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Abstract The level adjustment of cable-driven parallel mecha-
nism is challenging due to the difficulty in obtaining an accurate
mathematical model and the fact that different sources of un-
certainties exist in the adjustment process. This paper presents
a type-2 fuzzy neural network (T2FNN) based inverse control
scheme for the level adjustment process. The T2FNN, whose
consequent interval weights are trained by the iterative least
squares estimation method, is used to approximate the inverse
dynamics of the process and to handle uncertainties. Finally,
the proposed control scheme and its counterpart — type-1 fuzzy
neural network based inverse control scheme — are compared
and implemented for leveling the cable-driven parallel mecha-
nism.
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When loading and unloading some payloads such as air-
crafts, satellites, and special containers, which are valu-
able, fragile, and unfortunately eccentric, we must level
their bottom surface as these payloads cannot endure a
point-to-point touch with the ground or the assembly plat-
form. Based on the analysis of advantages and disad-
vantages of existing techniques and mechanisms[1−2], we
have designed and constructed a new cable-driven paral-
lel mechanism[3−4]. The structure and configuration of the
cable-driven parallel mechanism is shown in Fig. 1. The
parallel mechanism mainly consists of a rectangular work-
table, linear motion units diagonally fixed on the rectangu-
lar worktable, two angle sensors fixed in two diagonals of
the payload, cables passing through the axial line of each
linear motion unit, and a computer control platform. In
our experiment, the center of gravity of the payload can be
changed through adding or taking off heavy weights; as a
result, the payload will become slantwise. The control ob-
jective is to make the bottom surface of the eccentric and
slantwise payload be leveled by regulating the positions of
the linear motion units to change the lengths of the cables.

For the cable-driven parallel mechanism, a two-
dimensional model is established in [4], but for the three-
dimensional payload, the accurate mathematical model is
quite difficult to obtain, as the centroid position is uncer-
tain and the mass of the payload is assumed to be un-
known to meet the actual engineering requirements. There-
fore, design of conventional controllers for this cable-driven
parallel mechanism becomes very difficult. Inverse control
scheme[5−8] offers a method to solve this problem. The con-
cept of inverse control has been a preferred approach to the
design of control systems with complex and uncertain dy-
namics. It utilizes an inverse controller to approximate the
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inverse dynamics of the process. This control strategy has
been proven effective in many applications, such as control
of a partially simulated exothermic reactor[5], control of a
steel pickling process[6], temperature system control[7].

Moreover, we note that high levels of uncertainties exist
in this real-world application, which are listed as follows:
1) uncertainties from the angle sensors, which arise from
inevitable measurement errors and the resolution limits of
the angle sensors; 2) uncertainties existing in the adjust-
ment process. The payload will sway in the adjustment pro-
cess, and this will further affect the precision of the angle
sensors; 3) uncertainties associated with the experimental
data, which are used to tune the controller for level adjust-
ment. The experimental data are obtained using manual
adjustment; hence, noise inevitably exists in the data.

Fig. 1 Cable-driven parallel mechanism

Proponents of type-2 fuzzy logic[9−16] have argued that
type-2 fuzzy logic can provide the capability to model
high levels of uncertainties that conventional fuzzy logic
(type-1 fuzzy logic) has some limitations to handle. Ap-

plications of type-2 fuzzy logic[14−16] have also demon-
strated that it has the potential to produce more com-
plex input-output map and outperform type-1 fuzzy logic.
Furthermore, to combine the advantages of type-2 fuzzy
logic and neural networks; type-2 fuzzy neural network
(T2FNN)[17−20] was studied by researchers and applied in

system identification[18], control problems[17, 20], etc. To
the authors′ knowledge, most researches of T2FNN are
about function approximation, whereas in the control do-
main, only few papers use T2FNN as direct controllers
where BP algorithms are adopted. Till now, no paper has
used T2FNN as an inverse controller.

In our work, we use the T2FNN to approximate and
model the inverse dynamics of the level adjustment pro-
cess of the cable-driven parallel mechanism. As the fuzzy
rule base and the antecedent part parameters (centers and
widths of type-2 fuzzy sets) of the T2FNN can be ob-
tained from our experimental experience, only the con-
sequent part parameters are tuned to reduce the training
time. In parameter learning, the iterative least squares es-
timation (ILSE) method[21−22], which has fast convergence
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speed, is adopted. After being trained, the T2FNN in-
verse controller is applied to level the cable-driven paral-
lel mechanism. Simultaneously, comparisons with type-1
fuzzy neural network (T1FNN) based inverse controller are
also made. Experimental results and comparisons show
that both inverse controllers can level the cable-driven par-
allel mechanism, but, the T2FNN inverse controller per-
forms more consistently than the T1FNN inverse controller,
in other words, the T2FNN inverse controller performs bet-
ter than the T1FNN inverse controller when facing high
levels of uncertainties.

This paper is organized as follows: In Section 1, the
cable-driven parallel mechanism is introduced. In Section
2, the structure and learning of the T2FNN inverse con-
troller for the cable-driven parallel mechanism are stud-
ied. In Section 3, experimental results and comparisons
are made. Finally, the conclusions are drawn in Section 4.

1 Cable-driven parallel mechanism

In this section, we present the configuration of the cable-
driven parallel mechanism and specify the requirement of
the controller for this mechanism.

The configuration of the cable-driven parallel mechanism
as shown in Fig. 1 mainly consists of the following major
components:

1) Rectangular worktable: On the rectangular work-
table, the actuators — linear motion units are fixed in the
diagonals. Also, there is one cable passing through the axial
line of each linear motion unit. Therefore, we can regulate
the cable in each diagonal through changing the positions
of the linear motion units, denoted as ux and uy, to realize
our control objective — leveling the bottom surface of the
inclined payload.

2) Angle sensors: Two angle sensors are used to measure
the inclination of the payload. As the top surface and the
bottom surface of the payload shown in Fig. 1 are parallel,
hence, for convenience, the two angle sensors are fixed on
the top surface of the payload in each diagonal. If the two
diagonal inclination angles, denoted as θx and θy, are both
zero, then the bottom surface of the payload will be leveled.

3) Computer control platform: The control platform is
used to realize the function of the controller designed for
this level adjustment problem.

In this control problem, the payload is the controlled
plant whose mass is supposed to be unknown with uncer-
tain centroid position. This assumption leads to meet the
actual engineering requirements. The payload′s center of
gravity can be changed through adding or removing some
heavy weights. The bottom surface of the payload needs
to be adjusted to be level (θx < 0.2◦ and θy < 0.2◦) in no
more than 20 s in the experiments.

As discussed above, it is difficult to obtain an accurate
mathematical model and design a conventional controller.
And, there are several sources of uncertainties in this real-
world application. Considering that T2FNN has the ca-
pability to model high levels of uncertainties and can ap-
proximate any given nonlinear systems, in the following, we
will use the T2FNN to construct the inverse model of this
cable-driven parallel mechanism and develop a T2FNN in-
verse controller for the level adjustment of this cable-driven
parallel mechanism.

2 Type-2 fuzzy neural network based in-
verse controller

In this section, considering the characteristics of the
mechanism, we first discuss the architecture of the inverse

control system for the cable-driven parallel mechanism, and
then, clarify the structure and learning algorithm of the
T2FNN inverse controller.

2.1 Architecture of the inverse control system

Fig. 2 (a) shows us the structure of the T2FNN based
inverse control system. This control architecture mainly
consists of the T2FNN inverse model that acts as the con-
troller placed in series with the cable-driven parallel mech-
anism under control. As shown in Fig. 2 (a), the inputs of
this T2FNN inverse model are the two diagonal inclination
angles θx and θy, and the outputs of the T2FNN inverse
model are the position changes ux, uy of the two linear
motion units.

To obtain the T2FNN inverse model of the cable-driven
parallel mechanism, the training process is depicted in
Fig. 2 (b). For the training, the training data are obtained
from real experiments to reflect input-output characteris-
tics of the cable-driven parallel mechanism. And, the in-
puts and outputs of the training data are the values of θx, θy

and the corresponding control signals ux, uy, respectively.
Using the training data set {(θ1

x, θ1
y, u1

x, u1
y), (θ2

x, θ2
y, u2

x, u2
y),

· · · , (θN
x , θN

y , uN
x , uN

y )}, the T2FNN can be trained by ILSE
method to minimize the error function E defined by

E =

N∑
i=1

(
[ui

x − ûx(θi
x, θi

y)]2 + [ui
y − ûy(θi

x, θi
y)]2

)
(1)

where N is the number of training data, ûx(θi
x, θi

y) and

ûy(θi
x, θi

y) are the actual outputs of the T2FNN for the in-

put (θi
x, θi

y).

(a) Structure

(b) Training process

Fig. 2 The structure and training process of the T2FNN based
inverse control system for the cable-driven parallel mechanism

In the following, we will discuss the structure and learn-
ing of the T2FNN for the cable-driven parallel mechanism
in detail.

2.2 Structure of type-2 fuzzy neural network

In [17−20], the structure and training of T2FNNs have
been discussed. A T2FNN is very similar to a conventional
(type-1) fuzzy neural network (T1FNN). Both of them have
four layers, but some differences exist between them: 1) In
the membership function layer (Layer 2), the fuzzy sets of
T1FNN are type-1, but the fuzzy sets of T2FNN are inter-
val type-2; 2) The consequent weights between Layer 3 and
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Layer 4 are crisp values for T1FNN, while the consequent
weights between Layer 3 and Layer 4 are interval values for
T2FNN; 3) Layer 4 is only used to carry out the defuzzi-
fication process for a T1FNN, but, for a T2FNN, Layer 4
needs to accomplish the type-reduction and defuzzification
processes.

The structure of the T2FNN for the cable-driven par-
allel mechanism is shown in Fig. 3. This is a two-input-
two-output network. In order to ensure the safety of the
mechanism, the two diagonal inclination angles should be
bounded in [−6◦, 6◦]. By assigning each input variable (θx

or θy) five Gaussian interval type-2 fuzzy sets (IT2FSs) –
NB, NS, ZR, PS, PB in the range [−6◦, 6◦], we can obtain
M (M = 25) fuzzy rules, each of which has the following
form.

Rule k : IF θx is Ãk
x and θy is Ãk

y , THEN

ux is [wk
x, wk

x] and uy is [wk
y , wk

y ] (2)

where k = 1, 2, · · · , M , [wk
x, wk

x], [wk
y , wk

y ] are interval

weights of the consequent part, Ãk
z(z = x, y) are IT2FSs

NB, NS, ZR, PS or PB, the membership functions of which
are shown in Fig. 4, and can be expressed as

µ
Ãk

z
(θz) = exp

[
− 1

2

(
θz −mk

z

σk
z

)2]
(3)

µÃk
z
(θz) = exp

[
− 1

2

(
θz −mk

z

σk
z

)2]
(4)

where µ
Ãk

z
and µÃk

z
denote the grades of the lower and up-

per membership functions of the IT2FS Ãk
z , [σk

z , σk
z ] is the

uncertain standard deviation of Ãk
z .

Fig. 3 The structure of type-2 fuzzy neural network

Fig. 4 Membership functions for θx and θy

Once a crisp input θθθ = (θx, θy) is applied to the T2FNN,
through the singleton fuzzifier (Layer 1) and the type-2 in-
ference process (Layer 2), the firing strength of the k-th
rule (k-th node), which is an interval type-1 set, can be
obtained as

F k = [fk, f
k
] (5)

where

fk = µ
Ãk

x
(θx) ? µ

Ãk
y
(θy) (6)

f
k

= µÃk
x
(θx) ? µÃk

y
(θy) (7)

in which ? denotes minimum or product t-norm. In our
study, product t-norm is adopted.

Once the interval firing strengths in Layer 3 are com-
puted, to generate a crisp output from Layer 4, the
outputs of the third layer should be type-reduced and
then defuzzified[9]. Using the center-of-sets (COS) type-

reduction method[9−11], the type-reduced interval [uz, uz]
can be computed as

Uz = [uz, uz] =

∫

w1
z∈[w1

z,w1
z ]

· · ·
∫

wM
z ∈[wM

z ,wM
z ]

∫

f1∈[f1,f
1
]

· · ·

∫

fM∈[fM ,f
M

]

1
M∑

k=1
fkwk

z

M∑
k=1

fk

(8)

where z = x, y; the left end point uz and the right end
point uz can be computed by

uz =

M∑
k=1

gkwk
z

M∑
k=1

gk

, gk = δkf
k

+ (1− δk)fk (9)

uz =

M∑
k=1

hkwk
z

M∑
k=1

hk

, hk = δ
k
fk + (1− δ

k
)f

k
(10)

where δk and δ
k

can be determined in {0, 1} by Karnik-

Mendel algorithms[9−12]. The algorithms for determining

δk and δ
k

are given in detail in the Appendix.
The defuzzified output of Layer 4 can be computed as

the average of uz and uz, i.e.,

uz =
1

2
(uz + uz) =

1

2

[
M∑

k=1

g̃kwk
z +

M∑

k=1

h̃kwk
z

]
(11)

where z = x or y, g̃k = gk
∑M

k=1 gk , h̃k = hk
∑M

k=1 hk .

2.3 Learning of type-2 fuzzy neural network

In our application of leveling the cable-driven parallel
mechanism, the antecedent IT2FSs of the two diagonal
inclination angles θx, θy and their parameters (e.g., fixed
means and uncertain standard deviations) can be easily
determined. Here, we just tune the consequent parameters
(interval weights) of the T2FNN inverse model to approxi-
mate the characteristics of the cable-driven parallel mech-
anism.

Suppose that the input-output training data are (θ1
x, θ1

y,

u1
x, u1

y), (θ2
x, θ2

y, u2
x, u2

y), · · · , (θN
x , θN

y , uN
x , uN

y ). Our goal
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is to adjust the interval weights to minimize the following
squared error function:

E = Ex + Ey (12)

where

Ex =

N∑
i=1

(ui
x − ûx(θθθi))2 (13)

Ey =

N∑
i=1

(ui
y − ûy(θθθi))2 (14)

in which ûx(θθθi), ûy(θθθi) are the outputs of the T2FNN for

the input θθθi = (θi
x, θi

y).
To the authors′ knowledge, all the earlier studies using

T2FNNs as controllers train the T2FNNs by BP algorithms
(steepest descent algorithm)[17, 20]. But inherent shortcom-
ings are encountered in the use of the steepest descent al-
gorithm, e.g., slow convergence speed in training, easy to
be trapped in a local minima, etc. From (11), the output
uz(θθθ) of the T2FNN is linear with the consequent weights
wk

z and wk
z . For this reason, to improve the learning per-

formance, the ILSE method[21−22] is adopted to determine
the consequent interval weights.

With the ILSE method[21−22], the consequent parameter
vector wwwz is updated by

wwwi+1
z = wwwi

z + γi+1P
iqqqi+1

z [ui+1
z − (qqqi+1

z )Twwwi
z] (15)

P i+1 = P i − γi+1P
iqqqi+1

z (qqqi+1
z )TP i (16)

γi+1 =
1

λ + (qqq i+1
z )TP iqqqi+1

z

(17)

where

wwwz = [w1
z, · · · , wM

z , w1
z, · · · , wM

z ]T,

qqqi
z =

1

2
[g̃1(θθθi), · · · , g̃M (θθθi), h̃1(θθθi), · · · , h̃M (θθθi)]T

z = x or y, 0 < λ ≤ 1 is the forgetting factor and P i is
the covariance matrix. The initial conditions are www0

z = 0

and P 0 = 100I, where I is the identity matrix of dimension
2M × 2M .

Here, we do not adjust the antecedent parameters for
two reasons. The first one is that the antecedent parame-
ters can be easily determined in our application; the second
is that tuning with only the consequent parameters can sig-
nificantly reduce the training time and is more practicable.

3 Experimental results
In our experiment, we use 492 experiential data pairs to

train the T2FNN inverse model. The initial consequent pa-
rameter vectors wwwx and wwwy are set to be 0. The forgetting
factor λ is chosen to be 0.9. The root mean squared er-
ror (RMSE) curve in the training process is demonstrated

in Fig. 5, where RMSE =
√

E/N =
√

(Ex + Ey)/N . Fig. 6
demonstrates an example of the training process of the con-
sequent interval weights. After being trained, the rule ta-
bles for ux and uy are shown in Tables 1 and 2, respectively.

Fig. 5 RMSE curve in the training process for wwwx and wwwy

Fig. 6 Training process of w4
x (5) and w4

x (♦)

Table 1 Rule table for ux

θx

ux(mm) NB NS ZR PS PB

NB [34.6384, 104.0283] [17.6200, 41.8753] [19.0126, 21.3735] [19.9231, 43.5774] [41.7403, 99.4294]

NS [17.6320, 40.9025] [44.1999, 48.6525] [19.1361, 23.1038] [44.4670, 47.1031] [19.6939, 34.5232]

θy ZR [−1.4157, −0.8939] [−1.5490, −0.3534] [−7.2618, 4.3008] [−1.0464, 0.8134] [−0.3499, 0.1310]

PS [−43.4602, −19.3997] [−47.1519, −40.5727] [−18.6420, −18.6374] [−48.6317, −43.9666] [−40.6944, −18.9890]

PB [−98.0743, −43.8629] [−37.6772, −19.2509] [−21.9452, −18.7983] [−41.9587, −18.7532] [−100.4452, −41.0768]

Table 2 Rule table for uy

θx

uy(mm) NB NS ZR PS PB

NB [33.6385, 103.2333] [17.5543, 39.1302] [2.5712, 2.8789] [−39.6072, −20.0114] [−97.6042, −42.4389]

NS [17.6363, 39.4192] [40.7539, 47.2926] [1.7397, 3.0943] [−49.3998, −47.8134] [−42.5363, −21.1289]

θy ZR [19.9065, 23.1437] [19.9813, 19.9894] [−5.1374, 6.1661] [−22.0722, −21.0073] [−23.1810, −20.6070]

PS [20.1400, 41.2859] [47.6908, 49.3785] [−2.5672, −1.4376] [−45.8555, −42.1699] [−40.1494, −18.7404]

PB [42.2360, 98.5407] [19.7849, 42.9565] [−2.8188, −2.4565] [−40.0838, −18.5723] [−100.3569, −38.8833]
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For comparison, a T1FNN inverse controller is also de-
signed and experimented. The antecedent type-1 fuzzy sets
– NB, NS, ZR, PS, and PB are still Gaussian membership
functions with the same centers mk

z as in the T2FNN, but
the widths of them are the average of σk

z and σk
z . In the

same way, the crisp weights of the T1FNN are set as the
average of the interval weights of the T2FNN.

Then, the trained T2FNN inverse controller and the
T1FNN inverse controller are used for the level adjustment
of the cable-driven parallel mechanism from different initial
angles conditions, e.g., (5.8◦, 2.7◦), (−5.6◦, −2.6◦), (5.0◦,
5.0◦), and (−5.0◦, −5.0◦). And, for each initial condition,
five experiments are done respectively for the T2FNN in-
verse controller and the T1FNN inverse controller. Here,
only for the initial angles condition (5.8◦, 2.7◦), the con-
trol results of the two inverse controllers in five experiments
are shown in Figs. 7 (a) and (b). The control results for the
other three initial angles conditions (−5.6◦, −2.6◦), (5.0◦,
5.0◦), and (−5.0◦, −5.0◦) are omitted, as the experimental
results are similar for the four initial angles conditions. To
show the superiority of the T2FNN inverse controller com-
pared with the T1FNN inverse controller when facing un-
certainties, the standard deviations (STD) of the dynamic
process θx(t) and θy(t) in the 5 experiments are shown in
Figs. 8 (a) and (b).

From the experimental results (e.g. Fig. 7), we can see
that both the T2FNN inverse controller and the T1FNN
inverse controller can adjust the angle between the bottom
surface of the payload and the horizontal plane to be less
than 0.2◦ in about 12 s, hence, the performance require-
ments can be achieved. Moreover, from Figs. 7 and 8, we
can also see that the T2FNN inverse controller performs
obviously better and more consistently than the T1FNN in-
verse controller when facing uncertainties such as the mea-
surement errors of the angle sensors and the swing of the
pay-load in the adjustment process, because the response
curves of θx and θy with the T2FNN inverse controller are
more tightly packed than that with the T1FNN inverse
controller.

(a) Control results of the T2FNN inverse controller

(b) Control results of the T1FNN inverse controller

Fig. 7 Control results of the T2FNN inverse controller and the
T1FNN inverse controller for θx and θy in five experiments

with the same initial angles (5.8◦, 2.7◦)

(a) Standard deviations of θx(t)

(b) Standard deviations of θy(t)

Fig. 8 Standard deviations of θx(t) and θy(t) in
the five experiments

4 Conclusion

In our application of leveling the cable-driven parallel
mechanism, it is quite difficult to obtain a suitable math-
ematical model and design conventional controllers for the
level adjustment process. A promising way to overcome
these difficulties is to use inverse model to approximate the
inverse dynamic behavior of the process. In this work, con-
sidering that different sources of uncertainties exist in the
level adjustment process and type-2 fuzzy logic has the abil-
ity to handle high levels of uncertainties and approximate
any nonlinear functions, a T2FNN inverse control strategy
is proposed and implemented for leveling the cable-driven
parallel mechanism. To enhance the performance of the
T2FNN inverse controller, the ILSE method was adopted
to determine the consequent interval weights. Experimen-
tal result demonstrated the effectiveness of the proposed
control scheme. Moreover, experimental comparisons with
the T1FNN inverse controller indicated that the T2FNN
inverse controller performed more consistently.

Appendix

In this appendix, we give two algorithms for computing

δk, δ
k

in (9), (10), respectively. These algorithms are based

on Karnik-Mendel algorithms[9−12].
To begin, for simplicity, let us denote

fff = (f1, f2, · · · , fM )T

fff = (f
1
, f

2
, · · · , f

M
)T

wwwz = (w1
z, w2

z, · · · , wM
z )T

wwwz = (w1
z, w2

z, · · · , wM
z )T

where z = x or y.

Algorithm 1. Computation of δδδkkk in (9)

Step 1. Implement a permutation transformation to
wwwz, such that w̃wwz = Q

z
wwwz = (w̃1

z, w̃2
z, · · · , w̃M

z )T, and

w̃1
z ≤ w̃2

z ≤ · · · ≤ w̃M
z , where Q

z
is the permutation matrix.
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Step 2. Implement the same permutation transfor-
mation as in Step 1 to fff and fff ; and, denote ggg =

(g1, g2, · · · , gM )T = Q
z
fff, ggg = (g1, g2, · · · , gM )T = Q

z
fff .

Step 3. Compute the switch point L through Karnik-
Mendel algorithm[9−12]:

1) Initially, set gi = 1
2
(gi + gi), i = 1, 2, · · · , M , then,

compute ol =
∑M

i=1 giw̃i
z∑M

i=1 gi , and let o
′
l = ol;

2) Find L̃ (1 ≤ L̃ ≤ M − 1), such that w̃L̃
z ≤ o

′
l ≤ w̃L̃+1

z ;

3) Compute ol =

∑L̃
i=1 giw̃i

z+
∑M

i=L̃+1
giw̃i

z
∑L̃

i=1 gi+
∑M

i=L̃+1
gi

and let o
′′
l = ol;

4) If o
′′
l = o

′
l , then stop and return L = L̃; else if o

′′
l 6= o

′
l ,

then let o
′
l = o

′′
l and return to 2).

Step 4. Let rrrz = (1, 1, · · · , 1︸ ︷︷ ︸
L

, 0, · · · , 0︸ ︷︷ ︸
M−L

)T, then δk

(k = 1, 2, · · · , M) can be computed by

(δ1, δ2, · · · , δM )T = Q
z
rrrz

Algorithm 2. Computation of δδδ
kkk

in (10)
Step 1. Implement a permutation transformation to

wwwz, such that w̃wwz = Qzwwwz = (w̃
1

z, w̃
2

z, · · · , w̃
M

z )T, and

w̃
1

z ≤ w̃
2

z ≤ · · · ≤ w̃
M

z , where Qz is the permutation matrix.
Step 2. Implement the same permutation transfor-

mation as in Step 1 to fff and fff ; and, denote ggg =

(g1, g2, · · · , gM )T = Qzfff, ggg = (g1, g2, · · · , gM )T = Qzfff .
Step 3. Compute the switch point R through Karnik-

Mendel algorithm[9−12]:
1) Initially, set gi = 1

2
(gi + gi), i = 1, 2, · · · , M , then,

compute or =
∑M

i=1 giw̃
i
z∑M

i=1 gi , and let o
′
r = or;

2) Find R̃ (1 ≤ R̃ ≤ M −1), such that w̃
R̃

z ≤ o
′
r ≤ w̃

R̃+1

z ;

3) Compute or =

∑R̃
i=1 giw̃

i
z+

∑M
i=R̃+1

giw̃
i
z

∑R̃
i=1 gi+

∑M
i=R̃+1

gi
and let o

′′
r =

or;

4) If o
′′
r = o

′
r, then stop and return R = R̃; else if

o
′′
r 6= o

′
r, then let o

′
r = o

′′
r and return to 2).

Step 4. Let rrrz = (1, 1, · · · , 1︸ ︷︷ ︸
R

, 0, · · · , 0︸ ︷︷ ︸
M−R

)T, then δ
k

(k = 1, 2, · · · , M) can be computed by

(δ
1
, δ

2
, · · · , δ

M
)T = Qzrrrz
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