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Delay-dependent Stability

Criteria for Singular

Time-delay Systems
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Abstract This note studies the problem of singular time-
delay systems. At first, a simplified stability criterion is derived
after establishing equivalence among several recently proposed
stability criteria. By using a delay decomposition method, a
new stability criterion, which is much less conservative than the
existing ones, is presented. A numerical example is given to illus-
trate the effectiveness and less conservatism of the new proposed
stability criterion.
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Over the past decades, much attention has been focused
on the stability analysis and controller synthesis for singu-
lar linear time-delay systems, because the singular system
model is a natural presentation of dynamic systems and can
describe a larger class of systems than regular ones, such
as large-scale systems, power systems, and constrained con-
trol systems. Similar to the state-space time-delay systems,
the results on stability analysis and stabilization of singu-
lar time-delay systems can be classified into two categories,
that is, delay independent criteria[1−2] and delay-dependent
ones[3−4]. Generally, the delay-dependent case is less con-
servative than delay-independent ones, especially when the
delay is comparatively small.

Recently, many researchers have paid attention to stabil-
ity analysis of singular systems with time-delay[3, 5−7]. The
computational results in [3] show that its stability criterion
is less conservative than the one in [5] (see Example 1 in
[3]). In fact, the conclusion based on the computational
results contains errors.

In this note, we will prove that the stability result pro-
posed in [3] is equivalent to the ones in [5−7], and a sim-
plified version of Theorem 1 in [3] will be derived. Further-
more, by using a delay composition method, a less conser-
vative result will be presented.

1 Problem formulation
Consider the following continuous-time singular system

with a time-varying delay in the state[3]:

(Σ) : Eẋxx(t) = Axxx(t) + Aτxxx(t− τ), t > 0 (1)

xxx(t) = φφφ(t), t ∈ [−τ, 0] (2)

where xxx(t) ∈ Rn is the state, and φφφ(t) ∈ Cn,τ is a compat-
ible vector valued initial function. The matrix E ∈ Rn×n

may be singular and rank E = p ≤ n. A, Aτ are constant
matrices with appropriate dimensions. τ is an unknown
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but constant delay satisfying

0 < τ ≤ τm (3)

Without loss of generality, the matrices E, A, and Aτ

are assumed to have the forms:

E =

[
Ip 0
0 0

]
, A =

[
A11 A12

A21 A22

]

Aτ =

[
Aτ11 Aτ12

Aτ21 Aτ22

] (4)

For the system (Σ), [3] provided a stability criterion as
follows.

Lemma 1[3]. The singular time-delay system (Σ) is reg-
ular, impulse free, and asymptotically stable for any con-
stant delay τ satisfying 0 < τ ≤ τm, if there exist matrices

P =

[
P11 P12

0 P22

]
, P11 > 0, Q > 0

Z =

[
Z11 Z12

∗ Z22

]
> 0

Y =

[
Y11 0
Y21 0

]
, W =

[
W11 0
W21 0

]

Y1 =

[
Y11

Y21

]
, W1 =

[
W11

W21

]
(5)

with appropriate dimensions and P11 ∈ Rp×p, Z11 ∈
Rp×p, Y11 ∈ Rp×p, W11 ∈ Rp×p satisfying the following
LMI:

Φ < 0 (6)

where

Φ =




Φ1 PAτ − Y + WT + τmATZAτ −τmY1

∗ −Q−W −WT + τmAT
τ ZAτ −τmW1

∗ ∗ −τmZ11




Φ1 = PA + ATPT + Y + Y T + Q + τmATZA

For convenience of comparison, the stability criteria
in[5−7] are listed as the following lemmas.

Lemma 2[5]. Consider the descriptor system (Σ), for

given scalars τm > 0, if there exist matrices P̃1 > 0, P̃2, P̃3,
Q̃ > 0, R̃ > 0, T̃i, and S̃i of appropriate dimensions (i =
1, 2, 3) such that

Γ < 0 (7)

where

Γ =




Γ11 Γ12 Γ13 τmT̃1

∗ Γ22 Γ23 τmT̃2

∗ ∗ Γ33 τmT̃3

∗ ∗ ∗ −τmR̃




Γ11 = Q̃ + T̃1E + ETT̃T
1 − S̃1A−ATS̃T

1

Γ12 = −T̃1E + ETT̃T
2 − S̃1Aτ −ATS̃T

2

Γ13 = P̃ + S̃1 + ETT̃T
3 −ATS̃T

3

Γ22 = −Q̃− T̃2E − ETT̃T
2 − S̃2Aτ −AT

τ S̃T
2

Γ23 = S̃2 − ETT̃T
3 −AT

τ S̃T
3

Γ33 = τmR̃ + S̃3 + S̃T
3

P =

[
P̃1 P̃2

0 P̃3

]
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then the system (Σ) is exponentially stable.

Lemma 3[6]. Given scalar τm > 0. Then, for any
delay 0 < τ ≤ τm, the singular delay system (Σ) is
regular, impulse free, and stable if there exist matrices
Q = QT > 0, Z = ZT > 0, P, Y , and W such that
the following LMIs hold:

ETP = PTE ≥ 0 (8)

Ω < 0 (9)

where

Ω =




Ω11 Ω12 τmY T τmATZ
∗ Γ22 τmWT τmAT

τ Z
∗ ∗ −τmZ 0
∗ ∗ ∗ −τmZ




Ω11 = PTA + ATP + Q− Y TE − ETY

Ω12 = PTAτ + Y TE − ETW

Ω22 = WTE + ETW −Q

Lemma 4[7]. Given scalar τm > 0. Then, for
any delay 0 < τ ≤ τm, the singular delay system (Σ)
is regular, impulse free, and stable if there exist ma-
trices Q = QT > 0, Z = ZT > 0, and matrices
P1, P2, P3, X11, X12, X13, X22, X23, X33, Y1, Y2, and
T1, such that

ETP1 = PT
1 E ≥ 0 (10)

Π < 0 (11)

X ≥ 0 (12)

where

Π =




Π11 Π12 −Y1E + PT
2 Aτ + ETTT

1 + τmX13

∗ Π22 −Y2E + PT
3 Aτ + τmX23

∗ ∗ −Q− T1E − ETTT
1 + τmX33




Π11 = PT
2 A + ATP2 + Y1E + ETY T

1 + τmX11 + Q

Π12 = PT
1 − PT

2 + ATP3 + ETY T
2 + τmX12

Π22 = −P3 − PT
3 + τmX22 + τmZ

X =




X11 X12 X13 Y1

∗ X22 X23 Y2

∗ ∗ X33 T1

∗ ∗ ∗ Z




In this note, we will prove the equivalence among the
above lemmas and give a simplified version of these criteria.
Furthermore, by using a delay decomposition method, an
improved result is proposed.

2 The equivalence among several stability
criteria

In this section, equivalence among the existing stability
criteria given in [3, 5−7] will be established, which further
shows that the computational results given in [3] are incor-
rect.

Now, we prove the equivalence among the stability condi-
tions given by Lemmas 1 ∼ 4, and a new stability criterion,
which contains fewer decision variables, is also derived.

Theorem 1. The following statements are equivalent:
1) Inequality (6) is feasible;
2) The following inequality is feasible:

Ψ < 0 (13)

where

Ψ =

[
Ψ1 PAτ + τmATZAτ + τ−1

m HTZ11H
∗ −Q + τmAT

τ ZAτ − τ−1
m HTZ11H

]

Ψ1 = PA + (PA)T + Q + τmATZA− τ−1
m HTZ11H

H =
[

Ip 0
]

3) Inequality (7) is feasible;
4) Inequality (9) with (8) is feasible;
5) Inequalities (11) and (12) with (10) are feasible.
Proof. 1) ⇔ 2):
Noticing that Y = Y1H and W = W1H, pre- and post-

multiply Φ in (6) on both sides by




I 0 τ−1
m HT

0 I −τ−1
m HT

0 0 I




and its transpose. From the Schur complement, it follows
that Φ < 0 in Lemma 1 is equivalent to

Ψ +

[ −τmY1 −HTZ11

−τmW1 + HTZ11

]
(τmZ11)

−1×
[ −τmY1 −HTZ11

−τmW1 + HTZ11

]T

< 0 (14)

So, Ψ < 0 holds if Φ < 0 holds.
Conversely, if Ψ < 0 holds, by letting

Y1 = −τ−1
m HTZ11, W1 = τ−1

m HTZ11

it yields that Φ < 0 also holds.
Thus, Ψ < 0 is equivalent to Φ < 0.
2) ⇔ 3):
Pre- and post-multiplying Γ in (7) on both sides by




I 0 0 −τ−1
m ET

0 I 0 τ−1
m ET

0 0 I 0
0 0 0 I




and its transpose, it yields that

[
Ξ T̃

∗ −τmR̃

]
< 0 (15)

where

Ξ =




Ξ11 Ξ12 P̃ + S̃1 −ATS̃T
3

∗ Ξ22 S̃2 −AT
τ S̃T

3

∗ ∗ τmR̃ + S̃3 + S̃T
3




Ξ11 = Q̃− S̃1A− (S̃1A)T − τ−1
m ETR̃E

Ξ12 = −S̃1Aτ − (S̃2A)T + τ−1
m ETR̃E

Ξ22 = −Q̃− S̃2Aτ − (S̃2Aτ )T − τ−1
m ETR̃E

T̃ =




τmT̃1 + ETR̃

τmT̃2 − ETR̃

τmT̃3




Similar to the proof of 1) ⇔ 2), it is clear that Γ < 0 is
feasible if and only if Ξ < 0 is feasible.

Note that

Ξ = Ξ̄ + S̃A+ATS̃T (16)



No. 3 FENG Yi-Fu et al.: Delay-dependent Stability Criteria for Singular Time-delay Systems 435

where

Ξ̄ =




Q̃− τ−1
m ETR̃E τ−1

m ETR̃E P̃

∗ −Q̃− τ−1
m ETR̃E 0

∗ ∗ τmR̃




S̃ =
[

S̃T
1 S̃T

2 S̃T
3

]T

A =
[ −A −Aτ I

]

From the elimination lemma[8], it is known that Ξ < 0 is
equivalent to

Ξ̃ = NT
A Ξ̄NA < 0 (17)

where

NA =




I 0
0 I
A Aτ




After some manipulation, one can get

Ξ̃ =

[
P̃A + ATP̃T + Q̃− τ−1

m ETR̃E + τmATR̃A
∗

P̃Aτ + τ−1
m ETR̃E + τmATR̃Aτ

−Q̃− τ−1
m ETR̃E + τmAT

τ R̃Aτ

]

By letting P = P̃ , Q = Q̃, and Z = R̃, it is easy to know
that Ψ in (13) is the same as Ξ̃, so Ψ < 0 if and only if

Ξ̃ < 0.
Thus, from the above analysis, one can get that Ψ < 0

if and only if Γ < 0.
2) ⇔ 4): Similar to the proof of 1) ⇔ 2), the equivalence

between 2) and 4) can be easily obtained, and the details
are omitted here.

2) ⇔ 5): Similar to the proofs of 1) ⇔ 2) and Theorem
2 in [9], the equivalence between 2) and 5) can also be
derived, and it is omitted here. ¤

Remark 1. Theorem 1 establishes the equivalence
among several stability criteria reported in [3, 5− 7], which
implies that the computation-based assertion in [3] claim-
ing that the stability criterion of [3] is less conservative than

the one in [5], is incorrect. Compared with Lemma 1[3], 2)
of Theorem 1 involves less decision variables. Hence, from
a mathematical point of view, 2) of Theorem 1 is more
“powerful”.

3 An improved stability criterion
In this section, an improved stability criterion will be

proposed by using a delay decomposition method[10].
Theorem 2. The singular time-delay system (Σ) is reg-

ular, impulse free, and asymptotically stable for a given
positive integer N and any constant delay τ satisfying
0 < τ ≤ τm, if there exist matrices

P =

[
P11 P12

0 P22

]
, P11 > 0, Qi > 0

Zi > 0 , i = 1, 2, · · · , N (18)

with appropriate dimensions and P11 ∈ Rp×p satisfying the
following LMI:

Θ < 0 (19)

where

Θ =




Θ1
N
τm

ETZ1E 0

∗ Θ2
N
τm

ETZ2E

∗ ∗ Θ3

...
...

...
∗ ∗ ∗
∗ ∗ ∗

· · · 0 PAτ + τm
N

ATZ̃Aτ

· · · 0 0
· · · 0 0
. . .

...
...

· · · ΘN
N
τm

ETZNE

· · · ∗ ΘN+1




Θ1 = PA + ATPT + Q1 +
τm

N
ATZ̃A− N

τm
ETZ1E

Θi = −Qi−1 + Qi− N

τm
ET(Zi−1+Zi)E, i = 2, 3, · · · , N

ΘN+1 = −QN − N

τm
ETZNE +

τm

N
AT

τ Z̃Aτ

Z̃ =

N∑
i=1

Zi

Proof. From (19), it follows that

PA + ATPT + Q1 − N

τm
ETZ1E < 0 (20)

holds, which implies that

P22A22 + AT
22P

T
22 < 0 (21)

So, A22 is nonsingular. Pre- and post-multiplying
[I I · · · I I]︸ ︷︷ ︸

N+1

and its transpose on both sides of Θ in

(19), it yields that

P (A + Aτ ) + (A + Aτ )TPT − N

τm

N∑
i=1

ETZiE < 0 (22)

which implies that A22 + Aτ22 is also nonsingular. Thus,
the pairs (E, A) and (E, A + Aτ ) are regular and impulse
free.

Construct the Lyapunov-Krasovskii functional for sys-
tem (Σ) as

V (xxxt) = xxxT(t)PExxx(t) +

N∑
i=1

( ∫ t−τi−1

t−τi

xxxT(s)Qixxx(s)ds+

∫ −τi−1

−τi

∫ t

t+θ

ẋxxT(s)ETZiEẋxx(s)dsdθ
)

(23)

where xxxt = xxx(t + θ), −τm ≤ θ ≤ 0 and τi = i/N × τ, i =
0, 1, 2, · · · , N .

Taking the time derivative of V (xxxt) along with the solu-
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tion of (Σ) yields

V̇ (xxxt) = 2xxxT(t)PEẋxx(t)+

N∑
i=1

(
xxxT(t− τi−1)Qixxx(t− τi−1)− xxxT(t− τi)Qixxx(t− τi)

)
+

N∑
i=1

(
τ

N
ẋxxT(t)ETZiEẋxx(t)−

∫ t−τi−1

t−τi

ẋxxT(s)ETZiEẋxx(s)ds

)
≤

2xxxT(t)P [Axxx(t) + Aτxxx(t− τ)]+

N∑
i=1

(
xxxT(t− τi−1)Qixxx(t− τi−1)− xxxT(t− τi)Qixxx(t− τi)

)
+

N∑
i=1

(τm

N
[Axxx(t) + Aτxxx(t− τ)]TZi[Axxx(t) + Aτxxx(t− τ)]

)
−

N

τm

N∑
i=1

([xxx(t− τi−1)− xxx(t− τi)]
TET

ZiE[xxx(t− τi−1)− xxx(t− τi)]) =

ξξξT(t)Θξξξ(t) (24)

where

ξξξ(t) =
[

xxxT(t) xxxT(t− τ1) · · · xxxT(t− τ)
]T

Therefore, by (19), it is easy to see that V̇ (xxxt) < 0. ¤
Remark 2. In the proof of Theorem 2, the delay in-

terval [0, τm] is divided into N segments of equal length
τm/N , such that the information of delayed states xxx(t −
iτm/N), i = 1, 2, · · · , N are all taken into account. It is
clear that the Lyapunov function defined in Theorem 2 is
more general than the ones in [3, 5−7], etc.

The following theorem shows the relationship between
Theorem 2 and 2) of Theorem 1.

Theorem 3. Inequality (19) is feasible if inequality (13)
is feasible.

Proof. If inequality (13) is feasible, then there exists a
scalar ε > 0 such that

Ψ̃ < 0 (25)

where

Ψ̃ =




Ψ̃1 0 0
∗ −εI 0
∗ ∗ −εI
...

...
...

∗ ∗ ∗
∗ ∗ ∗
· · · 0 PAτ + τmATZAτ + τ−1

m HTZ11H
· · · 0 0
· · · 0 0
. . .

...
...

· · · −εI 0
· · · ∗ −Q + τmAT

τ ZAτ − τ−1
m HTZ11H




Ψ̃1 = PA + (PA)T + Q + (N − 1)εI + τmATZA−
τ−1

m HTZ11H

H =
[

Ip 0
]

Letting Zi = Z, i = 1, 2, · · · , N , QN = Q, QN−1 = Q +
ε I, · · · , Q1 = Q + (N − 1)εI, and denoting ∆ = Θ− Ψ̃,
it yields that

∆ =




−N − 1

τm
ETZE

N

τm
ETZE 0

∗ −2N

τm
ETZE

N

τm
ETZE

∗ ∗ −2N

τm
ETZE

...
...

...
∗ ∗ ∗
∗ ∗ ∗

· · · 0 − 1

τm
ETZE

· · · 0 0
· · · 0 0
. . .

...
...

· · · −2N

τm
ETZE

N

τm
ETZE

· · · ∗ −N − 1

τm
ETZE




(26)

Next, we prove that ∆ ≤ 0 holds.
When N = 1, it is obvious that ∆ = 0, so Θ < 0 is also

feasible.
If N = 2, then ∆ becomes

Λ =




− 1

τm
ETZE

2

τm
ETZE − 1

τm
ETZE

∗ − 4

τm
ETZE

2

τm
ETZE

∗ ∗ − 1

τm
ETZE




(27)

Pre- and post-multiplying




I I I
0 I 0
0 1

2
I I


 and its trans-

pose on both sides of Λ, it follows

Λ̃ =




0 0 0

∗ − 4

τm
ETZE 0

∗ ∗ 0


 (28)

It is obvious that Λ̃ ≤ 0, which implies that ∆ ≤ 0 holds.
The proof of N > 2 is similar to the case of N = 2, and

thus, it is omitted here. ¤
Remark 3. From Theorem 3, it is easy to see that

Theorem 2 is less conservative than 2) of Theorem 1. As
N increases, the conservatism of Theorem 2 decreases. An
example in the next section will verify this fact.

4 Example

Example 1[3]. Consider a singular delay system that is
in the form of (1) with

E =

[
1 0
0 0

]
, A =

[
0.5 0
−1 −1

]
, Aτ =

[ −1 0
0 0

]

Table 1 lists the comparison of the computation results
obtained by the stability criteria of [3, 5−7, 11] and this
note.
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It is worth pointing out that the maximum τm obtained
by Theorem 3.5 in [11] should be 1.1547 and not 1.1612,
which was given in [3].

Certainly, the maximum τm obtained by Theorem 1 in
[3] should be 1.1547 and not 1.2011, which was provided in
[3].

From Table 1, it is clear that Theorem 1 in [3] may not
be less conservative than Theorem 3.5 in [11]. Fortunately,
Example 2 in [6] showed that the computation results ob-
tained by Theorem 1 in [6] may be less conservative than
the ones obtained by Theorem 3.5 in [11], and that no the-
oretical proof had been provided in [6].

In summary, 2) of Theorem 1 in this note contains the
fewest variables and Theorem 2 in this note is less conser-
vative than those in [3, 5−7].

Table 1 Comparisons of delay-dependent stability conditions
of Example 1

Methods Maximum τm allowed Number of variables

Theorem 1[7] 1.1547 53

Theorem 1[5] 1.1547 33

Theorem 3.5[11] 1.1547 24

Theorem 1[6] 1.1547 17

Theorem 1[3] 1.1547 13

2) of Theorem 1 1.1547 9

Theorem 2, N = 2 1.1954 15

Theorem 2, N = 3 1.2025 21

Theorem 2, N = 4 1.2044 27

Theorem 2, N = 5 1.2052 33

5 Conclusion
This note studies the stability of singular systems with

state delay and theoretically proves the equivalence among
several recent results through a technique of eliminating
redundant variables. By using the delay decomposition
method, a new stability criterion that is much less conser-
vative than the previous relevant ones is obtained, which
has been shown by a numerical example.
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