
Vol. 36, No. 3 ACTA AUTOMATICA SINICA March, 2010

Mean-square Exponential Input-to-state Stability of

Euler-Maruyama Method Applied to

Stochastic Control Systems
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Abstract This paper deals with the mean-square exponential input-to-state stability (exp-ISS) of Euler-Maruyama (EM) method
applied to stochastic control systems (SCSs). The aim is to find out the conditions of the exact and EM method solutions to an SCS
having the property of mean-square exp-ISS without involving control Lyapunov functions. Second moment boundedness and an
appropriate form of strong convergence are achieved under global Lipschitz coefficients and mean-square continuous random inputs.
Under the strong convergent condition, it is shown that the mean-square exp-ISS of an SCS holds if and only if that of the EM
method is preserved for sufficiently small step size.
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When investigating stability and designing controller of
a system, it is important to characterize the effects of ex-
ternal inputs. The well-known input-to-state stability (ISS)
property plays useful role in this regard. The concept of ISS
originated in [1] for deterministic systems and has been fre-

quently investigated in recent years[2−6]. Especially, some
concepts of exp-ISS for stochastic control systems (SCSs)
have been appeared in [7−9]. These concepts are the ex-
tension of ISS for deterministic systems (plus exponential
stability).

The exp-ISS of a stochastic control system, usually de-
pends on the existence of an appropriate control Lyapunov
function. However, in general, there is no very effective
method to find such control Lyapunov function. Thus, in
the absence of an appropriate control Lyapunov function,
we may carry out careful numerical simulations using a nu-
merical method with a small step size ∆. Then, for the
mean-square exp-ISS and Euler-Maruyama (EM) method,
two key questions follow.

Question 1. If the SCS satisfies mean-square exp-ISS,
will the EM method preserve the mean-square exp-ISS for
sufficiently small ∆?

Question 2. If the EM method satisfies mean-square
exp-ISS for small ∆, can we infer that the underlying SCS
also satisfies mean-square exp-ISS?

Results that answer Questions 1 and 2 for uncontrolled
stochastic systems can be found in [10−13]. Furthermore,
the ISS of Runge-Kutta methods and one-leg methods for
deterministic control systems was investigated in [14−15],
respectively. However, to the best of the authors′ knowl-
edge, the mean-square exp-ISS of EM method for SCSs
remains open, which motivates this paper. In addition, it
is of great importance to study control problems by using
numerical methods, since the research on control problems
(e. g. ISS) becomes much more difficult by using traditional
methods with the rapid development of some larger engi-
neering designs and so on.
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Our aim of this study is to give very positive answers to
both Questions 1 and 2 without the existence of an appro-
priate control Lyapunov function. The organization of the
paper is as follows. In Section 1, we give our definitions of
mean-square exp-ISS for the SCS and EM method. In Sec-
tion 2, under global Lipschitz coefficients and mean-square
continuous random inputs, the second moment bounded-
ness and an appropriate form of strong convergence are
obtained in Theorem 1 and Theorem 2, respectively. In
Section 3, Theorem 3 shows the equivalence, for sufficiently
small step size, of the mean-square exp-ISS of the SCSs and
that of the EM method.

Furthermore, it may be noted that the approach used
in Theorem 3 allows us to discuss whether an SCS shares
mean-square exp-ISS property with other numerical meth-
ods (e.g. the stochastic theta method), however, this dis-
cussion is not covered here due to space limitation and will
be reported in our next paper.

Notation. Rn denotes the n-dimensional Euclidean
space, Rn×m is the set of all n×m real matrices, and Z is
the set of all integers. (Ω, F, {Ft}t≥0,P) is a complete prob-
ability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i. e., it is right continuous and F0 contains all P-
null sets). E{·} stands for the mathematical expectation.
Let | · | denote both the Euclidean norm in Rn and the
trace norm in Rn×m. Denote by L2

Ft
(Ω;Rn) the family of

all Ft-measurable random variables ξξξ : Ω → Rn such that
E|ξξξ|2 < ∞. A function γ : R+ → R+ is called a κ-function
if it is continuous, strictly increasing, and γ(0) = 0.

1 The mean-square exp-ISS

Consider the following n-dimensional Itô SCS:

dyyy(t) = fff(yyy(t),uuu(t))dt + ggg(yyy(t),uuu(t))dwww(t), t ≥ 0 (1)

where yyy(t) ∈ Rn and uuu(t) ∈ Rm are the state vector and
input vector of the system, respectively. www(t) is a standard
p-dimensional Wiener process. The set of admissible inputs
is denoted by F(Rm) and is the set of all progressively
measurable random functions uuu : Ω × [0,∞) → Rm such
that the supremum norm |uuu|sup = sup{|uuu(t)|, t ≥ 0, a.s.} ≤
∞, where a.s. means almost surely. That is to say, for
every t ≥ 0, the random input uuu is Ft × Bt-measurable
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(Bt is the σ-algebra of Borel subsets of [0, t]). As a direct
consequence, each uuu(t) is Ft-adapted.

We always assume that fff : Rn × Rm → Rn and
ggg : Rn × Rm → Rn×p are both Borel measurable such
that the SCS (1) has a unique solution for any initial data
yyy(0) = ξξξ ∈ L2

F0(Ω;Rn) and random inputs uuu(t) ∈ F(Rm).
We shall denote this solution by yyy(t; 0, ξξξ,uuu(t)). For de-
tailed conditions on the existence and uniqueness of yyy(t) =
yyy(t; 0, ξξξ,uuu(t)), we refer the reader to [9, 16]. For the purpose
of stability study in this paper, assume that

fff(000,000) = 000, ggg(000,000) = 000 (2)

Definition 1. The SCS (1) is said to satisfy mean-
square exp-ISS if there exists a κ-function β and posi-
tive constants M and λ such that, for all initial data
ξξξ ∈ L2

F0(Ω;Rn) and random inputs uuu(t) ∈ F(Rm),

E|yyy(t)|2 ≤ ME|ξξξξξξξξξ|2e−λt + Eβ(|uuu|2sup) (3)

We refer to λ as a rate constant, M as a growth constant,
and β as a gain function.

Intuitively, the mean-square exp-ISS property indicates
that, with random but almost surely bounded inputs, the
behavior of the SCS should remain bounded in mean-square
and tend exponentially to the equilibrium in mean-square
when inputs almost surely approach to zero.

Remark 1. The mean-square exp-ISS of SCSs is a nat-
ural extension of the well-known deterministic ISS intro-
duced by Sontag[2−3]. Furthermore, a concept also named
as mean-square exp-ISS for SCSs was introduced in [7, 9].
However, the mean-square exp-ISS employed in [7, 9] es-
sentially is an extension of robust stability for deterministic
systems introduced in [2]. The equivalence of the ISS and
the robust stability for deterministic systems was proved
in [2]. Due to the page limit, the relationship between the
mean-square exp-ISS in Definition 1 and that employed in
[7, 9] will be investigated and discussed later.

Now, we define the EM method[12, 17] for the SCS (1).
The discrete approximation xxxk ≈ yyy(k∆) with tk = k∆, is
formed by simulation from xxx0 = ξξξ; however, in general,

xxxk+1 = xxxk + fff(xxxk,uuuk)∆ + ggg(xxxk,uuuk)∆wwwk (4)

where ∆wwwk = www((k + 1)∆)−www(k∆) and uuuk = uuu(k∆). We
introduce the continuous approximation

xxx(t) = ξξξ +

∫ t

0

fff(zzz(s),UUU(s))ds +

∫ t

0

ggg(zzz(s),UUU(s))dwww(s)

(5)
where

zzz(t) =

∞∑

k=0

xxxk1[k∆,(k+1)∆)(t)

UUU(t) =

∞∑

k=0

uuuk1[k∆,(k+1)∆)(t)

with 1G denoting the indicator function for the set G. It
is easily shown that xxx(k∆) = xxxk, and hence, xxx(t) is an
interpolant to the discrete EM method solution.

Following Definition 1, we may define the mean-square
exp-ISS for the continuous EM method.

Definition 2. For a given step size ∆ > 0, the contin-
uous EM method is said to satisfy mean-square exp-ISS, if
there exists a κ-function γ and positive constants N and l

such that, for all initial data ξξξ ∈ L2
F0(Ω;Rn) and random

inputs uuu(t) ∈ F(Rm),

E|xxx(t)|2 ≤ NE|ξξξ|2e−lt + Eγ(|uuu|2sup) (6)

We refer to l as a rate constant, N as a growth constant,
and γ as a gain function.

To be simple, we denote aβ(x) + bx by (aβ + b)(x) and
denote aβ(x)+bx ≤ cx for all x ∈ R+ by aβ +b ≤ c, where
β is any κ-function and a, b, c are any positive constants.
Clearly, it implies that (bβ + a) is also a κ-function.

Furthermore, we must declare that the questions ad-
dressed, results proved, as well as style of analysis use much
of the work [10] for reference.

2 Strong convergence

Our aim is to find conditions under which the EM
method reproduces the stability behavior of the under-
lying problem, for sufficiently small ∆. In order to do
this, we introduce some conditions and perform prelimi-
nary analysis that establishes second moment boundedness
and an appropriate form of strong convergence under global
Lipschitz coefficients and mean-square continuous random
inputs.

Assumption 1. Assume that both fff and ggg are globally
Lipschitz continuous, that is,

|fff(yyy,uuu)− fff(ȳyy, ūuu)|2 ≤ K1(|yyy − ȳyy|2 + |uuu− ūuu|2) (7)

and

|ggg(yyy,uuu)− ggg(ȳyy, ūuu)|2 ≤ K2(|yyy − ȳyy|2 + |uuu− ūuu|2) (8)

for all yyy, ȳyy ∈ Rn and uuu, ūuu ∈ F(Rm), where K1 and K2 are
positive constants. Furthermore, we also assume that, for
all sufficiently small ∆ > 0, t ≥ 0 and uuu(t) ∈ F(Rm),

E|uuu(t + ∆)− uuu(t)|2 ≤ L∆2E|uuu|2sup (9)

where L is a positive constant, which implies the random
input uuu(t) is mean-square continuous.

Theorem 1. Under (2) and the global Lipschtiz condi-
tions (7) and (8), for sufficiently small ∆, the continuous
EM method solution (5) satisfies,

sup
0≤t≤T

E|xxx(t)|2 ≤ Bξξξ,T ,|uuu|sup , T ≥ 0 (10)

where

Bξξξ,T ,|uuu|sup = 3(E|ξξξ|2 + T (TK 1 + K2)E|uuu|2sup)e3(TK1+K2)T

Proof. From (2) and the global Lipschtiz conditions (7)
and (8), we note that

|fff(xxx,uuu)|2 ≤ K1(|xxx|2 + |uuu|2), |ggg(xxx,uuu)|2 ≤ K2(|xxx|2 + |uuu|2)
Then, we derive from (5) that, for 0 ≤ t ≤ T ,

E|xxx(t)|2 ≤ 3E|ξξξ|2 + 3TE

∫ t

0

|fff(zzz(s),UUU(s))|2ds+

3E

∫ t

0

|ggg(zzz(s),UUU(s))|2ds ≤

3E|ξξξ|2 + 3(TK 1 + K2)×(∫ t

0

E|zzz(s)|2ds + TE|uuu|2sup

)
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Since the right-hand side term is nondecreasing in t, we
have

sup
0≤t≤t1

E|xxx(t)|2 ≤ 3E|ξξξ|2 + 3T (TK 1 + K2)E|uuu|2sup+

3(TK 1 + K2)

∫ t1

0

E|zzz(s)|2ds ≤

3E|ξξξ|2 + 3T (TK 1 + K2)E|uuu|2sup+

3(TK1 + K2)

∫ t1

0

( sup
0≤t≤s

E|xxx(t)|2)ds

for any t1 ∈ [0, T ]. The continuous Gronwall inequality
hence yields

sup
0≤t≤T

E|xxx(t)|2 ≤ 3(E|ξξξ|2+T (TK 1+K2)E|uuu|2sup)e3(TK1+K2)T

which is the required assertion (10). ¤
Lemma 1. Under (2) and the global Lipschitz condi-

tions (7) and (8), for sufficiently small ∆, the continuous
EM method solution (5) satisfies

sup
0≤t≤T

E|xxx(t)− zzz(t)|2 ≤ (2K2 + 1)∆ sup
0≤t≤T

E|xxx(t)|2+

(2K2 + 1)∆E|uuu|2sup (11)

for all T > 0.
Proof. Given any 0 ≤ t ≤ T , let k = [t/∆] be the integer

part of t/∆, this seems incomplete; so k∆ ≤ t ≤ (k + 1)∆.
It follows from (5) that

xxx(t)− zzz(t)=fff(xxxk,uuuk)(t− k∆) + ggg(xxxk,uuuk)(www(t)−www(k∆))
(12)

Then, we have

E|xxx(t)− zzz(t)|2 ≤ 2(K1∆ + K2)∆E(|xxxk |2 + |uuuk |2) ≤
(2K2 + 1)∆ sup

0≤t≤T
E|xxx(t)|2 + (2K2 + 1)∆E|uuu|2sup

if 2K1∆ ≤ 1. Hence the assertion (11) follows. ¤
Theorem 2. Under (2) and Assumption 1, for suffi-

ciently small ∆, the continuous EM method solution (5)
satisfies

sup
0≤t≤T

E|xxx(t)− yyy(t)|2 ≤ CT∆ sup
0≤t≤T

E|xxx(t)|2 + DT∆E|uuu|2sup

(13)

where

CT = 4T (K1T + K2)(2K2 + 1)e4T (K1T+K2)

and

DT = 2T (K1T + K2)(4K2 + 3)e4T (K1T+K2)

Proof. It follows from (1) and (5) that for any 0 ≤ t ≤
T ,

xxx(t)− yyy(t) =

∫ t

0

[fff(zzz(s),UUU(s))− fff(yyy(s),uuu(s))]ds+

∫ t

0

[ggg(zzz(s),UUU(s))− ggg(yyy(s),uuu(s))]dwww(s)

Hence, for sufficiently small ∆,

E|xxx(t)− yyy(t)|2 ≤

2(K1T + K2)E

∫ t

0

(|zzz(s)− yyy(s)|2 + |UUU(s)− uuu(s)|2)ds ≤

4(K1T + K2)E

∫ t

0

(|zzz(s)− xxx(s)|2 + |xxx(s)− yyy(s)|2)ds +

2T (K1T + K2)L∆2E|uuu|2sup ≤
4T (K1T + K2)(2K2 + 1)×

∆

(
sup

0≤t≤T
E|xxx(t)|2 + E|uuu|2sup

)
+ 2(K1T + K2)×

(
2E

∫ t

0

|xxx(s)− yyy(s)|2ds + TL∆2E|uuu|2sup

)
≤

4(K1T + K2)E

∫ t

0

|xxx(s)− yyy(s)|2ds +

4T (K1T + K2)(2K2 + 1)∆ sup
0≤t≤T

E|xxx(t)|2 +

2T (K1T + K2)(4K2 + 3)∆E|uuu|2sup

if L∆ ≤ 1. From an application of the continuous Gronwall
Lemma, we obtain a bound of the form

E|xxx(t)− yyy(t)|2 ≤ CT∆ sup
0≤t≤T

E|xxx(t)|2 + DT∆E|uuu|2sup

Since this holds for any t ∈ [0, T ], the assertion (13) must
hold. ¤

Remark 2. The inequality (13) implies that the EM
method has a strong finite-time convergence order of at
least 1/2 with a “squared error constant” that is linearly
proportional to sup0≤t≤T E|xxx(t)|2 and E|uuu|2sup. Obviously,
for uncontrolled stochastic systems, it implies that the
strong convergence order of EM method also is greater than
1/2.

3 Main results

It is of interest to ask whether the EM method shares
mean-square exp-ISS with the SCS (1). The results below
answer this question positively.

Lemma 2. Assume that the SCS (1) satisfies mean-
square exp-ISS with rate constant λ, growth constant M ,
and gain β. Under (2) and Assumption 1, there exists a
∆∗ > 0 such that for every 0 < ∆ < ∆∗, the continuous
EM method satisfies mean-square exp-ISS of the SCS (1)

with rate constant l = 1
2
λ, growth constant N = 2Me

1
2 λT

and gain γ = (β + 1)/(1− e−
1
2 λT ).

Proof. Choose T = 1 + (4 log M)/λ, so that

Me−λT ≤ e−
3
4 λT (14)

Now, for any τ > 0,

E|xxx(t)|2 ≤ (1 + τ)E|xxx(t)− yyy(t)|2 + (1 +
1

τ
)E|yyy(t)|2 (15)

From (2), Assumption 1 and Theorem 2, we have (13).
Then, using (13) and (3), we see that

sup
0≤t≤2T

E|xxx(t)|2 ≤ (1 + τ)(C2T∆ sup
0≤t≤2T

E|xxx(t)|2+

D2T ∆E|uuu|2sup) + ((1 +
1

τ
)(ME|ξξξ|2 + Eβ(|uuu|2sup))
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If we take ∆ sufficiently small, this rearranges to

sup
0≤t≤2T

E|xxx(t)|2 ≤ (1 + 1
τ
)M

1− (1 + τ)C2T ∆
E|ξξξ|2+

E
(1 + 1

τ
)β + (1 + τ)D2T∆

1− (1 + τ)C2T∆
(|uuu|2sup) (16)

Now, taking the supremum over [T, 2T ] in (15), using (13)
and the bound (16), and also the stability condition (3), we
have

sup
T≤t≤2T

E|xxx(t)|2 ≤ (1 + τ) sup
0≤t≤2T

E|xxx(t)− yyy(t)|2+

(1 +
1

τ
) sup

T≤t≤2T
E|yyy(t)|2 ≤

(1 + τ)(1 + 1
τ
)ME|ξξξ|2

1− (1 + τ)C2T ∆
C2T ∆ + (1 +

1

τ
)ME|ξξξ|2e−λT+

E
(1 + τ)(1 + 1

τ
)β + (1 + 1

τ
)D2T∆

(1 + 1
τ
)C2T∆

C2T∆(|uuu|2sup)+

(1 +
1

τ
)D2T∆E|uuu|2sup + (1 +

1

τ
)Eβ(|uuu|2sup)

We write this as

sup
T≤t≤2T

E|xxx(t)|2 ≤ R(∆)E|ξξξ|2 + ES(∆)(|uuu|2sup) (17)

where

R(∆) =
(1 + τ)(1 + 1

τ
)

1− (1 + τ)C2T ∆
C2T ∆M + (1 +

1

τ
)Me−λT

S(∆) =
(1 + τ)[(1 + 1

τ
)β + (1 + τ)D2T ∆]

1− (1 + τ)C2T ∆
C2T ∆+

(1 +
1

τ
)D2T ∆ + (1 +

1

τ
)β

Let τ = 1/
√

∆. Note that R(∆) and S(∆) increase mono-
tonically with ∆. It implies that S(∆1)(x) < S(∆2)(x) for
all x ∈ R+ if 0 < ∆1 < ∆2. Hence, by using (14), and
taking ∆ sufficiently small, we may ensure that

R(∆) ≤ e−
1
2 λT , S(∆) ≤ β + 1 (18)

In (17) this gives

sup
T≤t≤2T

E|xxx(t)|2 ≤ e−
1
2 λT sup

0≤t≤T
E|xxx(t)|2 + E(β + 1)(|uuu|2sup)

Now, let ŷyy(t) be the solution to the SCS (1) for t ∈
[T,∞), with the initial condition ŷyy(T ) = xxx(T ). Following
the previous analysis, we have

E|xxx(t)|2 ≤ (1 + τ)E|xxx(t)− ŷyy(t)|2 + (1 +
1

τ
)E|ŷyy(t)|2 (19)

Taking the supremum over [T, 3T ], and using the Markov
property for the SCS (1), we can shift (3) and (13) to
[T, 3T ], obtaining

sup
T≤t≤3T

E|xxx(t)|2 ≤ (1 + 1
τ
)M

1− (1 + τ)C2T ∆
E|xxx(T )|2+

E
(1 + 1

τ
)β + (1 + τ)D2T∆

1− (1 + τ)C2T∆
(|uuu|2sup)

Note that E|ŷyy(t)|2 ≤ ME|xxx(T )|2e−λ(t−T) + Eβ(|uuu|2sup)
for all t ≥ T . Then, taking the supremum over [2T, 3T ] in
(19), in place of (17), we arrive at

sup
2T≤t≤3T

E|xxx(t)|2 ≤ R(∆)E|xxx(T )|2 + ES(∆)(|uuu|2sup)

Continuing this approach and using (18) gives

sup
(i+1)T≤t≤(i+2)T

E|xxx(t)|2 ≤ e−
1
2 λTE|xxx(iT )|2+

E(β + 1)(|uuu|2sup) (20)

for i ≥ 0. From (20) we see that

sup
(i+1)T≤t≤(i+2)T

E|xxx(t)|2 ≤

e−
1
2 λT sup

iT≤t≤(i+1)T

E|xxx(t)|2 + E(β + 1)(|uuu|2sup) ≤

e−
1
2 λT e−

1
2 λT sup

(i−1)T≤t≤iT

E|xxx(t)|2+

(e−
1
2 λT + 1)E(β + 1)(|uuu|2sup) ≤ · · · ≤

e−
1
2 λT (i+1) sup

0≤t≤T
E|xxx(t)|2+

1− e−
1
2 λT (i+1)

1− e−
1
2 λT

E(β + 1)(|uuu|2sup) (21)

Now, using τ = 1/
√

∆ in (16), for sufficiently small ∆ we
see that

sup
0≤t≤T

E|xxx(t)|2 ≤ 2ME|ξξξ|2 + E(β + 1)(|uuu|2sup) (22)

It follows from (21) and (22) that

sup
(i+1)T≤t≤(i+2)T

E|xxx(t)|2 ≤ 2M e−
1
2 λT(i+1)E|ξξξ|2+

1− e−
1
2 λT (i+2)

1− e−
1
2 λT

E(β + 1)(|uuu|2sup) ≤

2Me
1
2 λT E|ξξξ|2e− 1

2 λt + E
β + 1

1− e−
1
2 λT

(|uuu|2sup)

Hence, the continuous EM method satisfies mean-square

exp-ISS with l = 1
2
λ, N = 2Me

1
2 λT , and γ = (β + 1)/(1 −

e−
1
2 λT ). ¤
The next lemma gives a positive answer to Question 2.
Lemma 3. Under (2) and Assumption 1, assume that

for a step ∆ > 0, the continuous EM method satisfies mean-
square exp-ISS with rate constant l, growth constant N and
gain γ. If ∆ satisfies

C2T elT (∆ +
√

∆) + 1 +
√

∆ ≤ e
1
4 lT , CT ∆ ≤ 1 (23)

and

(D2T + C2T γ)(∆ +
√

∆) + γ
√

∆ ≤ 1, (DT + CT γ)∆ ≤ 1
(24)

where T = 1+(4 log N)/l, then the SCS (1) satisfies mean-
square exp-ISS with rate constant λ = 1

2
l, growth constant

M = 2Ne
1
2 lT , and gain β = (γ + 1)/(1− e−

1
2 lT ).

Proof. First, note that

e−
3
4 lT N ≤ e−

1
2 lT (25)
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For any τ > 0, we have

E|yyy(t)|2 ≤ (1 + τ)E|xxx(t)− yyy(t)|2 + (1 +
1

τ
)E|xxx(t)|2 (26)

Using (13) and (6) in (26), we obtain

sup
T≤t≤2T

E|yyy(t)|2 ≤ (1 + τ) sup
0≤t≤2T

E|xxx(t)− yyy(t)|2+

(1 +
1

τ
) sup

T≤t≤2T
E|xxx(t)|2 ≤

[(1 + τ)C2T ∆ + (1 +
1

τ
)e−lT ]NE|ξξξ|2+

E[(1 + τ)(D2T + C2Tγ)∆ + (1 +
1

τ
)γ](|uuu|2sup) (27)

Setting τ = 1/
√

∆ gives

sup
T≤t≤2T

E|yyy(t)|2 ≤ [C2T elT (∆+
√

∆)+1+
√

∆]NE|ξξξ|2e−lT+

E[(D2T + C2Tγ)(∆ +
√

∆) + (1 +
√

∆)γ](|uuu|2sup) (28)

Using (23) ∼ (25), we then have

sup
T≤t≤2T

E|yyy(t)|2 ≤ e−
3
4 lTNE|ξξξ|2 + E(γ + 1)(|uuu|2sup) ≤

e−
1
2 lT sup

0≤t≤T
E|yyy(t)|2 + E(γ + 1)(|uuu|2sup) (29)

Now, let x̂xx(t) for t ∈ [T,∞) denote the approximation
that arises from applying the EM method with x̂xx(T ) =
yyy(T ). Then, using similar arguments to those that pro-
duced (27) and (28), we have

sup
2T≤t≤3T

E|yyy(t)|2 ≤ (1 + τ) sup
T≤t≤3T

E|x̂xx(t)− yyy(t)|2 +

(1 +
1

τ
) sup

2T≤t≤3T
E|x̂xx(t)|2 ≤

[(1 + τ)C2T ∆ + (1 +
1

τ
)e−lT ]NE|yyy(T )|2+

[(1 + τ)(D2T + C2T γ)∆ + (1 +
1

τ
)γ]E|uuu|2sup ≤

e−
1
2 lT sup

T≤t≤2T
E|yyy(t)|2 + E(γ + 1)(|uuu|2sup)

Generally, this approach may be used to show that

sup
iT≤t≤(i+1)T

E|yyy(t)|2 ≤ e−
1
2 lT sup

(i−1)T≤t≤iT

E|yyy(t)|2+

E(γ + 1)(|uuu|2sup)

for i ≥ 1. Hence,

sup
iT≤t≤(i+1)T

E|yyy(t)|2 ≤ e−
1
2 liT sup

0≤t≤T
E|yyy(t)|2+

1− e−
1
2 liT

1− e−
1
2 lT

E(γ + 1)(|uuu|2sup) (30)

Now, using (23) and (24), we see that

sup
0≤t≤T

E|yyy(t)|2 ≤ 2NE|ξξξ|2 + E(γ + 1)(|uuu|2sup)

Inserting it into (30), we obtain

sup
iT≤t≤(i+1)T

E|yyy(t)|2 ≤ e−
1
2 l(i+1)T e

1
2 lT2NE|ξξξ|2+

1− e−
1
2 l(i+1)T

1− e−
1
2 lT

E(γ + 1)(|uuu|2sup) ≤

e−
1
2 lte

1
2 lT 2NE|ξξξ|2 + E(

γ + 1

1− e−
1
2 lT

)(|uuu|2sup)

which proves the required result. ¤
Lemma 2 and Lemma 3 lead to the following theorem.
Theorem 3. Under (2) and Assumption 1, the SCS

(1) satisfies mean-square exp-ISS if and only if there ex-
ists a ∆ > 0 such that the continuous EM method satisfies
mean-square exp-ISS with rate constant l, growth constant
N , and gain γ, step size ∆, and global constants CT , DT

for T = 1 + (4 log N)/l satisfying conditions (23) and
(24).

Proof. The “if” part of the theorem follows directly
from Lemma 3. To prove the “only if” part, suppose that
the SCS (1) satisfies mean-square exp-ISS with rate con-
stant λ, growth constant M , and gain β. Lemma 2 shows
that there exists a ∆∗ > 0 such that for any step size
0 < ∆ ≤ ∆∗, the EM method satisfies mean-square exp-ISS

with rate constant l = 1
2
λ, growth constant N = 2Me

1
2 λT

and gain γ = (β + 1)/(1− e−
1
2 λT ). Noting that these con-

stants are all independent of ∆, it follows that we may
reduce ∆ if necessary until (23) and (24) are satisfied. ¤

4 Conclusion

With the rapid development of scientific research and
large scale engineering design many control systems are so
complicated that it is very difficult to investigate the sys-
tems by using traditional methods such as Lyapunov meth-
ods. Thus, it is a natural thought to investigate the control
systems by using numerical methods. In this paper, we re-
search the mean-square exp-ISS property of SCSs by EM
methods. From Theorem 3, it is feasible to investigate the
mean-square exp-ISS of the SCS (1) with careful numerical
simulations.
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