-
siders the fault detection filter design problem in details,
where an iterative linear matrix inequality (LMI) approach
is given. Section 3 shows the effectiveness of the proposed
design method via an example. Some concluding remarks
are given in Section 4.

Notations. For a matrix A, AT, and A⊥ denote its
transpose and orthogonal complement, respectively. I de-
notes the identity matrix with an appropriate dimension.
For a symmetric matrix, A (≥) > 0 and A (≤) < 0 denote
(semi) positive definiteness and (semi) negative definite-
ness, respectively. The Hermitian part of a square matrix
M is denoted by He(M) = M+MT. The symbol Hn stands
for the set of n×n Hermitian matrices. The symbol ∗ within
a matrix represents the symmetric entries. σmax(G) and
σmin(G) denote maximum and minimum singular values of
the transfer matrix G, respectively.

[
∆ij

]
N×N

=




∆11 ∆12 . . . ∆1N

∆21 ∆22 . . . ∆2N

...
...

. . .
...

∆N1 ∆N2 . . . ∆NN




1 Problem formulation

1.1 System model

Consider a linear time-invariant uncertain system de-
scribed by
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ẋ(t) = A(λ)x(t) + Bu(λ)u(t) + B(λ)f(t) + E(λ)w(t)

y(t) = C(λ)x(t) + Du(λ)u(t) + D(λ)f(t) + F (λ)w(t) (1)

where x(t) ∈ Rn is the state, x(0) = x0, u(t) ∈ Rnu is
an external input, f(t) ∈ Rp is the fault vector which de-
notes the actuator or component fault, w(t) ∈ Rnw is the
bounded external disturbance, and y(t) ∈ Rm denotes the
measured output with m ≥ p. All matrix dimensions are
known, A(λ) is assumed to be stable, and it is assumed
that matrix M̄(λ), which is defined as

M̄(λ) =

[
A(λ) Bu(λ) B(λ) E(λ)
C(λ) Du(λ) D(λ) F (λ)

]
(2)

is unknown but belongs to a given convex bounded poly-
hedral domain Dc. That is, each uncertain matrix in this
domain may be written as an unknown convex combination
of s given extreme matrices M̄1, M̄2, · · · , M̄s such that

Dc =
{

M̄(λ) : M̄(λ) =

s∑
i=1

λiM̄i, λi ≥ 0,

s∑
i=1

λi = 1
}

(3)

where uncertain parameters, λi, i = 1, · · · , s are not avail-
able.

To detect fault f(t), we design a fault detection filter
which is of the following form:

˙̂x(t) = Af x̂(t) + Bfy(t), ŷ(t) = Cf x̂(t) + Dfy(t) (4)

where the vector x̂(t) is the filter state vector, and Af , Bf ,
Cf , and Df are real matrices of appropriate dimensions to
be determined, and ŷ(t) is the output of the fault detection
filter. The order of the filter nf is restricted to be equal to
the system order n. Then, we get the residual output r(t)
as

r(t) = y(t)− ŷ(t) (5)

Combining (1) and (4), we have the following augmented
model:

ξ̇(t) = Ā(λ)ξ(t) + B̄u(λ)u(t) + B̄(λ)f(t) + B̄w(λ)w(t)

r(t) = C̄(λ)ξ(t) + D̄u(λ)u(t) + D̄(λ)f(t) + F̄ (λ)w(t) (6)

where r(t) is the estimation error, ξ(t) =
[
x(t)T x̂(t)T

]T
,

and

1.2 Problem formulation and preliminaries

The fault detection problem can be expressed as follows.
Fault detection filter design problem. Given sys-

tem (1), design a fault detection filter (4) such that the aug-
mented model (6) is stable, and the fault effects on residual
are maximized while the disturbance and reference input ef-
fects on residual are minimized. More specifically, we will

find a filter such that the following performance indexes are
satisfied

1) sup
ω∈Ω1

σmax(Gru(jω)) < γu, Ω1 = [$1, $2] (7)

2) sup
ω

σmax(Grw(jω)) < γw (8)

3) inf
ω∈Ω2

σmin(Grf (jω)) > β, Ω2 = [−$l, $l] (9)

where

Gru(jω) = C̄(λ)(jω + D̄u(λ)I − Ā(λ))−1B̄u(λ)

Grw(jω) = C̄(λ)(jωI − Ā(λ))−1B̄w(λ) + F̄ (λ)

Grf (jω) = C̄(λ)(jωI − Ā(λ))−1B̄(λ) + D̄(λ)

are the transfer function matrices from reference input u(t),
disturbance w(t), and fault f(t) to residual output r(t), re-
spectively. $1, $2, and $l are given scalars which reflect
the frequency ranges of external input and faults, respec-
tively. The minus sign of −$l denotes the direction of
rotation, which does not affect the physical meaning of fre-
quency ω.

Remark 1. Conditions (8) and (9) are used to minimize
the effects of reference input and disturbance on residual
outputs. Condition (10) is used to maximize the effects of
faults on residual outputs in finite frequency ranges. Note
that the fault f(t) is restricted to the low frequency range
in condition (10). This usually occurs in practice, e.g., the
stuck fault (ω = 0) considered in [29−30] and the incipi-
ent fault stated in [3] both belonged to the low frequency
domain. The frequency range of input u(t) is assumed to
be in certain frequency range [$1, $2], which is known be-
forehand.

The following preliminaries are essential for later devel-
opments.

Lemma 1 (GKYP Lemma[26]). Given system
(A, B, C, D), if symmetric matrix Π is of appropriate di-
mension, the following statements are equivalent:

1) The finite frequency inequality
[
G(jω)

I

]T

Π

[
G(jω)

I

]
< 0, ∀ω ∈ Ω` (10)

where G(jω) = C(jωI −A)−1B + D, ` = 1, 2.
2) There exist matrices P and Q satisfying Q > 0, and

[
A B
I 0

]T

Ξ

[
A B
I 0

]
+

[
C D
0 I

]T

Π

[
C D
0 I

]
< 0 (11)

where Ξ =

[ −Q P − j$cQ
P − j$cQ −$1$2Q

]
, ωc = ($1 + $2)/2,

for middle frequency range ω ∈ Ω1, Ξ =

[−Q P
P $2

l Q

]
for

low frequency range ω ∈ Ω2

Lemma 2 (Finsler′s Lemma[31]). If Q ∈ Rn×n and
U ∈ Rn×m, and if U⊥ be any matrix such that U⊥U = 0,
then the following statement are equivalent:

1) U⊥QU⊥T
< 0;

2) ∃Y ∈ Rm×n : Q+ UY + YTUT < 0.
The following lemma provides an alternative condition

for inequality (12). We define J, H̄, and L̄ of appropriate
dimensions as

J =




I 0
0 I
0 0


 , H̄ =




0 0
CT 0
DT I


 , L̄ =



−I
AT

BT






744 ACTA AUTOMATICA SINICA Vol. 36

Lemma 3. For matrix variables P, Q ∈ Rn×n and
Q > 0, the condition in (12) holds if there exists X of
appropriate dimension such that

JΞJT + H̄ΠH̄T < He(L̄X ) (12)

holds, where Ξ and Π are the same as those defined in
Lemma 1.

Proof. Notice that the null space of L̄ is

[
AT I 0
BT 0 I

]
.

Using Lemma 2, the result is immediate. ¤
Lemma 4. Inequality condition




λ1I
...

λsI




T

s∑

k=1

λkJk




λ1I
...

λsI


 ≥ 0 (13)

holds if there exist symmetric matrices Jj
ii, j 6= i, 1 ≤ i ≤ s,

1 ≤ j ≤ s, and Jk
ij , 1 ≤ i < j ≤ s, 1 ≤ k ≤ s such that the

following LMIs hold:

Jj
ii + J i

ij + (J i
ij)

T > 0, 1 ≤ i < j ≤ s (14)

J i
jj + Jj

ij + (Jj
ij)

T > 0, 1 ≤ i < j ≤ s (15)

He(Jk
ij + Jj

ik + J i
jk) > 0, 1 ≤ i < j < k ≤ s (16)

where Jk =
[
Jk

ij

]
s×s

, J i
ii = 0, Jk

ij = (Jk
ji)

T, 1 ≤ i < j ≤ s.

Proof. Note that



λ1I
...

λsI




T

s∑

k=1

λkJk




λ1I
...

λsI


 =

s∑

k=1

λk




λ1I
...

λsI




T

×




Jk
11 . . . Jk

1s

...
. . .

...
(Jk

1s)
T · · · Jk

ss


×




λ1I
...

λsI


 =

s∑
i=1

s∑
j=i+1

λ2
i λj(J

j
ii + J i

ij + (J i
ij)

T) +

s∑
i=1

s∑
j=i+1

λiλ
2
j (J

i
jj + Jj

ij + (Jj
ij)

T) +

s∑
i=1

s∑
j=i+1

s∑

k=j+1

λiλjλkΥijk

where Υijk = He(Jk
ij + Jj

ik + J i
jk). Then, from (15) ∼ (17),

the result is immediate. ¤

2 Fault detection filter design

This section considers the fault detection filter design
problem. Since it is a nonconvex problem in nature, an
iterative LMIs approach is proposed to solve the fault de-
tection filter design problem. This section is arranged as
follows. Inequality conditions for performance indexes (8)
∼ (10) are formulated in Subsections 2.1 and 2.2, an algo-
rithm is given in Subsection 2.3.

2.1 Conditions for disturbance attenuation objec-
tive

The following lemma is essential for the main theorem
of this section.

Lemma 5. Given the same matrices Ā(λ), B̄w(λ), C̄(λ),
F̄ (λ) as stated in (6), the following statements are equiva-
lent:

1) There exist matrix variables Af , Bf , Cf , X =[
X11 X12

∗ X22

]
and positive scalar γ such that




Ā(λ)TX + XĀ(λ) XB̄w(λ) C̄T(λ)
∗ −γI (F (λ)−DfF (λ))T

∗ ∗ −γI


 < 0

(17)

holds, where Ā(λ) =

[
A(λ) 0

BfC(λ) Af

]
, C̄(λ) =

[
C(λ)−DfC(λ) −Cf

]
.

2) There exist matrix variables Afe, Bfe, Cfe, Xa =[
Y −N
−N N

]
and positive scalar γ such that




Āa(λ)TXa+XĀa(λ) XaB̄w(λ) C̄T(λ)
∗ −γI (F (λ)−DfF (λ))T

∗ ∗ −γI


<0

(18)

holds, where Āa(λ) =

[
A(λ) 0

BfeC(λ) Afe

]
, C̄a(λ) =

[
C(λ)−DfC(λ) −Cfe

]
.

Proof. Define X =

[
X11 X12

∗ X22

]
with X12, X22 ∈ Rn×n

being nonsingular. Then, we have

Xa =

[
I 0
0 −X12X

−1
22

]
X

[
I 0
0 −X12X

−1
22

]T

=

[
Y −N
−N N

]

with Y = X11 and N = X12X
−1
22 XT

12. Let

F̄ =

[
I 0
0 −X12X

−1
22

]
, F = diag{F̄ , I, I} (19)

Then, multiplying the left-hand side of (18) by full rank
matrix F while multiplying the right-hand side of (18) by
FT produces (19) with

Āa(λ) =

[
I 0
0 −X−1

22 XT
12

]−1

Ā(λ)

[
I 0
0 −X−1

22 XT
12

]
=

[
A(λ) 0

BfeC(λ) Afe

]

Afe = (XT
12)

−1X22AfX−1
22 XT

12, Bfe = −(XT
12)

−1X22Bf

C̄a =
[
C(λ)−DfC(λ) −Cfe

]
, Cfe = −CfX−1

22 XT
12

¤
From Lemma 5, it can be concluded that the matrix

variable X can be chosen to be

[
Y −N
−N N

]
without in-

troducing any conservatism. Then, we have the following
theorem, which provides a sufficient condition for perfor-
mance index (9).

Theorem 1. Consider system model (6) and let real ma-
trices Ā(λ) ∈ R2n×2n, B̄w(λ) ∈ R2n×nw , C̄(λ) ∈ Rm×2n,
F̄ (λ) ∈ Rm×nw . The augmented system (6) is stable and
the condition

σmax(Grw(jω)) < γw, ∀ω ∈ R (20)



No. 5 WNAG Heng et al.: Fault Detection Filter Design for Linear Polytopic Uncertain Continuous-time Systems 745

holds, if there exist matrix variables Y, N,A = NAf ,B =

NBf , satisfying X =

[
Y −N
−N N

]
> 0, and




ψi −A+ (−NAi + BCi)
T Y Ei − BFi

∗ A+AT −NEi + BFi

∗ ∗ −γwI
∗ ∗ ∗

(Ci −DfCi)
T

−CT
f

(Fi −DfFi)
T

−γwI


 < 0, i = 1, · · · , s (21)

where ψi = Y Ai − BCi + (Y Ai − BCi)
T.

Proof. Applying the bounded real lemma[32], we have
that condition (21) satisfied if and only if the following in-
equality holds:




Ā(λ)TX + XĀ(λ) XB̄w(λ) C̄(λ)T

∗ −γwI F̄ (λ)T

∗ ∗ −γwI


 < 0 (22)

Applying Lemma 5, we have that matrix variable X can

be chosen as X =

[
Y −N
−N N

]
without introducing any

conservatism. Then, (23) becomes




ψ(λ) −A+ (−NA(λ) + BC(λ))T

∗ A+AT

∗ ∗
∗ ∗

Y E(λ)− BF (λ) (C(λ)−DfC(λ))T

−NE(λ) + BF (λ) −CT
f

−γwI (F (λ)−DfF (λ))T

∗ −γwI


 < 0

(23)

where ψ(λ) = Y A(λ)− BC(λ) + (Y A(λ)− BC(λ))T.
Since inequality (22) is linearly dependent on

Ai, Ei, Ci, Fi, multiplying each inequality in (22) by the
uncertain parameter λi and then evaluating the sum from
i = 1, · · · , s produces (24). ¤

Theorem 2. Consider system model (6) and let real
matrices Ā(λ) ∈ R2n×2n, B̄u(λ) ∈ R2n×nu , and C̄(λ) ∈
Rm×2n. The augmented system (6) is stable, and the con-
dition

σmax(Gru(jω)) < γu, ∀ω ∈ [$1, $2] (24)

holds, if there exist matrix variables Y, N,A = NAf ,B =

NBf , P̄i =

[
Pai Pbi

∗ Pci

]
, Q̄i =

[
Qai Qbi

∗ Qci

]
satisfying

Q̄i > 0, and




−Qai −Qbi Pai + j$cQai − Y Pbi + j$cQbi + N
∗ −Qci PT

bi + j$cQbi + N Pci + j$cQci −N
∗ ∗ Υ1i Υ2i

∗ ∗ ∗ −$1$2Qbi +A+AT

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0
0 0

Y Bui CT
i − CT

i DT
f

−NBui −CT
f

−γ2
uI Dui −DfDui

∗ −I




< 0, i = 1, · · · , s

(25)

where $c = ($1 +$2)/2, Υ1i = −$1$2Qai +Y Ai−BCi +
(Y Ai−BCi)

T, and Υ2i = −$1$2Qbi−A+(−NAi+BCi)
T.

Proof. Given Π =

[
I 0
0 −γ2

uI

]
, (11) becomes (25). Ap-

plying Lemmas 1 and 3, we have that condition (25) is sat-
isfied if the following inequality is feasible for some matrix
X of appropriate dimension:

JΞJT + H̄ΠH̄T < He(L̄X ) (26)

where Ξ =

[ −Q̄(λ) P̄ (λ) + j$cQ(λ)
P̄ (λ)− j$cQ(λ) −$1$2Q̄(λ)

]
, H̄ =




0 0
C̄(λ)T 0
D̄(λ)T I


, and L̄ =




−I
Ā(λ)T

B̄(λ)T


.

By rewriting the matrix X as X = XR and setting

R =
[
0 −I 0

]

using Schur complement, and after some matrix manipula-
tion, (27) becomes




−Q̄(λ) P̄ (λ) + j$cQ̄(λ)−X
∗ −$1$2Q̄(λ) + Ā(λ)TX + XĀ(λ)
∗ ∗
∗ ∗

0 0
XB̄u(λ) C̄(λ)T

−γ2
uI D̄u(λ)T

∗ −I


 < 0 (27)

Similar to Theorem 1, X are chosen as X =

[
Y −N
−N N

]

without introducing any conservatism. Multiplying each
inequality in (26) by uncertain parameter λi and then eval-
uating the sum from i = 1, · · · , s produces (28). ¤

Remark 2. From the proof of Theorem 2, it can be
seen that since the matrix R needs to be determined be-
forehand, only sufficient conditions are obtained for (25) in
Theorem 2. A similar treatment was also presented in [33].

2.2 Conditions for fault detection objective

The following theorem provides inequality conditions for
performance index (10).

Theorem 3. Consider system model (6) and let real
matrices Ā(λ) ∈ R2n×2n, B̄(λ) ∈ R2n×p, C̄(λ) ∈ Rm×2n,

D̄(λ) ∈ Rm×p, and symmetric matrix Π1 =

[−I 0
0 β2I

]
be
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given. Then, the inequality condition

σmin(Grf (jω)) > β, ∀|ω| ≤ $l (28)

holds, if there exist matrix variables Y, N,A = NAf ,B =

NBf , P̄1(λ) =

[
P1(λ) P2(λ)
∗ P3(λ)

]
, Q̄1(λ) =

[
Q1(λ) Q2(λ)
∗ Q3(λ)

]

satisfying Q̄1(λ) > 0, and

∆(λ) < 0 (29)

where

∆(λ) =



−Q1(λ) −Q2(λ) P1(λ)− Y P2(λ) + N Y B0

∗ −Q3(λ) P2(λ)T + N P3(λ)−N −NB0

∗ ∗ Γ1(λ) Γ2(λ) Γ4(λ)
∗ ∗ ∗ Γ3(λ) Γ5(λ)
∗ ∗ ∗ ∗ Γ6(λ)




with

Γ1(λ)=$2
l Q1(λ)+Y A(λ)−BC(λ)+(Y A(λ)−BC(λ))T −

C(λ)TC(λ) + C(λ)TDT
f C(λ) −

C(λ)TDT
f Df0C(λ) + C(λ)TDfC(λ) −

C(λ)TDT
f0DfC(λ) + C(λ)TDT

f0Df0C(λ)

Γ2(λ) = $2
l Q2(λ)−A+ (−NA(λ) + BC(λ))T +

C(λ)TCf − C(λ)TDT
f Cf0 − C(λ)TDT

f0Cf+

C(λ)TDT
f0Cf0

Γ3(λ) = $2
l Q3(λ) +A+AT − CT

f Cf0 − CT
f0Cf + CT

f0Cf0

Γ4(λ) = Y B(λ)− (Y A(λ)− BC(λ))TB0

Γ5(λ) = −NB(λ) +ATB0

Γ6(λ) = β2I −BT
0 Y B(λ)−B(λ)TY TB0

where Cf0 and Df0 are auxiliary variables which provide
the initial values of Cf and Df ; B0 is a nominal value of
the system matrix B(λ).

Proof. Similar to Theorem 2, given Π1 =

[−I 0
0 β2I

]
,

(11) becomes (29). Applying Lemmas 1 and 3, we have
that condition (29) is satisfied if the following inequality is
feasible for some matrix X of appropriate dimension:

JΞ1J
T + H̄1Π1H̄

T
1 < He(L̄1(λ)X ) (30)

where Ξ1 =

[−Q̄1(λ) P̄1(λ)
P̄1(λ) $2

l Q̄1(λ)

]
.

H̄1 =




0 0
C̄(λ)T 0
D̄(λ)T I


 , L̄1(λ) =




−I
Ā(λ)T

B̄(λ)T




By rewriting the matrix X as X = XR1 and setting

R1 =

[
0 −I

[
B0

0

]]

where B0 is the nominal value of the system matrix B(λ),
using Schur complement, and after some matrix manipula-
tion, (31) becomes

Ω(λ)−Θ(λ)TΘ(λ) < 0 (31)

where

Ω(λ) =



−Q̄1(λ) P̄1(λ)−X

∗ $̄2
l Q̄1(λ) + XĀ(λ) + Ā(λ)TX

∗ ∗

X

[
B0

0

]

XB̄(λ)− Ā(λ)TX

[
B0

0

]

β2I − B̄(λ)TX

[
B0

0

]
− (B̄(λ)TX

[
B0

0

]
)T




and Θ(λ) =
[
0 C̄(λ) D̄(λ)

]
where C̄(λ) =[

C(λ)−DfC(λ) −Cf

]
, D̄(λ) = D(λ)−DfC(λ).

As is known to all, there exists Θ0(λ) =[
0 C̄0(λ) D̄0(λ)

]
with

C̄0(λ)=
[
C(λ)−Df0C(λ)−Cf0

]
, D̄0(λ)=D(λ)−Df0C(λ)

such that

(Θ(λ)−Θ0(λ))T(Θ(λ)−Θ0(λ)) ≥ 0

holds. It can be concluded that if

Ω(λ)−Θ(λ)TΘ(λ) + (Θ(λ)−Θ0(λ))T(Θ(λ)−Θ0(λ)) < 0
(32)

holds, (32) readily. On the other hand, if (32) holds, there
always exists Θ0(λ) = Θ(λ) such that (33) becomes (32),
so we have that (33) is equivalent to (32).

Similar to Lemma 5, here X is chosen as X =[
Y −N
−N N

]
without introducing any conservatism. Then,

after some matrix manipulation, (33) becomes (30), which
completes the proof. ¤

Remark 3. From the proof of Theorem 3, it can be con-
cluded that matrices Cf0 and Df0 are two auxiliary matrix
variables introduced here to provide initial values of ma-
trix variables Cf and Df for the later iterative algorithm.
Matrix B0 denotes the nominal value of B(λ) which corre-
sponds to the case when there is no uncertainty in B(λ).

Note that inequality condition (30) cannot be imple-
mented since it is not convex in parameter λ due to the
product term C(λ)TC(λ). To solve this problem, the fol-
lowing theorem is presented to provide a sufficient condition
for inequality (30).

Theorem 4. The condition in (30) holds if there ex-

ist matrix variables Jk
ii, Jk

ij , Y, N,A,B, P̄1i =

[
P1i P2i

∗ P3i

]
,

Q̄1i =

[
Q1i Q2i

∗ Q3i

]
satisfying Q̄1i > 0, and the following

inequalities:

Jj
ii + J i

ij + (J i
ij)

T > 0, 1 ≤ i < j ≤ s (33)

J i
jj + Jj

ij + (Jj
ij)

T > 0, 1 ≤ i < j ≤ s (34)

He(Jk
ij + Jj

ik + J i
jk) > 0, 1 ≤ i < j < k ≤ s (35)[

∆ij

]
s×s

+
[
Jk

ij

]
s×s

< 0, 1 ≤ k ≤ s (36)

where

∆ij =




−Q1i −Q2i P1i − Y P2i + N Y B0

∗ −Q3i PT
2i + N P3i −N −NB0

∗ ∗ Γ1ij Γ2i Γ4i

∗ ∗ ∗ Γ3i Γ5i

∗ ∗ ∗ ∗ Γ6i
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with

Γ1ij = $2
l Q1i + Y Ai − BCi + (Y Ai − BCi)

T − CT
i Cj +

CT
i DT

f Cj − CT
i DT

f Df0Cj + CT
i DfCj −

CT
i DT

f0DfCj + CT
i DT

f0Df0Cj

Γ2i = $2
l Q2i −A+ (−NAi + BCi)

T + CT
i Cf −

CT
i DT

f Cf0 − CT
i DT

f0Cf + CT
i DT

f0Cf0

Γ3i = $2
l Q3i +A+AT − CT

f Cf0C
T
f0Cf + CT

f0Cf0

Γ4i = Y Bi − (Y Ai − BCi)
TB0

Γ5i = −NBi +ATB0

Γ6i = β2I −BT
0 Y Bi −BT

i Y TB0

Proof. Pre- and post-multiplying (37) by[
λ1I · · · λsI

]
and its transpose, we have

s∑
i=1

s∑
j=1

λiλj∆ij +




λ1I
...

λsI




T

Jk




λ1I
...

λsI


 < 0 (37)

where Jk =
[
Jk

ij

]
s×s

. Note that ∆(λ) =∑s
i=1

∑s
j=1 λiλj∆ij . Then, multiplying each inequality

in (38) by the uncertain parameter λk and then evaluating
the sum from k = 1, · · · , s produces

∆(λ) +




λ1I
...

λsI




T

s∑

k=1

λkJk




λ1I
...

λsI


 < 0 (38)

Applying Lemma 4, the result is immediate. ¤
2.3 Solutions

Till now, inequality conditions for (8) ∼ (10) have been
formulated in Theorems 1, 2, and 4, respectively. Summar-
ily, we have the following theorem.

Theorem 5. Consider the uncertain system model (1),
there exists a filter (4) such that the augmented system
model (6) is stable and satisfies performance indexes (8)
∼ (10) if inequality conditions (22), (26), and (34) ∼ (37)
hold.

Proof. Combining Theorems 1, 2, and 4, it is immedi-
ate. ¤

Note that all the inequalities to be satisfied in Theorem 5
are LMIs except those in (37) because of the product terms
between auxiliary variables Cf0, Df0 and Cf , Df . To solve
this problem, the following algorithm is proposed which
gives an integrated design process for appropriate solutions
of the fault detection filter parameters Af , Bf , Cf , Df .

Algorithm 1. Given system (1), the augmented system
model is denoted by (6). Let ε0 be a given large enough
constant specifying a stop criterion of this algorithm.

Step 1. Minimize auγu + awγw subject to LMI con-
straints (22) and (6). The optimal solutions are denoted as
C0

fopt , D0
fopt , and γopt

u and γopt
w .

Step 2. Choose γu > γopt
u , γw > γopt

w , C1
f = C0

fopt ,

D1
f = D0

fopt , and maximize β subject to LMI constraints

(22), (26), (34) ∼ (37) for i = 1, · · · , s. Let Cv
f = Cv−1

fopt
,

Dv
f = Dv−1

fopt
, where Cv−1

fopt
and Dv−1

fopt
are the solutions of the

(v − 1)-th optimization.

If βv0 < ε0 for some Cv0
fopt

, Dv0
fopt

, denote Cv0+1
f = Cv0

fopt
,

Dv0+1
f = Dv0

fopt
, and repeat the above optimization, else

continue.
Step 3. When βv ≥ ε0 for any v in Step 2, exit.
Step 4. The filter parameters Af , Bf are then obtained

as Af = N−1A, Bf = N−1B.
Remark 4. In Algorithm 1, Step 1 corresponds to an

LMI optimization problem resulting from Theorems 1 and
2, to satisfy conditions (8) and (9), and to find Cf , Df

which provide the initial solutions for the iterative opti-
mization in Step 2. Step 2 performs an iterative optimiza-
tion on auxiliary variables Cf0, Df0 so that the conditions
in Theorems 1, 2, and 4 can be satisfied simultaneously for
the given performance constraints (8) ∼ (10).

After the fault detection, filter parameter matrices
Af , Bf , Cf , and Df are designed, the residual evaluation
function Jr(τ) and the threshold Jth can be selected as

Jr(τ) = (τ−1

∫ τ

0

rT(t)r(t)dt)
1
2

where τ denotes the evaluation time. Under fault-free con-
ditions, the residual output

r(s) = Gru(s)u(s) + Grw(s)w(s)

Similar to [18], via the Parseval′s theorem, we have that

‖r(jω)‖rms,t,f=0 ≤ ‖Gru(jω)‖∞‖u(jω)‖rms+

‖Grw(jω)‖∞‖w(jω)‖rms =

γu‖u(jω)‖rms + γww̄ (39)

where w̄ is a convenient upper bound to the rms-norm of
the worst disturbance. Then, the threshold can be obtained
as

Jth(t) = γww̄ + γu‖u(jω)‖rms (40)

Based on this, the occurrence of faults can be detected by
the following logic rule:

{
Jr(τ) ≤ Jth, no alarm
Jr(τ) > Jth, alarm

(41)

3 Numerical example

This section gives two numerical examples to illustrate
the effectiveness of our approach.

Example 1. Consider the following system model pre-
sented in [18]

y1(s) =
k3

s2 + θ1s + θ2
(u(s) + f(s)) +

k1k3

(s2 + θ1s + θ2)(T1s + 1)
d1(s) + k2

T2s + 1

T3s + 1
d2(s)

y2(s) =
k3s

s2 + θ1s + θ2
(u(s) + f(s)) +

k1k3s

(s2 + θ1s + θ2)(T1s + 1)
d1(s)

where T1 = 0.1 s, T2 = 1 s, T3 = 0.2 s, k1 = 0.3, k2 = 0.2,
k3 = 1, and parameters θ1 and θ2 belong to the intervals
0.5 ≤ θ1 ≤ 1.2, 1 ≤ θ2 ≤ 1.5. The signals d1(s) and d2(s)
are assumed to be unitary variance white noises. The
frequency range of faults f(t) is known beforehand, i.e.,
|ω| ≤ 0.1. Applying Algorithm 1, firstly, we get the initial
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values of Cf , Df to be

Cf0 =

[−0.0344 0.9979 0.8251 −0.2660
1.0235 −0.0415 0.9634 −0.6504

]

Df0 =

[−0.0057 −0.0163
−0.0004 0.1305

]

Finally, the fault detection filter parameters are obtained
to be

Af =




−6.5407 4.9819 8.5243 16.5591
2.8526 −3.5595 −4.9398 −8.6023
3.6148 −2.0048 −4.7440 −5.7387
8.5232 −6.9000 −12.2845 −23.4843




Cf =

[−0.1806 0.8426 0.0934 −1.4463
0.8988 −0.0345 −0.5393 −1.6961

]

Bf =




−4.3787 7.7769
3.0648 −4.6219
2.2988 −4.1262
7.4942 −10.2365


 , Df =

[−0.9511 −0.4885
0.3859 0.5523

]

The fault sensitivity performance index β is obtained as
1.7, the other performance indexes γu = 1.5956 and γw =
0.9502.

To illustrate the simulation results, assume that a con-
stant fault f(t) = 1 (ω = 0) occurs at t = 50 s, and the
reference input u(t) = 0.5 sin(5t).

When θ1 = 1.2 and θ2 = 1, the residual output is shown
in Fig. 1. From Fig. 1, it can be seen that the robustness
against disturbance and the fault sensitivity are both en-
hanced, and the faults are well discriminated from distur-
bances.

To illustrate the advantage of our approach, following
the approach presented in [18], where the frequency ranges
of f(t) and u(t) were restricted by choosing appropriate
weights, we get the fault detection filter parameters as

Af =




−1.3994 2.2675 2.3837 1.8453
0.6967 −6.8895 −6.0145 −7.2073
−2.1301 1.2942 −2.3419 1.6826
−0.5576 −1.5666 1.0110 −5.2763




Bf =




0.5695 −0.8553 0
−5.5605 −0.7750 0
2.3988 −0.4542 0
3.3906 −1.9045 0




Cf =

[−0.0965 −1.3810 −0.0712 −0.0910
−0.3172 0.6337 −0.7169 0.8604

]

Df =

[
0.9493 0.3479 −0.2317
−0.1608 0.3532 0.1150

]

and the residual output is shown in Fig. 2. From Figs. 1
and 2, it can be concluded that our approach obtains bet-
ter fault sensitivity.

When θ1 = 1.2 and θ2 = 1, with the fault detection fil-
ter obtained in this paper, the singular value of the trans-
fer function matrices Grf (jω), Gru(jω), Grw(jω) in certain
frequency ranges are plotted in Fig. 3. Fig. 4 shows the sin-
gular value plots of Grf (jω), Gru(jω), Grw(jω) using the
approach of [22].

Choosing the residual evaluation function and determin-
ing the threshold according to (41), we get the residual

evaluation outputs and the thresholds as shown in Fig. 5,
where the threshold is 0.6592. When the stuck fault occurs,
it can readily be detected through the fault detection filters
designed in this paper.

The following example includes the case when there is
parameter uncertainty in system matrix C.

Fig. 1 Residual output r(t) of Example 1
using the approach of this paper

Fig. 2 Residual output r(t) of Example 1 using the existing
techniques

Fig. 3 Singular value plots of this paper ((a) The singular
value plot of σmin(Grf (jω)) when θ1 = 1.2, θ2 = 1; (b) The

singular value plot of σmax(Gru(jω)) when θ1 = 1.2, θ2 = 1; (c)
The singular value plot of σmax(Grw(jω)) when θ1 = 1.2,

θ2 = 1)

Fig. 4 Singular value plots of existing techniques ((a) The
singular value plot of σmin(Grf (jω)) when θ1 = 1.2, θ2 = 1; (b)

The singular value plot of σmax(Gru(jω)) when θ1 = 1.2,
θ2 = 1; (c) The singular value plot of σmax(Grw(jω)) when

θ1 = 1.2, θ2 = 1)
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Example 2. Consider the system model

ẋ(t) =

[
0 −0.8

1− θ1 −2

]
x(t) +

[
0
1

]
(u(t) + f(t))+

[−0.45
0.35

]
w(t)

y(t) =
[
0.5 + θ2 −1.5

]
x(t) + 0.05w(t) (42)

where 0 ≤ θ1 ≤ 0.2, 0 ≤ θ2 ≤ 0.2, and the frequency range
of faults is |ω| ≤ 0.1.

To detect fault f(t), a fault detection filter

ẋ(t) = Afxf (t) + Bfy(t)

ŷ(t) = Cfxf (t)

is designed. Firstly, the initial value of Cf is ob-
tained through Step 1 of Algorithm 1 as Cf0 =[
0.4853 −1.4183

]
, filter parameter matrices are obtained

as

Af =

[−0.7073 1.1811
0.6134 −1.4369

]
, Bf =

[
0.5969
0.7559

]

Cf =
[
0.4462 −1.7461

]

performance index γw = 0.8367, γu = 0.8944, and β =
1.0877.

When θ1 = 0.1, θ2 = 0.15, we get the residual output
as shown in Fig. 6, the residual evaluation outputs and the
thresholds as shown in Fig. 7, where the threshold is 0.4.
When a stuck fault occurs, it can readily be detected.

Fig. 5 The residual evaluation output of Example 1 (solid
line) and the threshold (dashed line)

Fig. 6 Residual output r(t) of Example 2 using the approach
of this paper

Fig. 7 The residual evaluation output of Example 2 (solid
line) and the threshold (dashed line)

4 Conclusions

In this paper, the problem of fault detection filter de-
sign for uncertain linear continuous-time systems has been
investigated. By the aid of the GKYP lemma and the
bounded real lemma, inequality conditions for the finite fre-
quency fault sensitivity performance and the full frequency
disturbance robustness performance are both formulated.
LMI conditions and iterative algorithm based on linear ma-
trix inequality have been proposed, respectively. By com-
paring with existing techniques, the numerical example has
illustrated the effectiveness of the proposed approach.
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