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Decentralized Fault Diagnosis of

Large-scale Processes Using

Multiblock Kernel Principal
Component Analysis
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Abstract In this paper, a multiblock kernel principal com-
ponent analysis (MBKPCA) algorithm is proposed. Based on
MBKPCA, a new fault detection and diagnosis approach is pro-
posed to monitor large-scale processes. In particular, definitions
of nonlinear block contributions to T 2 and the squared predic-
tion error (SPE) statistics are first proposed in order to diagnose
nonlinear faults. In addition, the relative contribution, which is
the ratio of the contribution to the corresponding upper control
limit, is considered to find process variables or blocks responsi-
ble for faults. The proposed method is applied to fault detection
and diagnosis in the Tennessee Eastman process. The proposed
decentralized nonlinear approach effectively captures the nonlin-
ear relationship in the block process variables and shows superior
fault diagnosis ability compared with other methods.
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Multivariate statistical approaches based on principal
component analysis (PCA) have been widely applied in in-

dustry for process monitoring[1−7]. PCA divides data sys-
tematically into two parts; the first part is the data with
wide variation and the second part is the data with the
least variance, which is noisy. Two statistics, T 2 and the
squared prediction error (SPE) are used for process mon-
itoring in the model and residual subspaces, respectively.
Due to large-scale process dimensionalities and nonlineari-
ties, process monitoring and diagnosis become difficult and
the results obtained by PCA methods are hard to interpret
for reaching a proper decision[8−12].

For a complicated large-scale process, consensus PCA
(CPCA) models the process by dividing all measured vari-
ables into several blocks, which implements decentralized
monitoring[9]. The multiblock approach effectively cap-
tures the relationship in the complex process variables
and shows superior fault diagnosis ability in large-scale
processes compared with other methods. Advantages of
the multiblock approach are as follows: 1) Multiblock ap-
proaches can reduce the complexity of process analysis;
2)Multiblock process diagnosis monitors processes in a de-
centralized manner. However, CPCA performs poorly be-
cause it uses second-order statistics and assumes linearity
when it is applied to large-scale process data having non-
linear characteristics.

To solve the problem posed by nonlinear data, nonlinear
PCA approaches have been developed. Mark[13] developed
auto-associative neural networks having five layers (input,
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mapping, bottleneck, damping, and output layers). Dong

and McAvoy[14] proposed a nonlinear PCA based on princi-
pal curves and neural networks and applied it to nonlinear
process monitoring. Alternative nonlinear PCA methods
based on input-training neural networks[15] have been also
developed. However, most of the existing nonlinear PCA
approaches are based on neural networks; thus, a nonlinear
optimization problem has to be solved to compute principal
components, and the number of principal components must
be specified in advance before training the neural network.
Recently, kernel theory has found increasing numbers of
applications in nonlinear processes[16−22]. Kernel principal
component analysis (KPCA) was introduced for nonlinear

process monitoring and fault detection[23−24]. KPCA com-
putes principal components in a high-dimensional feature
space, which is nonlinearly related to the input space. How-
ever, fault diagnosis is difficult since the nonlinear mapping
function from input space to feature space is unknown.

In this paper, a new fault detection and diagnosis ap-
proach based on multiblock kernel principal component
analysis,(MBKPCA) is proposed to monitor large-scale
processes. In Section 1, an iterative KPCA based on nonlin-
ear iterative partial least squares (NIPALS)[9] is proposed;
also, MBKPCA algorithm is proposed and discussed in this
section. In Section 2, MBKPCA for diagnosis is described.
Then, the superiority of MBKPCA and its application to
process monitoring are illustrated through the Tennessee
Eastman process in Section 3. Finally, Conclusions are
given in Section 4.

1 Multiblock kernel principal component
analysis (MBKPCA)

1.1 An iterative algorithm for KPCA

KPCA is an extension of PCA, and it can be solved as
an eigenvalues problem of its kernel matrix. NIPALS[9]

algorithm is used for the computation of PCA. NIPALS
offers the same result as the eigenvalue method proposed
by Scholkopf[19], but with NIPALS algorithm, the nonlinear
principal components (PCs) are obtained one by one. The
NIPALS algorithm is proposed in Table 1.

Table 1 NIPALS for KPCA

Step For comprehension For computation

1 Scale K Scale K

2 Initialize ttti Initialize ttti

3 pppi = ΦT
i ttti/‖ΦT

i ttti‖ ttti = Kittti/
√

tttTi Kittti

ttti = Φipppi

Loop until ttti converges Loop until ttti converges

4 Φi+1 = (I − tttittt
T
i /tttTi ttti)Φi Ki+1 = (I − tttittt

T
i /tttTi ttti)×

Ki(I − tttittt
T
i /tttTi ttti)

Go to Step 3 Go to Step 3

In the first step of iteration, loadings vector pppi is obtained
as:

pppi = ΦT
i ttti (1)

where Φ is the mapping of x from the input space into
the feature space and ttt in the score vector. Then, pppi is
normalized to unit length by

pppi =
pppi

‖pppi‖ =
pppi√

tttTi Kittti

(2)

In the second step of iteration, the scores vector is updated
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by

ttti = Φipppi (3)

By combining (2) and (3),

ttti = Φipppi =
ΦiΦ

T
i ttti

‖ΦT
i ttti‖ =

Kittti√
tttTi Kittti

(4)

After the convergence of ttti, residual of Φi is deflated by

Φi+1 =

(
I − tttittt

T
i

ttti
Tttti

)
Φi (5)

In the process of computation, K = ΦΦT converts (5) to
the following:

Ki+1 =

(
I − tttittt

T
i

tttTi ttti

)
Ki

(
I − tttittt

T
i

tttTi ttti

)
(6)

This residual is used for computing the next PC.

1.2 Algorithm derivation

1.2.1 Dividing the kernel matrix into blocks

Radial basis function is selected to build the kernel ma-
trix. The element belonging to i-th row j-th column of
kernel matrix is Ki,j = exp(−‖xxxi − xxxj‖2/c) . Note that in

2-norm there exists the relation ‖xxxi − xxxj‖2 =
B∑

b=i

‖xb, i −
xb, j‖2. This can lead to the following property.

Ki, j =

B∏

b=1

exp

(−‖xxxb, i − xxxb, j‖
c

)
=

B∏

b=1

Kb
i, j

Due to this property, dividing xxx into B blocks, one can
compute the kernel matrix of each block Kb = {kkkb

i, j}. The
kernel matrix of each block should be centered by

K̄b = Kb − 1NKb −Kb1N + 1NKb1N (7)

where matrix 1N = (1/N)I and I ∈ RN×N is identity ma-
trix.

1.2.2 Algorithm derivation

MBKPCA first uses super scores tttT, i to compute block
loadings pppb, i

pppb, i = Φ(Xb, i)
TtttT, i (8)

Normalize the block loadings

pppb, i =
pppb, i

‖pppb, i‖ =
Φ(Xb, i)

TtttT,i√
tttT, i

TKb, itttT, i

(9)

Block scores from block loadings are computed by

tttb, i = Φ(Xb, i)pppb, i =
Kb, itttT, i√

tttT, i
TKb,itttT, i

(10)

Arrange all block scores into a single matrix

Ti = [ttt1, i · · · tttB, i] (11)

Super loadings are obtained by regressing Ti on tttT, i and
then normalize it

pppT, i =
TT

i tttT,ı

‖TT
i tttT, i‖ (12)

Update the super loadings tttT, i using

tttT, i = TipppT, i (13)

Repeat these steps until tttT, i converges to a predefined pre-
cision. The residual is used to compute the next PC. The
residual is deflated using tttT,ı

Kb, i+1 =

(
I − tttT, itttT, i

T

tttT, i
TtttT, i

)
Kb, i

(
I − tttT, itttT, i

T

tttT, i
TtttT, i

)
(14)

The MBKPCA algorithm is summarized as follows.

Algorithm for MBKPCA

Step 1. Scale each block data to 0 means;
Step 2. Initialize tttT, i;
Step 3. For each block, compute tttb, i = Kb, itttT, i/√
tttT, i

TKb, itttT, i;
Step 4. Ti = [ttt1, i · · · tttB, i];
Step 5. pppT, i = TT

i tttT, i/‖TT
i tttT, i‖;

Step 6. tttT, i = TipppT, i;
Step 7. If tttT, i is not converging, go to Step 3; else, go

to Step 8;
Step 8. For each block, deflate residual Kb, i+1 =

(I − tttT, itttT, i
T/(tttT, i

TtttT, i))Kb, i(I − tttT, itttT, i
T/(tttT, i

TtttT, i));
Step 9. Go to Step 2 to get the next PC.

2 MBKPCA for fault diagnosis
PCA performs well in many cases, but it lacks the ability

to exhibit significant nonlinear characteristics since PCA
assumes that process data are linear. To solve the issue of
data nonlinearity, KPCA have been used to process moni-
toring. It is difficult to diagnose faults for KPCA since the
nonlinear mapping function is unknown. MBKPCA has
superior fault diagnosis ability since variables are grouped
compared with KPCA. The main advantage of MBKPCA
over KPCA on fault diagnosis is that MBKPCA provides
the block statistics.

Both T 2 statistic and SPE statistic can be used for mon-
itoring the process. For a new sample xnew , divide it into
B blocks and then map them into feature space: Φ(xb, new)
for b = 1, · · · , B. For each block, compute the kernel vector
kkkb, new = Φ(xb, new)Φ(Xb)

T.

k̄kkb, new = kkkb, new − 1′NKb − 1Nkkkb, new + 1′NKb1N (15)

where 1′N = 1
N

[1 · · · 1] in R1×N . The block coefficient
matrix Ab is denoted by

Ab, i =
tttT, i√

tttT, iKbtttT, i

(16)

as given in (10). It can be used to compute block scores of
the new sample

tttb, new = kkkb, newAb (17)

where tttb, new is a row vector, which is the score of one sam-
ple. For each column i, use T i

new = [ttti
1, new · · · ttti

B,new] and
super loadings to calculate the i-th super scores element of
the sample

ttti
b, new = T i

newpppT (18)

The super scores tttT, new = [ttt1b, new · · · ttti
b, new] . The super

T 2 statistic can be calculated by

T 2
new = tttT, newΛ−1tttT, new

T (19)
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where Λ−1 is the inverse of the covariance matrix of super
scores. Block T 2 statistic is computed by

T 2
b, new = tttb, newΛ−1

b tttb, new
T (20)

where Λ−1
b is the inverse of the covariance matrix of block

scores. The block SPE statistic is defined as

SPEb = Φ̄(xb, new)(I − PPT)Φ̄T(xb, new) =

k̄(xb, new, xb, new)− k̄T
b, newAbA

T
b k̄b, new

(21)

and

k̄(xb, new, xb, new) = k(xb, new, xb, new)−
2

N

N∑
i=1

k(xb, i, xb, new) +
1

N2

N∑
i=1

N∑
j=1

k(xb, i, xb, j) (22)

where k(x, y) = exp(−‖x − y‖2/c) is kernel function. The
super SPE statistic is directly cumulated by

SPE =

B∑

b=1

SPEb (23)

3 Simulation results
3.1 An artificial nonlinear case

To illustrate the performance of the MBKPCA over
CPCA, we apply these methods to a simple example sys-
tem. Let x1 increase from 1 to 500 and x4 be the ran-
dom variable which has 500 samples. Assume that x1 and
x4 are input variables. Variables x2 and x3 are outputs
of x1, and x5 is output of x4 . These variables are re-
lated as: x2 = cos(2πx2

1/500), x3 = x2
2 −

√
sin(x1)2, and

x5 = sin x2
4. Noises with zero mean and standard deviation

0.01 are added to each variable. At the 250-th sample, if
x1 deviates from its “normal” value, then x2 and x3 will be
affected, as shown in Fig. 1. Fig. 1 (a) depicts the normal
data, and Fig. 1 (b) depicts the faulty data. Based on the
structure of this system, the variables are divided into 2
groups: XXX1 = [x1, x2, x3] and XXX2 = [x4, x5], MBKPCA
can detect the fault using the SPE chart, as shown in
Fig. 2.

Fig. 1 Normal and faulty data

Furthermore, MBKPCA can diagnose whether the block
is affected by the fault or not, i.e., it can detect that the

first block is affected by the fault and the second block is
not affected. For comparison, CPCA is used to monitor the
process. As shown in Fig. 3, CPCA cannot detect the fault.
In Figs. 3 and 4, the two lines denote the control limits with
99 % and 95% confidence, respectively.

Fig. 2 Block SPE by MBKPCA

Fig. 3 Block SPE by CPCA

3.2 The Tennessee Eastman process

In this section, the proposed method is applied to the
Tennessee Eastman process simulation data. The Ten-
nessee Eastman process is a complex nonlinear process,
which was created by Eastman Chemical Company to pro-
vide a realistic industrial process for evaluating process con-
trol and monitoring methods. The test process is based
on a simulation of an actual industrial process where the
components, kinetics, and operating conditions have been
modified for proprietary reasons. There are five major unit
operations in the process: a reactor, a condenser, a recycle
compressor, a separator, and a stripper. The four reac-
tants A, C, D, and E and the inert B are fed to the reactor
where the products G and H are formed and a by product
F is also produced. The process has 22 continuous process
measurements, 12 manipulated variables, and 19 composi-
tion measurements sampled less frequently. In this study,
a total of 52 variables are used for monitoring. A sampling
interval of 3 minutes was used to collect the simulated data
for the training and testing sets. The data can be down-
loaded from http://brahms.scs.uiuc.edu. Variables are di-
vided into 3 groups: continuous process measurements, ma-
nipulated variables, and composition measurements.

To show the performance of the proposed MBKPCA, se-
lect faults 4 and 14 to test MBKPCA. The 100-th to 300-th
samples were used to test the proposed method since faults
occurred at about 160-th samples of test data set. First,
the model was built from a training data set of 500 normal
samples where the parameter of radial basis function was
set to 500. Second, a test data set is used to test the fault
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(a) Block SPE (b) Block T 2 (c) SPE and T 2

Fig. 4 Monitoring and diagnosis results for fault 4

(a) Block SPE (b) Block T 2

Fig. 5 Monitoring and diagnosis results for fault 14

diagnosis ability of the proposed method. The 51-st vari-
able in Block 3 is most related to both fault 4 and fault
14. In Fig. 4 (a), block SPE plots indicate that Block 3
is affected by the fault 4; the contribution plot of block
SPE at the 161-st samples shows Block 3 is suspect. The
same situation is shown in Fig. 4 (b) through block T 2. In
Fig. 4 (c), although SPE and T 2 plots generated by KPCA
can detect the fault, one could not diagnose which part of
the process is most related to the fault. From Fig. 5, one
can see that fault 14 mainly affects Block 1 and Block 3.
These figures show that the MBKPCA can locate the block
most related to the fault.

4 Conclusion
A new approach to complex process monitoring based

on MBKPCA is proposed in this paper. The multiblock
approach effectively captured the relationship in the com-
plex process blocks and showed fault detection and diag-
nosis ability in large-scale processes compared with other
kernel methods. In the future, the following research work
is worth studying: 1) Find a way to form blocks in fea-
ture space to implement consensus KPCA using the result
of KPCA; 2) Find the relation of each Kb in MBKPCA
to enhance the interpretability; 3) Determine the optimal
number of principal components in the kernel space and
identify which variable causes the process fault; 4) Explore
different nonlinear relationships in different blocks, i.e., the
kernel function and parameters may be distinct for different
blocks.
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